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Problem and motivation

Overview

0 Problem and motivation
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Problem and motivation

Topology of plane algebraic curves

Input : f(x,y) € Z[x, y]
Output : Isotopic approximation of f(x,y) =0

Algorithm

@ Identify and approximate the critical points of f

e Singular points and x-extreme points @

f(x,y)= 5 (x,y) =0
© Connect these points by means of polylines [
o Need the topology around the critical points

v
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Problem and motivation

Topology of plane algebraic curves

Input : f(x,y) € Z[x, y]

Output : Isotopic approximation of f(x,y) =0

@ Identify and approximate the critical points of f @

e Singular points and x-extreme points
f(x,y) = 5,(x,y) =0

~ Solve systems of bivariate polynomials
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Problem and motivation

Problem

@ Solving systems of the form {P = Q = 0} with P, Q € Z|[x, y] :
Isolating the real solutions

@ Performing operations with the solutions (eg. IsZero, SignAt, etc)

<

Goals

@ Correctness : Mathematically correct result
@ Completeness : No restriction on the input
@ Efficiency : In theory (bit complexity). In practice (running time)

<
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Problem and motivation

Previous work : Solving algebraic systems

Numerical methods : + Fast /- Correctness

@ Subdivision

@ Homotopy continuation

Formal solutions : + Correctness /- Symbolic computation

@ Resultant
@ Triangular decomposition
@ Rational parametrization

o Grobner basis + linear algebra
o Geometric resolution

@ Chow form
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Rational Univariate Representation

Overview

e Rational Univariate Representation
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Rational Univariate Representation

Rational Univariate Representation

Definition (Rouillier 99)
Let (P, Q) be a zero-dim ideal and V its variety. A RUR of (P, Q) is given by :
@ Alinear form x + ay that separates the points of V

@ A one-to-one mapping between the roots of an univariate polynomial f
and the solutions of V

Univariate polynomial

V({P.Q}) — V()

(X', y) = X+ay
£(t) f(t)
Eorgw) < ¢

one-to-one mapping ¢

@ Preserves the multiplicities
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Rational Univariate Representation

Rational Univariate Representation

Definition (Rouillier 99)
Let (P, Q) be a zero-dim ideal and V its variety. A RUR of (P, Q) is given by :
@ Alinear form x + ay that separates the points of V

@ A one-to-one mapping between the roots of an univariate polynomial f
and the solutions of V

Univariate polynomial

V({P.Q}) — V()

(X', y) = X+ay
£(t) f(t)
Eorgw) < ¢

one-to-one mapping ¢

@ Preserves the multiplicities

Advantages : simple numerical approximations
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Rational Univariate Representation

@ P,QeZlx,y]
@ d : the total degree of P and Q

@ 7 :the maximum bitsize of the coefficients of P and Q

@ Og : the bit complexity

e O:omit polylogarithmic factors
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Rational Univariate Representation

Contribution (1/2)

Theoretical deterministic algorithm for computing the RUR

@ A new algorithm for computing a separating form

© RUR via simple formulas

© New bound on the bitsize of the RUR
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Rational Univariate Representation

Contribution (1/2)

Theoretical deterministic algorithm for computing the RUR

@ A new algorithm for computing a separating form 5B(d8 +d’7)
e Previous bound in Og(d'® + d°7) [Diochnos et al. 09]

© RUR via simple formulas

© New bound on the bitsize of the RUR
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Rational Univariate Representation

Contribution (1/2)

Theoretical deterministic algorithm for computing the RUR

@ A new algorithm for computing a separating form 5B(d8 +d’7)
e Previous bound in Og(d'® + d°7) [Diochnos et al. 09]

© RUR via simple formulas : Og(d” + d®7)
o RUR via linear algebra in Q[x, y]/(P, Q) [Rouillier. 96] : Os(d"r)
o Rational parametrizations [Gonzalez Vega et al. 96] : Og(d” + d®7)

© New bound on the bitsize of the RUR
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Rational Univariate Representation

