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Abstract In this paper, we present new computer algebra based methods for
testing the structural stability of n-D discrete linear systems (with n > 2).
More precisely, we show that the standard characterization of the structural
stability of a multivariate rational transfer function (namely, the denominator
of the transfer function does not have solutions in the unit polydisc of C™)
is equivalent to the fact that a certain system of polynomials does not have
real solutions. We then use state-of-the-art computer algebra algorithms to
check this last condition, and thus the structural stability of multidimensional
systems.

Keywords Multidimensional systems, structural stability, stability analysis,
computer algebra

1 Introduction

Multidimensional systems is a class of systems for which the information prop-
agates in more than just one dimension as for the classical dynamical systems
(this dimension being the continuous/discrete time). The latter class of sys-
tems is usually referred as 1-D systems whereas multidimensional systems are
also called n-D systems, where n denotes the number of dimensions in which
the information propagates. Within the frequency domain approach, such a
system is defined by means of a transfert function G of the following form

N(z1, ..., 2n)

G(Zl,...,zn>: D(zl . ),

(1)
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where D and N are two polynomials in the complex variables z1, ..., z, with
real coefficients, i.e., D, N € R[z,..., 2z,], which are supposed to be factor
prime i.e., gcd(D, N) = 1, where ged stands for the greatest common divisor
of D and N. As for 1-D systems, a fundamental issue in the multidimensional
systems theory is stability analysis. In this paper, we are interested in testing
the structural stability of multidimensional discrete linear systems defined by
multivariate rational transfer function. Such a system is said to be structurally
stable if the denominator D of G is devoid of zeros in the complex unit polydisc
U™ defined by:

U" =[] {z €C| |l < 1}.
k=1

In other words, if V(D) = {z = (#1,...,2n) € C" | D(z) = 0} denotes the
hypersurface formed by the complex zeros of D, then is structurally stable
if the following condition holds:

Ve(D)NU"™ = 0. (2)

The simplicity of significantly contrasts with the difficulty to develop
effective algorithms and efficient implementations for testing it. One important
first step toward this objective was the formulation of new conditions that are
equivalent to the above condition (see ) but easier to handle. The following
theorems, due to Strintzis |Strintzis| (1977) and DeCarlo et al.|Decarlo, Murray,
and Saeks| (1977)), are two good representatives of these reformulations.

Theorem 1 (Strintzis| (1977)) Condition (9) is equivalent to:

D(O,...,O,Zn)#(), ‘zn| Sla
D(0,...,0,2, 1,20) # 0, |2n_1| <1, |2,] = 1,

D(0,2z9,...,2,) #0, lzo| <1, |z;|=1,7i=3,...,n,
D(z1,29,...,2,) #0, 21| <1, |z =1, i =2,...,n.

Theorem 2 (Decarlo et al. (1977)) Condition (3) is equivalent to:

D(zi,1,...,1) #£0, |z <1,
D(1,2271,...71) #O, ‘ZQ| < 1,

D(1,...,1,2,) #0, |z, <1,
D(z1,...,2n) #0, lz1]=...=|zn] = 1.

Recent algebraic methods for testing the stability of n-dimensional discrete
linear systems are mainly based on the conditions of Theorems [I| and

However, note that the specific case of 2-dimensional systems has attracted
considerable attention and numerous efficient tests have been proposed. See,
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e.g., Bistritz (1994, [2004); [Fu, Chen, and Niculescu! (2010);|Hu and Jury|(1994);
Xu, Yamada, Lin, Saito, and Anazawa, (2004) and the references therein. Com-
mon to all these tests is the fact that they proceed recursively on the number
of variables, reducing the computations with polynomials in two variables to
computations with a set of univariate polynomials with algebraic coefficients
by means of symbolic computation tools such as resultant and subresultant
polynomials (see, e.g., [Basu, Pollack, and Roy| (2006))). Such a recursive ap-
proach, which shows its relevance for 2-dimensional systems, becomes rather
involved when it comes to n-dimensional systems with n > 2, mainly due to
the exponential increase of the degree of the intermediate polynomials. This
fact prevents these 2-dimensional tests from being efficiently generalized to
n-dimensional systems.

