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Topology of plane algebraic curves

Input : f (x , y) ∈ Z[x , y ]

Output : Isotopic approximation of f (x , y) = 0

Algorithm
1 Identify and approximate the critical points of f

Singular points and x-extreme points

f (x , y) = ∂f
∂y (x , y) = 0

2 Connect these points by means of polylines
Need the topology around the critical points

 Solve systems of bivariate polynomials
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Topology of plane algebraic curves

Input : f (x , y) ∈ Z[x , y ]

Output : Isotopic approximation of f (x , y) = 0

Main step
1 Identify and approximate the critical points of f

Singular points and x-extreme points

f (x , y) = ∂f
∂y (x , y) = 0

 Solve systems of bivariate polynomials
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Problem

Problems

Solving systems of the form {P = Q = 0} with P,Q ∈ Z[x , y ] :
Isolating the real solutions
Performing operations with the solutions (eg. IsZero, SignAt, etc)

Goals
Correctness : Mathematically correct result
Completeness : No restriction on the input
Efficiency : In theory (bit complexity). In practice (running time)
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Previous work : Solving algebraic systems

Numerical methods : + Fast / - Correctness

Subdivision

Homotopy continuation

Formal solutions : + Correctness / - Symbolic computation

Resultant

Triangular decomposition

Rational parametrization
Gröbner basis + linear algebra

Geometric resolution

Chow form
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Rational Univariate Representation

Definition (Rouillier 99)
Let 〈P,Q〉 be a zero-dim ideal and V its variety. A RUR of 〈P,Q〉 is given by :

A linear form x + ay that separates the points of V

A one-to-one mapping between the roots of an univariate polynomial f
and the solutions of V

t

Univariate polynomial

x

y

P

Q
f(t)

V({P,Q}) → V(f)
(x,y) 7→ x + ay

(fx(t)f1(t)
,
fy(t)
f1(t)

) ←[ t

one-to-one mapping

Preserves the multiplicities

Advantages : simple numerical approximations

8/41 Yacine Bouzidi/Solving bivariate systems and topology of plane curves



Problem and motivation Rational Univariate Representation Theoretical worst-case complexity algorithm Practical algorithm Experiments Conclusion and perspectives

Rational Univariate Representation

Definition (Rouillier 99)
Let 〈P,Q〉 be a zero-dim ideal and V its variety. A RUR of 〈P,Q〉 is given by :

A linear form x + ay that separates the points of V

A one-to-one mapping between the roots of an univariate polynomial f
and the solutions of V

t

Univariate polynomial

x

y

P

Q
f(t)

V({P,Q}) → V(f)
(x,y) 7→ x + ay

(fx(t)f1(t)
,
fy(t)
f1(t)

) ←[ t

one-to-one mapping

Preserves the multiplicities

Advantages : simple numerical approximations

8/41 Yacine Bouzidi/Solving bivariate systems and topology of plane curves



Problem and motivation Rational Univariate Representation Theoretical worst-case complexity algorithm Practical algorithm Experiments Conclusion and perspectives

Notation

P,Q ∈ Z[x , y ]

d : the total degree of P and Q

τ : the maximum bitsize of the coefficients of P and Q

OB : the bit complexity

Õ : omit polylogarithmic factors
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Contribution (1/2)

Theoretical deterministic algorithm for computing the RUR

1 A new algorithm for computing a separating form

ÕB(d8 + d7τ)

Previous bound in ÕB(d10 + d9τ) [Diochnos et al. 09]

2 RUR via simple formulas

: ÕB(d7 + d6τ)

RUR via linear algebra in Q[x , y ]/〈P,Q〉 [Rouillier. 96] : ÕB(d14τ)

Rational parametrizations [Gonzalez Vega et al. 96] : ÕB(d7 + d6τ)

3 New bound on the bitsize of the RUR

: Õ(d2 + dτ)
Õ(d2τ) [Dahan and Schost. 04] (radical systems)
d rational parametrizations of bitsize Õ(d2 + dτ)
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10/41 Yacine Bouzidi/Solving bivariate systems and topology of plane curves



Problem and motivation Rational Univariate Representation Theoretical worst-case complexity algorithm Practical algorithm Experiments Conclusion and perspectives

Contribution (2/2)

Practical probabilistic algorithms for computing the RUR

Random linear form + multi-modular approach (CRT)
Monte-Carlo algorithm : ÕB(d6 + d5τ)