Contribution (1/2)

Theoretical deterministic algorithm for computing the RUR

@ A new algorithm for computing a separating form 5B(d8 +d’7)
e Previous bound in Og(d'® + d°7) [Diochnos et al. 09]

© RUR via simple formulas : Og(d” + d®7)
o RUR via linear algebra in Q[x, y]/(P, Q) [Rouillier. 96] : Os(d"r)
o Rational parametrizations [Gonzalez Vega et al. 96] : Og(d” + d®7)

© New bound on the bitsize of the RUR : (ND(d2 + d7)

° 5(d27) [Dahan and Schost. 04] (radical systems)
e d rational parametrizations of bitsize O(d? + dr)
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Rational Univariate Representation

Contribution (2/2)

Practical probabilistic algorithms for computing the RUR

@ Random linear form + multi-modular approach (CRT)
e Monte-Carlo algorithm :Nbg(d6 +d°r)
e Las-Vegas algorithms : Og(d” + d°7) and Og(d® + d°7)
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Rational Univariate Representation

Contribution (2/2)

Practical probabilistic algorithms for computing the RUR

@ Random linear form + multi-modular approach (CRT)
e Monte-Carlo algorithm :Nbs(d6 +d°r)
e Las-Vegas algorithms : Og(d” + d°7) and Og(d® + d°7)

v

Numerical approximation

@ Numerical approximations of the real solutions : (~),3(d6 + d°7)

v
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Rational Univariate Representation

Contribution (2/2)

Practical probabilistic algorithms for computing the RUR

@ Random linear form + multi-modular approach (CRT)
e Monte-Carlo algorithm :§B(d6 +d°r)
e Las-Vegas algorithms : Og(d” + d°7) and Og(d® + d°7)

Numerical approximation

@ Numerical approximations of the real solutions : (~),3(d6 + d®7)
Implementation and Experiments

@ Bivariate solver : RS3 (F. Rouillier) + AK2 in CGAL (Myself)
o Las-Vegas algorithm + numerical approximation

@ Topology computation : ISOTOP2
@ Comparison with state-of-the-art implementations

v
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Theoretical worst-case complexity algorithm

Overview

Q Theoretical worst-case complexity algorithm
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Theoretical worst-case complexity algorithm

Theoretical RUR computation

@ Compute a separating linear form x + ay

© Compute the polynomials of the RUR associated to x + ay
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Theoretical worst-case complexity algorithm

Theoretical RUR computation

© Compute the polynomials of the RUR associated to x + ay
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Theoretical worst-case complexity algorithm

Resultant

P=Y",a(x)y’ and Q=37 bi(x)y’ in Z[x,y]

Geometric definition

Resy (P, Q) € Z[x] is a polynomial whose roots are the projections on the
x-axis of the intersection points of P and Q (possibly at infinity)

a1 09 (0% T

(LYl Yacine Bouzidi/Solving bivariate systems and topology of plane curves



Theoretical worst-case complexity algorithm

Computing the RUR associated to x + ay

@ x + ay is a separating form of V((P, Q))
@ t=x+ sy and R(t,s) = Res,(P(t—sy,y), Q(t—sy,y))
@ Lg(s) is the leading coefficient of R(t, s)

Theorem (RUR’s formulas)

_ At ()
0= "Tr@ "0 = gedrtn), 7(0)
9R — f(t)2Lr _
(0 = 2D 0B 10 = 0 - D - a0
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Theoretical worst-case complexity algorithm

Complexity analysis

P, Q € Z[x, y], degree : d, bitsize : T, bitsize of x + ay : Ta.
@ The RUR of (P, Q) is computed in Op(d” + d®(r + 7))
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Theoretical worst-case complexity algorithm

Complexity analysis

P, Q € Z[x, y], degree : d, bitsize : T, bitsize of x + ay : Ta.
@ The RUR of (P, Q) is computed in Op(d” + d®(r + 7))
© The polynomials of the RUR have bitsize in O(d? + d(r + 72))