For n-dimensional systems with n > 2, very few implementations for the
stability analysis exist. Among the recent work on this problem, one can men-
tion the work of [Serban and Najim| (2007)) where, using an extension of the 1-D
Schur-Cohn criterion, a new stability condition is proposed as an alternative
to the conditions of Theorems [I| and [2| As a result, the stability is expressed
as a positivity condition of n — 1 polynomials on the unit polycircle:

n—1
Tn_l = H {Zk c (C‘ |Zk| = 1}
k=1

Unfortunately, such a condition becomes considerably hard to effectively test
when the involved systems are not of low degree in few variables. To achieve
practical efficiency, |[Dumitrescu (2006, |2008|) proposes a sum of squares ap-
proach to test the last Decarlo’s condition (Theorem. The proposed method
is however conservative, i.e., it provides only a sufficient stability condition.
To sum up, the existing stability tests for n-dimensional systems with n > 2
are either nonconservative but inefficient or efficient (polynomial time) but
conservative.

The contribution of this paper is threefold. First, a new algebraic approach
for testing the stability of n-D systems is presented. Our approach, which starts
with the stability conditions given by Decarlo et al| (1977) (see Theorem [2)),
transforms the problem of testing these conditions to that of deciding the
existence of real zero in some algebraic or semi-algebraic sets. Hence, state-
of-the-art real algebraic geometry techniques can then be used for this pur-
pose. Unlike the existing counterparts, this new approach is not conservative.
Moreover, our approach shows good practical performances for relatively small
dimensions n.

Secondly, we address the specific case of 2-D systems with the main ob-
jective of achieving practical efficiency. Following the same approach as for
n-D systems but taking advantage from the recent developments in solving
bivariate algebraic systems of equations (see [Bouzidi| (20144)), we propose a
stability test based on the existence of real solutions of bivariate algebraic
systems which is efficient in practice. Namely, this test makes use of the soft-
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ware RS3 (Rouillier| (2012)) which provides very efficient tools for the symbolic
solving of bivariate systems of equations.

Finally, the above 2-D stability test is extended in order to handle system
parameters. More precisely, using the concept of discriminant variety devel-
oped in the computer algebra community (Lazard and Rouillier| (2007)), we
provide a new method which, given a 2-D system depending on an arbitrary
set of real parameters, decomposes the parameter space into regions inside
which the stability is guaranteed.

The plan of the paper is the following. In Section [2.1} we first reformulate
the last condition of Theorem|[I]as the emptiness of a certain semi-algebraic set.
We then present state-of-part computer algebra techniques (namely, Cylindri-
cal Algebraic Decomposition, critical point methods and Rational Univariate
Representation) which can be used to effectively study this last problem. In
Section [2.2] we present a new approach for testing the last condition of Theo-
rem [I| based on the Mobius transform and a critical point method. Algorithms
are presented. They are then illustrated with explicit examples in Section [2.3
and their implementations in Maple are discussed and timings are shown. A
new stability test for 2-D systems is presented in Section [3] based on a recent
approach, developed by two of the authors, for the efficient computation of
real solutions of systems of two polynomial equations in two variables. This
approach is based on the efficient computation of Rational Univariate Repre-
sentations using resultants, subresultant sequences and triangular polynomial
systems. Finally, Section [4 shows how to use the mathematical concept of a
characteristic variety, developed by one of the author, to study the stability
of 2-D systems with parameters. We show how the parameter space can be
explicitly decomposed into cells so that the 2-D system is either stable or
unstable for all values of the parameters belonging to each cell.

2 Stability of n-D discrete linear systems

In this section, Subsection[2.I]overviews in broad lines computer algebra meth-
ods for computing the real zeros of semi-algebraic sets (namely, unions of sets
defined by a finite number of polynomial equations and inequalities) and re-
call the basic ideas behind these methods. Then, Subsection shows how
we can obtain new stability conditions that can be tested efficiently using
the previously introduced computer algebra methods. Finally, Subsection [2.3
illustrates our stability test on non-trivial examples and show its practical
efficiency thanks to experimental tests.