Las-Vegas algorithms : ÕB(d7 + d6τ) and ÕB(d6 + d5τ)

Numerical approximation

Numerical approximations of the real solutions : ÕB(d6 + d5τ)

Implementation and Experiments

Bivariate solver : RS3 (F. Rouillier) + AK2 in CGAL (Myself)
Las-Vegas algorithm + numerical approximation

Topology computation : ISOTOP2
Comparison with state-of-the-art implementations
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Theoretical RUR computation

1 Compute a separating linear form x + ay

2 Compute the polynomials of the RUR associated to x + ay
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Theoretical RUR computation

1 Compute a separating linear form x + ay

2 Compute the polynomials of the RUR associated to x + ay
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Resultant

P =
∑p

i=0 ai(x)y i and Q =
∑q

i=0 bi(x)y i in Z[x , y ]

Geometric definition

Resy (P,Q) ∈ Z[x ] is a polynomial whose roots are the projections on the
x-axis of the intersection points of P and Q (possibly at infinity)

P
Q

α1 α2 α3 x
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Computing the RUR associated to x + ay

x + ay is a separating form of V (〈P,Q〉)
t = x + sy and R(t , s) = Resy (P(t − sy , y),Q(t − sy , y))

LR(s) is the leading coefficient of R(t , s)

Theorem (RUR’s formulas)

f (t) =
R(t ,a)
LR(a)

f1(t) =
f ′(t)

gcd(f (t), f ′(t))

fy (t) =
∂R
∂s (t ,a)− f (t)∂LR

∂s (a)
LR(a)gcd(f (t), f ′(t))

fx(t) = tf1(t)− dt(f )f (t)− afy (t).
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Complexity analysis

Theorem

P,Q ∈ Z[x , y ], degree : d, bitsize : τ , bitsize of x + ay : τa.

1 The RUR of 〈P,Q〉 is computed in ÕB(d7 + d6(τ + τa))

2 The polynomials of the RUR have bitsize in Õ(d2 + d(τ + τa))

Proof

RUR’s polynomials are specialization at s = a of some factor of R(t , s) or one
of its partial derivatives

R(t , s) has bitsize in Õ(d2 + dτ) (Hadamard bound)

Any factor of R(t , s) with integer coefficients has bitsize in Õ(d2 + dτ)
(Mignotte)

After specialization at a : Õ(d2 + d(τ + τa))
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Theoretical RUR computation

1 Compute a separating linear form x + ay

2 Compute the polynomials of the RUR associated to x + ay
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Separating linear form for bivariate systems

Definition

t = x + ay separates the solutions of V (P,Q)

If and only if, the map (x , y) 7→ x + ay is injective on V (P,Q).
If and only if the shear t = x + ay , y = y sends the system in
generic position with respect to the first coordinate t

Example

t = x is sep.

x

y

p1

p2

t = x + ay is not sep.

P,Q ∈ Z[x , y ]
V (P,Q) = {p1, p2, . . .}
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Previous work

For a large enough a, x + ay is separating

Example

X

Y

Separation bound of ResY(P,Q) = 2−Õ(d3τ)

Root upper

bound = 2O(dτ)

[Cheng et al. ISSAC09]
adaptative version

Drawback : bitsize of a is in Õ(d3τ) Impact the complexity of the
RUR : ÕB(d7 + d6(τ + τa)).
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Classical algorithm

A separating form with bitsize in O(log d) = Õ(1) :

There are at most
(d2

2

)
< d4 bad choices of a which is the maximum

number of alignements defined by at most d2 solutions (Bézout’s bound)

Classical algorithm

Compute R(t , s) = Resy (P(t − sy , y),Q(t − sy , y))

For d4 >
(d2

2

)
choices of a

compute the polynomial R(t , a), the specialization of R(t , s) at a

compute R(t , a) the squarefree part of R(t , a)

Select an a for which the degree of R(t , a) is maximal

Bit-complexity ÕB(d10 + d9τ) [Diochnos et al. 09]
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Our algorithm

Work over Z
pZ to avoid coefficient swell

Consider the system {Pp = P mod p,Qp = Q mod p}

Previous algorithm then runs in ÕB(d8)

Problem : x + ay is separating over Z
pZ does not imply that it is

also separating over Z . . . Except under some conditions !