Proof

RUR'’s polynomials are specialization at s = a of some factor of R(t, s) or one
of its partial derivatives

@ R(t, s) has bitsize in O(a? + dr) (Hadamard bound)

@ Any factor of R(t, s) with integer coefficients has bitsize in 5(d2 + dr)
(Mignotte)

@ After specialization at a: O(d? + d(r + 72))
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Theoretical worst-case complexity algorithm

Theoretical RUR computation

@ Compute a separating linear form x + ay

© Compute the polynomials of the RUR associated to x + ay
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Theoretical worst-case complexity algorithm

Theoretical RUR computation

@ Compute a separating linear form x + ay

o
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Theoretical worst-case complexity algorithm

Separating linear form for bivariate systems

t = x + ay separates the solutions of V(P, Q)

@ If and only if, the map (x, y) — x + ay is injective on V(P, Q).

@ If and only if the shear t = x + ay, y = y sends the system in
generic position with respect to the first coordinate ¢

Example
v 1. . ‘

Sy D
>5\[1

W x P,Q € Z[x, y]
\\\\ 1p2 i \\\\ V(P, Q) = {p17p27___}

T

t = x is sep. t = x + ay is not sep.
o
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Theoretical worst-case complexity algorithm

Previous work

@ For alarge enough a, x + ay is separating

Y o 4
%," f Root upper
';é' f bound = 20017
i [Cheng et al. ISSACO09]
; X adaptative version
% i
- >
Separation bound of Resy(P,Q) = 2-0(d*7)
v

Drawback : bitsize of ais in 5(d3r) ~+ Impact the complexity of the
RUR : Og(d” + d8(7 + 72)).
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Theoretical worst-case complexity algorithm

Classical algorithm

@ A separating form with bitsize in O(logd) = O(1) :

There are at most ("22) < d* bad choices of a which is the maximum
number of alignements defined by at most d? solutions (Bézout’s bound)

Classical algorithm

e Compute R(t,s) = Resy(P(t— sy, y), Q(t — sy, y))

o For d* > (%) choices of a
@ compute the polynomial R(t, a), the specialization of R(t, s) at a

@ compute R(t, a) the squarefree part of R(t, a)

e Select an a for which the degree of R(t, a) is maximal

Bit-complexity ~ Op(d'® + d°7) [Diochnos et al. 09]
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Theoretical worst-case complexity algorithm

Our algorithm

@ Work over Z to avoid coefficient swell
° Con3|der the system {P, = P mod p, Q, = Q mod p}

@ Previous algorithm then runs in 5B(d8)

@ Problem : x + ay is separating over does not imply that it is
also separating over Z . .. Except under some conditions !

Let p be a prime such that Lc,(P(t — sy, y))Lc,(Q(t — sy, y)) do not vanish
modulo p and #V((Pp, Qp)) = #V((P, Q)) then,
X + ay separates V((Pp, Qp)) = x + ay separates V({P, Q))

Goal : compute a prime p satisfying the above conditions
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Theoretical worst-case complexity algorithm

Our algorithm

Let p be a prime number that does not cancel some leading coefficients then,
#V((Po, Qv)) < #V((P, Q))

There exists at most ©(d* + d3r) prime numbers s.t. # V((Pp, Qv)) < #V((P, Q)

Algorithm : Computing good prime

@ For ©(d* + d37) p that do not cancel some leading coefficients
e Compute # V({Pp, Qo)) ~ Og(d*)
@ Choose p that maximizes #V/({Pp, Qp))

Overall bit complexity : Og(d® + d’7)
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Theoretical worst-case complexity algorithm

Triangular decomposition

Triangular decomposition [Gonzalez-Vega and El Kahoui. 96]

Fi(x)

Sresi(x, y) such that :

@ Input : {P, Q}, Output : a set of S; = {

e Fi(x) is a factor of Res, (P, Q)
@ Va root of F; : the deg of gcd(P(«, y), Q(a, y)) = Sresi(a, y) is i.
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Theoretical worst-case complexity algorithm