2.1 Computer algebra methods

Recall that the transfer function G defined by is said to be structurally
unstable if the set

E:=Ve(D)NU" ={(21,-.-,2n) €EC" | D(21,...,2n) =0, |21] < 1,..., ]z, < 1}
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is not empty. The set E is a semi-algebraic subset of R?”. Indeed, if we note
2k = X + 1 Yy, where x (resp., yx) is the real part (resp., the imaginary part)
of z; and ¢ is the imaginary unit, then the polynomial D can be rewritten as
follows

D(Zlv"'>zn) :R(Zla"'axnayla"'ayn)+iI(xla“',xnayla-'wyn)a

where R, Z € R[z1,...,Zn, Y1, --,Yn], and the inequalities |z| < 1 are equiv-
alent to xi + y,% < 1 for Kk = 1,...,n, which shows that E is equivalently
defined by the following semi-algebraic set:

E%J{(ml,...,xn,yl,...,yn) €R2n|
R(xlv"wxnaylv“wyn) :Oa I(xla"'axnvyla"'ayn) :Ov (3)
4yE <l k=1,...,n}.

Testing is thus equivalent to testing that the above semi-algebraic set is
empty. This test can be performed using classical computer algebra methods
for computing the real zeros of semi-algebraic systems which will be briefly
overviewed in the next section.

2.1.1 Cylindrical Algebraic Decomposition € Critical point methods

To study the real zeros of semi-algebraic sets, two classes of symbolic algo-
rithms are available: the algorithms based on Cylindrical Algebraic Decompo-
sitions (CAD) and those based on the study of the critical points of well-chosen
functions (see, e.g., Basu et al.| (2006)).

The Cylindrical Algebraic Decomposition: Introduced originally by Collins
(Collins| (1975))) in the seventies, the cylindrical algebraic decomposition (CAD)
has become a standard tool for the study of real zeros of semi-algebraic sets.
CAD refers to both an object and an algorithm for computing this object.
In short, a CAD associated to a finite set of polynomial F = {Py,..., Ps} C
R[x1,...,2,] is a partition of R™ into connected semi-algebraic sets, called
cells, on which each polynomial P; has constant sign (i.e., either +, — or 0).
For instance, the CAD of a set of univariate polynomials in R[] is an union of
points and open intervals that form a partition of R. Such a partition is called
F-invariant. Let IT;, : R — R™* denote the projection onto the first n — k
components of R™. The CAD is called cylindrical since for every two cells ¢;
and ca, we either have ITy(c1) = Iy (co) or Iy (c1) N IIg(c2) = . This implies
that the images of the cells by IT;, define a cylindrical decomposition of R*~F.

Ezample 1 A CAD associated to P = 2% + 23 — 1 € Q[z1, 2] is a partition of
R? into the following algebraic sets (cells) in each of which the polynomial P
has a constant sign:

- Cl = {(1’1,1172) € R2 | T < 71},
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— Co = {(21,22) €R? |21 = —1, 23 < 0},

— C3 = {(z1,22) € R? | 21 = —1, 29 = 0},

- Cy = {(1‘1,1‘2) € R? | T, =—1, x9 > 0},

— Cs ={(z1,22) eR?| —1<z1 <1, 27 —23—1>0, 23 <0},
— Co={(z1,22) eR? | —1<z1 <1, 27 —23—-1=0, 23 <0},
— Cr={(z1,22) eR?| =1 <z <1, 27 —23—1<0},

— Oy ={(z1,22) ER? | — 1< <1, 27 —23-1=0, 22 >0},
— Co={(x1,22) e R? | =1 <y <1, 27 —23 —1>0, x5 > 0},
— Cyo = {(z1,22) €ER? | 21 =1, 15 <0},

— Oy = {(w1,22) €ER? |21 =1, 5 =0},

— O = {(m1,22) €ER? | 21 =1, x5 > 0},

— C13 = {(z1,22) € R? | 21 > 1}.