Theorem
Let p be a prime such that Lcy (P(t − sy , y))Lcy (Q(t − sy , y)) do not vanish
modulo p and #V (〈Pp,Qp〉) = #V (〈P,Q〉) then,
x + ay separates V (〈Pp,Qp〉)⇒ x + ay separates V (〈P,Q〉)

Goal : compute a prime p satisfying the above conditions
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Our algorithm

Lemma 1
Let p be a prime number that does not cancel some leading coefficients then,
#V (〈Pp,Qp〉) 6 #V (〈P,Q〉)

Lemma 2

There exists at most Θ̃(d4 + d3τ) prime numbers s.t. #V (〈Pp,Qp〉) < #V (〈P,Q〉)

Algorithm : Computing good prime

For Θ̃(d4 + d3τ) p that do not cancel some leading coefficients

Compute #V (〈Pp,Qp〉) ÕB(d4)

Choose p that maximizes #V (〈Pp,Qp〉)

Overall bit complexity : ÕB(d8 + d7τ)
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Triangular decomposition

Triangular decomposition [Gonzalez-Vega and El Kahoui. 96]

Input : {P,Q}, Output : a set of Si =

{
Fi(x)
Sresi(x , y)

such that :

Fi(x) is a factor of Resy (P,Q)

∀α root of Fi : the deg of gcd(P(α, y),Q(α, y)) = Sresi(α, y) is i .

(1)

(1)
(1)

(1)

(1)

(1)

(1)

(2)(2)

(1)

(3)

x

p = (α, β) Multiplicity of β in Gcd(Pp(α,y),Qp(α,y))

S1 =




F1(x) = 0
Sres1(x,y) = 0

+1 +1

S2 =




F2(x) = 0
Sres2(x,y) = 0

+2+2

S3 =




F3(x) = 0
Sres3(x,y) = 0

+3 +3 +3

Res(x) = F1(x) ∗ F2(x) ∗ F3(x)
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Computing #V (〈Pp,Qp〉)

µ(α, β) : the multiplicity of β in gcd(Pp(α, y),Qp(α, y))

#V (〈Pp,Qp〉) =
∑

(α,β)∈V

µ(α, β) −
∑

(α,β)∈V

(µ(α, β)− 1)

Algorithm : Computing #V (〈Pp,Qp〉)

Triangular decomposition of {Pp,Qp} {Fi(x),Sresi(x , y)}i∈I

 
∑

(α,β)∈V

µ(α, β) =
∑

i∈I i × deg(Fi)

Triangular decomposition of {Sresi ,
∂Sresi
∂y } {Fi,j(x),Sresi,j(x , y)}j∈Ji

 
∑

(α,β)∈V

(µ(α, β)− 1) =
∑

i∈I
∑

j∈Ji
j × deg(Fi,j)
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Summary

The whole RUR computation algorithm

1 Compute a separating form x + ay , a in Õ(1) ÕB(d8 + d7τ)

2 Compute the RUR associated to x + ay  ÕB(d7 + d6τ)

Separating form computation is still the bottleneck in the worst case
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Drawback of the previous approach

Is the previous approach efficient in practice ? No !

Deterministic search for a separating form
Resultant of polynomials in three variables
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Our algorithm : A decomposition into several RURs

Outline
1 Random choice of a linear form
2 Triangular decomposition of the input system
3 Gröbner bases of the triangular sub-systems
4 Rational Univariate Representations

Triangular 
decomposition

GB
computation

RUR
computation
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Our algorithm : details

Triangular decomposition of {P,Q} [El kahoui and Gonzalez-Vega. 96]

Output : A set of Sk = {Fk (x),Sresk (x , y)}

The multiplicity of (α, β) in 〈Sk 〉 is the multiplicity of β in gcd(P(α, y),Q(α, y))

Lexicographic Gröbner Bases

Inverting the leading coefficient of Sresk (x , y) in Sk

Rational Univariate Representations

Arithmetic complexity improvement from O(D3) [Rouillier. 99], to Õ(D2)
where D = O(d2) is the number of solutions

An overall arithmetic complexity in Õ(d4)
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Multi-modular algorithm

The coefficients in the Gröbner bases are much larger than those in the
RURs : negative impact on efficiency