Triangular decomposition

Triangular decomposition [Gonzalez-Vega and El Kahoui. 96]

Fi(x)

Sresi(x, y) such that :

@ Input : {P, Q}, Output : a set of S; = {
e Fi(x) is a factor of Resy (P, Q)

@ Va root of F; : the deg of gcd(P(«, y), Q(a, y)) = Sresi(a, y) is i.

p=(a,) Multiplicity of 2 in Ged(Pp(a,y), Qpla,y))

1 Coe(1)

D8 me | | | ‘

e : : e @me e
e e s b

®e ! : o(l)

430 41 4ol +3l 431 42 .

/ - — ;77;77:5 — V“‘
[Fix)=0 [ Fyx)=0 . [ Fi(x)=0
Si 7{ Sres; (x,y) =0 S 7{ Sresy(x,y) =0 Ss 7{ Sress(x,y) =0

Res(x) = Fi(x) * Fo(x) * F3(x)
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Theoretical worst-case complexity algorithm

Computing # V((P,, Qp))

u(e, B) : the multiplicity of 3 in ged(Pp(«, y), Qo(a, ¥))

o #V(<Ppa Qp>) = Z M(O‘?B) - Z (M(a’ﬁ) - 1)

(a,B)eV (a,B)EV

Algorithm : Computing # V/({P», Qo))
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Theoretical worst-case complexity algorithm

Computing # V((P,, Qp))

u(e, B) : the multiplicity of 3 in ged(Pp(«, y), Qo(a, ¥))

© #V((Po Qo) = 3 i) = 3 (u(e.B)-1)

(a,B)eV (a,B)eV

Algorithm : Computing # V/({P», Qo))

@ Triangular decomposition of { Py, Qo} ~~ {Fi(x), Sresi(x, y)}icz

= Y e B) = Eier i x deg(F)

(a,B)eV
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Theoretical worst-case complexity algorithm

Computing # V((P,, Qp))

u(e, B) : the multiplicity of 3 in ged(Pp(«, y), Qo(a, ¥))

© #V((Po Qo)) = > mla.B)— > (u(e.f) 1)

(a,8)eV (a,B)EV

Algorithm : Computing # V/({P», Qo))

@ Triangular decomposition of { Py, Qo} ~~ {Fi(x), Sresi(x, y)}icz

Y e, B) = Yieq i x deg(Fi)

(a,B)eV

@ Triangular decomposition of { Sres;, %fs"} ~ {Fij(x), Sres;j(x,¥)}jes;

w3 (. B) = 1) = Tier Syes ) x deg(Fiy)

(a,B)eV
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Theoretical worst-case complexity algorithm

Summary

The whole RUR computation algorithm

@ Compute a separating form x + ay, ain O(1) ~ Og(d® + d’7)

© Compute the RUR associated to x + ay ~ 5B(d7 + d®7)

Separating form computation is still the bottleneck in the worst case
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Practical algorithm

Overview

e Practical algorithm
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Practical algorithm

Drawback of the previous approach

Is the previous approach efficient in practice ? No !

@ Deterministic search for a separating form
@ Resultant of polynomials in three variables J
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Practical algorithm

Our algorithm : A decomposition into several RURs

@ Random choice of a linear form

© Triangular decomposition of the input system
© Grobner bases of the triangular sub-systems
© Rational Univariate Representations

GB RUR
computation i
) CRE O B [ 0 )
Triangular

decomposition | (8= {Sm,(x,y),F,(x)} fie {1+ Rafx) % + Ry(x)

-

{ll

S4= St y) ) "
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Practical algorithm

Our algorithm : details

Triangular decomposition of { P, Q} [El kahoui and Gonzalez-Vega. 96]
@ Output : A set of Sx = {Fk(x), Sresk(x,y)}
The multiplicity of (a, 8) in (Sk) is the multiplicity of 3 in gcd(P(«, y), Q(«, y))

Lexicographic Grobner Bases
Inverting the leading coefficient of Sresk(x, y) in Sk