The CAD algorithm mainly consists of two distinct phases: a projection
phase and a lifting phase. During the projection phase, one proceeds recursively
on the number of variables. Starting from the initial set of polynomials F; =
{Py,..., P}, afirst set of polynomials F» C R[z1, ..., 2, 1] is computed which
has the property that a partition of R?~! that is Fh-invariant, naturally lifts
to a partition of R™ that is Fj-invariant. Then, from F5, another set F3 C
R[x1,...,2Zn—2] with the same property is computed and so on, until obtaining
a set of univariate polynomials F,,. At each step, the projection essentially
consists in computing resultants (and subresultants) for all possible pairs of
polynomials as well as their discriminants (see, e.g., Basu et al.| (2006)).

Ezample 2 The projection phase for Example[I|consists in only one projection
and yields the discriminant —4 2% + 4 of P = 2% + 23 — 1 with respect to xs.

Starting from the set of univariate polynomials, the lifting step, which also
proceeds recursively, consists in isolating the real roots of univariate polynomi-
als with real algebraic numbers as coefficients, which can be viewed as solving
a so-called triangular zero-dimensional system, namely, a system with a finite
number of complex solutions having a triangular form.

Ezample 3 Continuing Example [2] the real roots of —4 x2 +4 are first isolated,
which yields a partition of R that consists of the cells | —oco, —1[, {—1},]—1, 1],
{1} and ]1, +-oc[. Then, the real roots of the polynomial 2% + 3 — 1 are isolated
for each z; in these cells, which yields the partition of R? given in Example

Although the computation of the CAD answers our problem i.e,. deciding
the existence of real zeros, the partition of R™ given by the CAD gives more
information than required. Moreover, its computation requires a number of
arithmetic operations which is doubly exponential in the number of variables
of the polynomial ring, i.e., n, due to, at least, the iterative computation
of the resultants (and subresultants). Despite of this, it is worth mentioning
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that, to some extent, most of the existing algorithms for testing the stability
of multidimensional systems can be viewed as particular variants of the CAD.

Critical point methods: Instead of a complete partition of the real space,
critical points based methods basically compute at least one point in each
real connected component of a given semi-algebraic set, which is sufficient to
answer our question. Roughly speaking, the basic principle of these methods
consists in computing the critical points of a well-chosen function restricted on
an algebraic set. Under certain conditions, the set of critical points is defined
by a zero-dimensional polynomial system (i.e., which admits a finite number
complex solutions) and it meets each real connected component of the original
semi-algebraic set.

Ezxample 4 We consider again the polynomial given in Example [1} i.e., P =
x2+2%—1. Our goal is to compute at least one point in the single real connected
component of the algebraic set Vg(P) = {a = (a1,as) € R? | P(a) = 0}. Let
IT : R? — R denote the projection onto the first component x; of (z1, x2) €
R2. The critical points of IT restricted to Vg (P) are the points of Vg(P) on
which the derivative g—é vanishes. They are given as the real zeros of the
following system
P=2?+4+23-1=0,

P
a *2:02*0

which yields (1,0) and (—1,0). These points belong to the real connected
component of P = 0.

Let us consider the real hypersurface Vg(P) = {a = (a1,...,an) €
R™ | P(a) = 0} defined by P € Q[z1,...,z,]. Let us suppose that Vg(P)
is smooth, i.e., it does not contain singular points, namely, points where the
rank of the Jacobian matriz is not maximal, and Vg (P) is compact (i.e., closed
and bounded) for the so-called Zariski topology (see, e.g., |Cox, thtle and|
m m The set of critical points of the projection with respect to
some variable z; restricted to Vg(P) defined by:

CH(VR(P)> = {QGVR(P) | %(a)zo, VkE{1,...,i—1,i+1,...,n}},

)
is finite and meets each real connected component of Vr(P) (see
|Heintz, and Mbakop| (2001); [Safey El Din and Schost| (2003))).