Chinese Remainder Theorem-based approach

1 Compute the RURs of {Pp,Qp} for a set of primes p s.t.
∏

p∈A p > 2m

where m is a bound on the bitsize of the RURs of {P,Q}.
2 Apply the CRT to the resulting RURs in order to obtain the RURs of
{P,Q}

Possibly wrong result

Bad random linear form

Bad prime numbers (unlucky)
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Monte-Carlo algorithm

Monte-Carlo algorithm

1 Select randomly a linear form x + ay
2 Select a set of 2m primes, m is a bound on the bitsize of the RURs
3 Compute the RURs of {P,Q} using the CRT approach
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Monte-Carlo algorithm

Monte-Carlo algorithm

1 Select randomly a linear form x + ay
2 Select a set of 2m primes, m is a bound on the bitsize of the RURs
3 Compute the RURs of {P,Q} using the CRT approach

Complexity and probability of success

Complexity :

 ÕB(d6 + d5τ)

Compute the RURs modulo one prime × the number of primes = 2m
↓ ↓

ÕB(d4) × Õ(d2 + dτ)

 ÕB(d6 + d5τ)
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Monte-Carlo algorithm

Monte-Carlo algorithm

1 Select randomly a linear form x + ay
2 Select a set of 2m primes, m is a bound on the bitsize of the RURs
3 Compute the RURs of {P,Q} using the CRT approach

Complexity and probability of success

Complexity : ÕB(d6 + d5τ)

Probability of success :

Choose linear forms and prime numbers in sets s.t.

The probability that the linear form is separating is larger than 1
2

The probability that m prime numbers are lucky is larger than 1
2

The probability of success is larger than 1
4 .
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Checking the result

Lemma

The set of the obtained solutions (counted with multiplicities) cannot be a
strict subset of the set of the actual solutions.

Corollary

Incorrect result =⇒


Some solution is not solution of {P,Q}
or
Some multiplicity is too large

Sufficient condition for correcteness : ∀ (α, β) of multiplicity µ, check that

P(α, β) = Q(α, β) = 0

∂k P
∂k y (α, β) =

∂k Q
∂k y (α, β) = 0 for k = 2, . . . , µ− 1

Check the RURs by substitution ÕB(d7 + d6τ)
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Las-Vegas algorithm

Las-Vegas algorithm

For pairs of : linear form, set of prime numbers

Run the Monte-Carlo algorithm until the check is positive

After one iteration, probability that the result is correct is larger than 1
4

 The Monte-Carlo algorithm runs at most four times on average before
the check is positive

Expected bit complexity in ÕB(d7 + d6τ)

Alternative Las-Vegas algorithm in ÕB(d6 + d5τ) : Not implemented yet !
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Certified numerical approximation

Goal : Disjoint boxes of the real solutions of 〈P,Q〉

Algorithm

Isolate the real roots of f (t) intervals
I1, . . . , Ik
Compute the images of these intervals
through ( fx (t)

f1(t) ,
fy (t)
f1(t) ) boxes B1, . . . ,Bk

Refine the intervals I1, . . . , Ik until the boxes
B1, . . . ,Bk are disjoint

Complexity

Sufficient condition for disjointness : Sum of the precisions in Õ(d4 + d3τ)

Isolation and refinement : ÕB(d6 + d5τ) [Pan 01][Mehlhorn et al. 13]

Evaluation : ÕB(d6 + d5τ) using amortized bounds
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Some experiments

We compare our solver RS3 with

IsolateRC, the solver of the maple package Regular Chains [Li et al. 11]

LGP [Cheng et al. 09]

Input : {P,Q} Output : Isolating boxes of the real solutions of {P,Q}

RS3 vs IsolateRC

Computing the RURs in RS3 is comparable to the triangular
decomposition part in IsolateRC

The Isolation part is much faster in RS3

Conclusion : the overhead of the symbolic computation of the RURs is small
compared to the benefit it yields for the isolation step !
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Some experiments
We compare ISOTOP2 with

CA of the arrangement package of CGAL [Eigenwillig et al. 07]

Ratio between CA and Isotop2

200<r<1000

50<r<200

5<r<501<r<5

0.2<r<1

FastAnalysis [Berberich et al. 11] (GPU resultant computation)