Rational Univariate Representations

Arithmetic complexity improvement from O(D?) [Rouillier. 99], to (~)(D2)
where D = O(d?) is the number of solutions

An overall arithmetic complexity in (ND(d“)
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Practical algorithm

Multi-modular algorithm

The coefficients in the Grébner bases are much larger than those in the
RURs : negative impact on efficiency

Chinese Remainder Theorem-based approach

@ Compute the RURSs of {P,, Q,} for a set of primes p s.t. [lpeap =27
where mis a bound on the bitsize of the RURs of { P, Q}.

@ Apply the CRT to the resulting RURs in order to obtain the RURSs of
{P.Q}
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Practical algorithm

Multi-modular algorithm

The coefficients in the Grébner bases are much larger than those in the
RURs : negative impact on efficiency

Chinese Remainder Theorem-based approach

@ Compute the RURSs of {P,, Q,} for a set of primes p s.t. [lpeap =27
where mis a bound on the bitsize of the RURs of { P, Q}.

@ Apply the CRT to the resulting RURs in order to obtain the RURSs of
{P.Q}

Possibly wrong result

@ Bad random linear form
@ Bad prime numbers (unlucky)
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Practical algorithm

Monte-Carlo algorithm

Monte-Carlo algorithm

@ Select randomly a linear form x + ay
@ Select a set of 2m primes, m is a bound on the bitsize of the RURs
© Compute the RURs of {P, Q} using the CRT approach
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Practical algorithm

Monte-Carlo algorithm

Monte-Carlo algorithm

@ Select randomly a linear form x + ay
@ Select a set of 2m primes, m is a bound on the bitsize of the RURs
© Compute the RURs of {P, Q} using the CRT approach

v

Complexity and probability of success

Complexity :
Compute the RURs modulo one prime  x  the number of primes = 2m
4 4
Og(d*) X O(d? + dr)

~ Og(d® + d°7)
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Practical algorithm

Monte-Carlo algorithm

Monte-Carlo algorithm

@ Select randomly a linear form x + ay
@ Select a set of 2m primes, m is a bound on the bitsize of the RURs
© Compute the RURs of {P, Q} using the CRT approach

Complexity and probability of success

Complexity : ~ Op(d® + d®7)

Probability of success :
Choose linear forms and prime numbers in sets s.t.

@ The probability that the linear form is separating is larger than %

@ The probability that m prime numbers are lucky is larger than %

The probability of success is larger than %.
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Practical algorithm

Checking the result

The set of the obtained solutions (counted with multiplicities) cannot be a
strict subset of the set of the actual solutions.

<

(07e](]|F-Ta%

Some solution is not solution of {P, Q}
Incorrect result = ¢ or

Some multiplicity is too large

\
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Practical algorithm

Checking the result

The set of the obtained solutions (counted with multiplicities) cannot be a
strict subset of the set of the actual solutions.

(07e](]|F-Ta%

| A

Some solution is not solution of {P, Q}
Incorrect result = ¢ or

Some multiplicity is too large

A\

Sufficient condition for correcteness : V («, 3) of multiplicity u, check that
@ P(a, ) = Qa,8) =0

® 2P(a,f) = 28(a,f) = 0fork=2,...,u—1

Check the RURs by substitution ~ O(d” + d°7)
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Practical algorithm

Las-Vegas algorithm

Las-Vegas algorithm

@ For pairs of : linear form, set of prime numbers
@ Run the Monte-Carlo algorithm until the check is positive

@ After one iteration, probability that the result is correct is larger than }

~» The Monte-Carlo algorithm runs at most four times on average before
the check is positive

Expected bit complexity in 5B(d7 + d®7)
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Practical algorithm

Las-Vegas algorithm

Las-Vegas algorithm

@ For pairs of : linear form, set of prime numbers
@ Run the Monte-Carlo algorithm until the check is positive

@ After one iteration, probability that the result is correct is larger than }

~» The Monte-Carlo algorithm runs at most four times on average before
the check is positive