There are several ways to circumvent the hypotheses (i.e., compactness
and smoothness). For instance, we can use a distance function to a fixed point
instead of the projection function to get rid of the compactness assumption
Seidenberg| (1954)), deform the variety to get a compact and smooth one
Rouillier, Roy, and Safey El Din| (2000)), introduce more general notions of
critical points (Bank, Giusti, Heintz, and Pardo| (2005)), or separately study
the subsets of singular points of the variety (Aubry, Rouillier, and Din| (2002))).
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For systems of polynomial equations and, more generally systems of poly-
nomial inequalities, several strategies have been proposed by different authors
(see, e.g., Bank et al| (2001); [Basu et al| (2006)). Some are based on the
use of sums of squares to reduce the problem of studying an algebraic set
to the problem of studying an hypersurface (Basu et al.| (2006)), on the use
of infinitesimal deformations by adding some variables to avoid singularities
and to deal with inequalities (Basu et al.| (2006)), or on the introduction of
a special kind of critical points (generalized critical values) to circumvent the
compactness hypothesis. But the basic ideas stay the same.

As already said, critical points methods compute less information than
the CAD but they are sufficient in our case since we just have to decide if
a semi-algebraic set is empty. Moreover, a key advantage of these methods is
that they transform the problem into solving a zero-dimensional polynomial
system and this transformation is performed within a number of arithmetic
operations that is single exponential in the number n of variables.

Remark 1 In practice, for systems depending on strictly less than 3 variables,
the use of CAD is usually preferred since, it provides more information than
the critical point methods for a negligeable additional cost.

2.1.2 Symbolic resolution of univariate polynomials and zero-dimensional
systems

The methods described in Section 2.1.1] are based on the resolution of univari-
ate polynomials and, more generally, on zero-dimensional polynomial systems.
For stability analysis of multidimensional systems, we mainly have to decide
whether or not a polynomial system admits real solutions. For polynomial sys-
tems with a finite number of solutions, we can use an additional processing
that turns this last problem into computing a univariate parameterization of
all the solutions.

Given a zero-dimensional polynomial system and I C Qzq,...,x,] the
ideal generated by the corresponding polynomials, a Rational Univariate Rep-
resentation (RUR) of Vi(I) is defined by a separating linear form ¢ := a; z1 +
...+ an x, and univariate polynomials f, f1, fzy, .-, fz, € Q[t] such that we
have the following one-to-one correspondence between Vi (I) and Ve (f):

b : Ve(I) ~ Ve(f) ={BeC|f(B) =0}

« —t(a) =ara1 + ...+ anay

fnB)  FelB)
(fl(ﬁ) R (B) ) e

If (5)) is a RUR of V(I), then the bijection ¢; between the zeros of I and those
of f1 preserves the multiplicities and the real zeros (Rouillier| (1999)).

The computation of such a RUR can be performed by means of simple
linear algebra operations. Indeed, provided that I is a zero-dimensional ideal,
the quotient algebra A := Q[z1,...,2,]/I is then a finite-dimensional Q-
vector space which dimension is equal to the number of complex zeros of

(5)
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Ve) = {a = (o1,...,an) € C" |V P e€1: P(a) = 0} counted with
multiplicities (Cox et al. (2007))). Then, the polynomials of the RUR can be
obtained as the characteristic polynomials of some matrices defined defined by
certain Q-endomorphisms of A. In order to compute in the factor algebra A, we
need to know a basis of the Q-vector space A as well as the matrices associated
with the Q-endomorphisms M,, : A — A defined by M, 7(p) = 7(zx p) for
all p € Qlxy,...,xzy], where 7 : Q[xy,...,2,] — A denotes the Q-algebra
epimorphism which sends p to its residue class 7(p) in A. These matrices can
be obtained, for instance, from a Grébner basis of I (see, e.g.,|Cox et al.| (2007))
or a border basis of I (Mourrain| (1999))).