Comparable behavior with FastAnalysis with small advantage for
FastAnalysis

The tables of benchmarks can be found in my thesis manuscript
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Some examples

curve d τ #V Is (3T) FastAna CA
swin 40 32 63 6s 7s 311

chal_12b 40 41 99 49s 44s t/o
FTT 40 39 62 49s 32s t/o

spider 36 248 38 114s 26s t/o

The curves are taken from [Berberich et al. 11] and Timeout set to 30min
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spider=−16 + 6162578275150629377843639403590784745082330069862900868549277947244052480y8 x2 − 1939337522236312962748869162911980985862413994569548060528765566976y7 x2 −

12078868142909087355602260846449447014227422867186931565070917274288783360y6 x4 + 236671173290003945973287381903739714145625242665881839812898y6 x2 +

2928656437435124763222026789115454518729803299492856309291402919936y5 x4 − 224157174031303336738915211585521379636528521613884260352y5 x2 +

9772241306012599632050145952100613875726189133763225552252441318884638720y4 x6 − 287239620707340846050871413155475057408927834975020991229517y4 x4 +

900406441318251315734189636010060919459131717147345910947y4 x2 − 1584030619885043362790376168858161797470684449807760923307706155008y3 x6 −

853847282993919394871108616969148796119345868929522204672y3 x4 + 1112575946771154488766833351509070867975700668957354622976y3 x2 −

3329232092047593875756398804750266919829435917473994622140188877700202496y2 x8 + 105415211543632661584771489578370704396164098278441843300920y2 x6 −

800955601580931946027306050610715924553533826525156498638y2 x4 + 269930868552936755885229745165361845788326147863984735898y2 x2 +

269219512217027194098540249404906561850025816043892730143761760256yx8 + 180619945055860981681235445924593854979853505709186482176yx6 −

328712561734385132565219818302845427519626624777165209600yx4 − 21306653396491912653434030712188387818579418939392yx2 −

925791486289469300269542118954578441595432321452947601429674175374557184y10 + 325492192962235045359969693418258656289193184190854676655615508480y9 +

840906824841782821471913713447256849434544x2 − 42819019767042087144518408147218320172352731428654601175101y8 −

100074667549390568825930099820339357198253638471456391168y7 − 44305907840663342038859714640857053566854882816209978696x4 −

104746173671900688448808195715032275226400724450582003421y6 − 338879432379394768302454673756687460547091495195439529984y5 +

11461882942736310323632715170939093245382769621497667336x6 − 411134075278275622428123264790219188336338621681855627602y4 +

64904697304903279774229562866598792120012711657472y3 − 11324602235865945285386819335436871581086106388986968419536x8 − 2561584961858416471827621570445154434173104y2 +

399072140083024262422852083145281108683713159754117353144738597847433216x10 + 2583689339674781623317050386087685456690811969950255825495575756800000y19

×10
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Summary of contributions

1 New algorithm for computing a separating form

Improves by a factor d2 the best known complexity
2 New bound on the bitsize of the polynomials of the RUR
3 Efficient Las-Vegas algorithm for computing a decomposition into RURs

A whole bivariate solver in

Worst-case complexity : ÕB(d8 + d7τ)

Match the best known complexity [Emeliyanenko and sagraloff. 12]

Expected complexity : ÕB(d6 + d5τ)
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Since December...

A new result

A new algorithm for computing a separating linear form in ÕB(d7 + d6τ)

(worst-case) and in ÕB(d5 + d4τ) (expected)

Idea : compute a separating form for the set of critical points of P Q
which contains all the solutions of {P,Q}

Ongoing work :

Separating form + rational parametrization in ÕB(d6 + d5τ) (worst-case)
and ÕB(d5 + d4τ) (expected)

Future work :

Computing arrangement of curves

Tackle the 3D world : for both solving and topology computation
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(worst-case) and in ÕB(d5 + d4τ) (expected)

Idea : compute a separating form for the set of critical points of P Q
which contains all the solutions of {P,Q}

Ongoing work :

Separating form + rational parametrization in ÕB(d6 + d5τ) (worst-case)
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A new algorithm for computing a separating linear form in ÕB(d7 + d6τ)

(worst-case) and in ÕB(d5 + d4τ) (expected)

Idea : compute a separating form for the set of critical points of P Q
which contains all the solutions of {P,Q}

Ongoing work :

Separating form + rational parametrization in ÕB(d6 + d5τ) (worst-case)
and ÕB(d5 + d4τ) (expected)

Future work :

Computing arrangement of curves

Tackle the 3D world : for both solving and topology computation

Thank you !
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