Expected bit complexity in 5B(d7 + d®7)

@ Alternative Las-Vegas algorithm in Os(d® + d°7) : Not implemented yet !
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Practical algorithm

Certified numerical approximation

Goal : Disjoint boxes of the real solutions of (P, Q)

Algorithm

@ Isolate the real roots of f(t) ~~ intervals
hyoooy I

@ Compute the images of these intervals

through (f1(;)’ g(?) boxes B, . .., Bk

@ Refine the intervals /i, . .., Ik until the boxes P P
B, ..., By are disjoint — —

1 = (F(0). [1.
= (f(t). [I])

<ZM4]  Yacine Bouzidi/Solving bivariate systems and topology of plane curves



Practical algorithm

Certified numerical approximation

Goal : Disjoint boxes of the real solutions of (P, Q)

Algorithm

@ Isolate the real roots of f(t) ~~ intervals
hyoooy I

@ Compute the images of these intervals

through (f1(;)’ g(i)) boxes B, . .., Bk

@ Refine the intervals /i, . .., Ik until the boxes
Bs, ..., Bi are disjoint

Sufficient condition for disjointness : Sum of the precisions in 5(d4 +d®7)

@ Isolation and refinement : Os(d® + d°~) [Pan 01][Mehlhorn et al. 13]

@ Evaluation : Os(d® + d°7) using amortized bounds
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Experiments

Overview

e Experiments
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Experiments

Some experiments

We compare our solver RS3 with

@ IsolateRC, the solver of the maple package Regular Chains [Li et al. 11]
@ LGP [Cheng et al. 09]

Input : {P, Q} Output : Isolating boxes of the real solutions of {P, Q}
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Experiments

Some experiments

We compare our solver RS3 with
@ IsolateRC, the solver of the maple package Regular Chains [Li et al. 11]
@ LGP [Cheng et al. 09]

Input : {P, Q} Output : Isolating boxes of the real solutions of {P, Q}

Ratio between IsolateRC and RS3 Ratio between LGP and RS3

1<r<5
m 5<r<50

m 5<r<50

1<r<5

W 50<r<200 m0.1<r<1 W 50<1<200

m0.3<r<l W 200<r<1000 W 200<r<1000
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Experiments

Some experiments

We compare our solver RS3 with

@ IsolateRC, the solver of the maple package Regular Chains [Li et al. 11]
@ LGP [Cheng et al. 09]

Input : {P, Q} Output : Isolating boxes of the real solutions of {P, Q}

RS3 vs IsolateRC

@ Computing the RURs in RS3 is comparable to the triangular
decomposition part in IsolateRC

@ The Isolation part is much faster in RS3

Conclusion : the overhead of the symbolic computation of the RURs is small
compared to the benefit it yields for the isolation step !
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Some experiments

Experiments

We compare ISOTOP2 with
@ CA of the arrangement package of CGAL [Eigenwillig et al. 07]

Ratio between CA and Isotop2

1<r<5 m 5<r<50

W 50<r<200
m0.2<r<1

m 200<r<1000
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Experiments

Some experiments

We compare ISOTOP2 with
@ CA of the arrangement package of CGAL [Eigenwillig et al. 07]

Ratio between CA and Isotop2

1<r<5 m 5<r<50

W 50<r<200
m0.2<r<1

m 200<r<1000

@ FastAnalysis [Berberich et al. 11] (GPU resultant computation)

e Comparable behavior with FastAnalysis with small advantage for
FastAnalysis

The tables of benchmarks can be found in my thesis manuscript
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Experiments

Some examples

curve d T #V Is(3T) FastAna CA
swin 40 32 63 6s 7s 311

-0.57

The curves are taken from [Berberich et al. 11] and Timeout set to 30min
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Experiments

Some examples

N

curve d T #V Is(3T) FastAna CA K
swin 40 32 63 6s 7s 311 U
chal_12b 40 41 99 49s 44s t/o o]