Other algorithms exist for the computation of univariate representations
which do not require the pre-computation of a Grébner basis (see, e.g., (Giusti,
Lecerf, and Salvy| (2001)). In addition, for the specific case of polynomial
systems with only two variables, univariate representations can be efficiently
obtained using algorithms based on resultants and subresultants (see Bouzidi
(2014b)). For more details, see Section

Once a RUR (5] is known, computing the real solutions of I, namely com-
puting

VR(I):{(I'l,,xn)GRn‘VPGI P(Z’l,,xn)zo}

(resp., deciding whether or not the polynomial system defined by I has real
solutions) reduces to computing the real roots of the univariate polynomial
fi € QJt] (resp., deciding whether or not f; has real roots). This can be
done using classical bisection algorithms such as Sturm’s sequences or methods
based on Descarte’s rule of signs (see, e.g., [Basu et al. (2006)) which gives a
set of intervals which isolate the real roots of fi.

Ezample 5 Let us illustrate the concept of univariate representation with the
polynomial system which encodes the critical points of P = 2% + 23 —1 =0
as defined in Example [4] namely:

3 +23-1=0,

oP (6)
87x2 = 21}2 =0.

We note that forms a Grobner basis of the ideal I = <P7 g—P for the
T2

graded reverse lexicographic order (see, e.g., |Cox et al.| (2007))) and a basis of
the Q-vector space A = Q[x1,x2]/I is given by the monomials {1, z;}, which
implies that the number of complex solutions counted with their multiplicities
is equals to two. Since the univariate polynomial in x5 i.e., 2x9, has degree
one, t = x5 is not a separating form. We can obtain a RUR of @ by computing
a Grobner basis of I for a monomial ordering that eliminates x5 such as:

2?2 —1=0,
$2:0.
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Example 6 Another example is given by the following polynomial system:

P, =36221, — 102, — 625 = 0,
{ 1 Ty T2 X1 i) (7)

P2:12£L'%+30(E11'2—2:O

Computing a Grobner basis of the ideal I = (P;, P5) generated by @ for the
graded reverse lexicographic order, we obtain that I = (9x3+1,623+15 21 29—
1), which shows that is equivalently defined by these two polynomials. On
the above Grobner basis of I, we can then read that the dimension of the Q-
vector space A = Q[x1,x2]/I is 4: the set of monomials {1, z1, x2,x1 22} does
not satisfy Q-linear relations which are algebraic consequences of @ As a
consequence, (7)) admits 4 complex solutions counted with their multiplicities.
Let us solve Computing a Grobner basis of I for an order which eliminates
2o (Cox et al| (2007)), we get that the ideal I = (36 z] + 1327 + 1,36 23 +
1921 + 15x5). Hence, can be parametrized as follows:

1
Ty = = (36 2% + 19),

362f + 1322 +1=0.

Solving the last univariate equation, we obtain that the four solutions of @
are of the form of:

1 N i

In particular, does not admit real solutions, a fact that could be directly
checked by applying Descartes’ rule of signs on the univariate polynomial
3627 + 1327 + 1.

2.2 Real algebraic stability conditions

As shown at the beginning of Section can be reduced to checking the
emptiness of the semi-algebraic set of R*"® defined by . This problem can
be achieved using the methods described in Section However, such an
approach presents an important drawback: it doubles the number of variables
(see (3)), which yields an overhead of computations in practice due to the
exponential cost of the methods described in Sections and 2.1.2]

To avoid this computational issue, we can start directly with the DeCarlo
et al.’s stability conditions (see Theorem . From the computational point of
view, the first n conditions of Theorem [2| can easily be checked using classical
univariate stability tests (see, e.g., Bistritz| (1984} [2002); [Jury| (1964])); Marden
(1949)). We are then left with the last condition of Theorem [2} i.e.:

Ve(D)N'T" = 0. 8)

This condition replaces the search for zeros of D in the unit polydisc U™
(see ([2)) by the search for zeros over the unit polycircle T™. Now, our approach
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to test the above condition consists in applying a transformation that maps
the unit poly-circle T™ to the real space R™. More precisely, for each complex
variable zg, we perform a change of variable z, := ¢(xy) such that z € T
if and only if z; € R. In particular, such a transformation allows us to keep
unchanged the number of variables. A classical transformation that satisfies
the above requirement is the so-called Mdbius transformation which definition
is recalled in the next definition.