The curves are taken from [Berberich et al. 11] and Timeout set to 30min
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Experiments

Some examples

38/41

0.5
curve d T #V Is(3T) FastAna CA
swin 40 32 63 6s 7s 311
chal_12b 40 41 99 49s 44s t/o
FTT 40 39 62 49s 32s t/o
-0.57

The curves are taken from [Berberich et al. 11] and Timeout set to 30min
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Experiments

Some examples

1 . .
curve d T #V Is(3T) FastAna CA 0.5
swin 40 32 63 6s 7s 311
chal_12b 40 41 99 49s 44s t/o ol y
FTT 40 39 62 49s 32s t/o
spider 36 248 38 114s 26s t/o . % N

The curves are taken from [Berberich et al. 11] and Timeout set to 30min
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Experiments

Some examples

spider=—

3933

6291198

2413994

8275150

812898y°x° +

120

4266588183

355602260846449-

422742286718693156

4157174031303 21613884260352)° X

129949285630929140291

9936y° x

3188

61193

92047593 669198294359 41521154

_#V_ Is(3T) FastAna CA

888777002024 +

curve

swin 63 6s TsTTTE

40307

t/o

8248417828214

1000 6209978696x" —

5493905

9529984y

3746094 50914951954

104

9188336338221

114618,

649

04697304

399072140083

0242



Overview

e Conclusion and perspectives
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Summary of contributions

@ New algorithm for computing a separating form
o Improves by a factor d? the best known complexity
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Summary of contributions

@ New algorithm for computing a separating form
@ New bound on the bitsize of the polynomials of the RUR
e Same order than the squarefree of the resultant
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Summary of contributions

@ New algorithm for computing a separating form
@ New bound on the bitsize of the polynomials of the RUR
@ Efficient Las-Vegas algorithm for computing a decomposition into RURs

e Good complexity bounds (Matches the isolation of the resultant)
e Excellent practical behavior
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Summary of contributions

@ New algorithm for computing a separating form
© New bound on the bitsize of the polynomials of the RUR
@ Efficient Las-Vegas algorithm for computing a decomposition into RURs

A whole bivariate solver in
@ Worst-case complexity : 5B(d8 +d’7)
e Match the best known complexity [Emeliyanenko and sagraloff. 12]

@ Expected complexity : O(d® + d°7)
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Since December...

@ A new algorithm for ciomputing a separating linear form in 5B(d7 +d%7)
(worst-case) and in Op(d® + d*7) (expected)

o Idea : compute a separating form for the set of critical points of P Q
which contains all the solutions of {P, Q}
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Since December...

A new result

@ A new algorithm for ciomputing a separating linear form in 55(d7 +d%7)
(worst-case) and in Op(d® + d*7) (expected)

o Idea : compute a separating form for the set of critical points of P Q
which contains all the solutions of {P, Q}

v

Ongoing work :

@ Separating form + rational parametrization in (~)E;(d6 + d°7) (worst-case)
and Og(d® + d*7) (expected)

\
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Since December...

A new result

@ A new algorithm for ciomputing a separating linear form in 55(d7 +d%7)
(worst-case) and in Op(d® + d*7) (expected)

o Idea : compute a separating form for the set of critical points of P Q
which contains all the solutions of {P, Q}

Ongoing work :

@ Separating form + rational parametrization in (~)E;(d6 + d°7) (worst-case)
and Og(d® + d*7) (expected)

Future work :

@ Computing arrangement of curves
@ Tackle the 3D world : for both solving and topology computation
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Since December...

A new result

@ A new algorithm for computing a separating linear form in Og(d” + d°7)
(worst-case) and in Og(d® + d*7) (expected)

e Idea : compute a separating form for the set of critical points of P Q
which contains all the solutions of {P, Q}

Ongoing work :

@ Separating form + rational parametrization in Og(d® + d°r) (worst-case)
and Og(d® + d*7) (expected)

@ Computing arrangement of curves

@ Tackle the 3D world : for both solving and topology computation
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