Definition 1 Denoting the extended complex plane by C, namely, C := C U
{o0}, a Mdbius transformation is the following rational function

$:C—C
az+b
cz+d

where a, b, ¢, d € C are fixed and satisfy ad — bc # 0. We formally write:

6 (—ff) =0, o) = 2.

Denoting by H the class of circles of arbitrary radius in C (this class in-
cludes lines which can be considered as circles of infinite radius). Then, the
set of Mobius transformations have the property of mapping H to itself, i.e.,

each circle in C is mapped to another circle in C. In particular, the following

z—1 ey . .
transformation ¢(z) = et which corresponds to the Mobius transformation
z+1

witha =1, b= —i, c = 1 and d = 4, maps the extended real line R := RU{oo}
to the complex circle T.

Remark 2 Different transformations such as the classical parametrization of
T\ {—i} defined by

21y, 11—

VireR, zp= , =__k
k Fire T age

=1,...,n,

with the notation zy = x + 1 yg, also fulfill the above requirement but usually
yield a polynomial with higher degree than the one obtained by a Mobius
transformation.

Accordingly, the following result holds.

Proposition 1 Let D € R[zy,...,2z,]. Two polynomials R and T can be ob-
tained such that:

Ve(D)N[T\{1}]" =0 <= W({(R,T)) =0.

Proof Given a polynomial D(z1,...,2,), we can handle the following substi-

tution

T — 1 mi -1 . 2x
= —1

rp+i o i 41 3+ 1’

Zp = k=1,...,n, (9)
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which yields a rational function in C(xy,...,x,) whose numerator can be
written as
R(z1,...,xn) +iZ(z1,...,2,),

where R, Z € Rlzq,...,2z,]. If (21,...,2,) is a zero of D(z1,...,2,) that be-
longs to [T\ {1}]™, then, by construction,

(i(z+ 1) i(zn+1)
(xl,...,mn)—< e
is a real zero of R(x1,...,x,) +1Z(x1,...,z,). Conversely, if (z1,...,z,) is
a real zero of R(x1,...,xn) +iZ(x1,...,2,), then
Ty — 1 Ty — 1
(21y.vy2n) = (xl—i—i’ ’xn—I—i)

is also a zero of D(z1, ..., z,) that belongs to [T \ {1}]™.

Remark 3 If we denote by di the degree of D with respect to the variable
zk, then we can easily check that the transformation used in the proof of
Proposition [1] (see @D) yields two polynomials R and Z of total degrees at
most > p_y d.

Ezample 7 Let us consider D(z1, 22) = (2 23+10 21 +12)+ (23 +5 21 +6) 22. Ap-
plying the transformation @D for k =1, 2, we obtain the following polynomial
system of total degree 3

R:36x%x2 —10x; — 629 =0,
IT=1222+30x1 25 —2 =0,

which was considered in .

We can also consider D(z1,2) = =327 25+223 20+2 21 25— 322 +4 21 29—
323 4+ 221 + 223 — 3 which, after transformation @D for k = 1, 2, yields the
following two polynomials of total degree 2:

R =0,
IT=a224+123-1=0.

According to Proposition we can test that a polynomial D € R[zy, ..., zy]
does not have complex zeros in [T \ {1}]™ by first computing the polynomials
R(z1,...,z,) and Z(x1,...,x,) and then checking that the following polyno-

mial system
R(z1,...,2,) =0,
(@1, s n) (10)
Z(z1,...,xn) =0,

does not have any solution in R™ by means of the techniques described in
Section 2.11

Note that to check the last condition of Theorem the above test is
not sufficient since it excludes the points of the poly-circle that have at least
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one coordinate equal to 1. Hence, we also have to check that the polynomial
D does not vanish at any of these points. Let us explain how this can be
done in a systematic manner. Starting with D, we first compute the following
polynomials:

Di(z1, -y 2k—1, Zkt1s -5 2n) = D(21, .oy 2k—1, 1, 2kt 1, - -5 2n), k=1,... n.

To each Dy, we then apply the Mobius transformation @D for z; with j =
1,....k—1,k+1,..., n, followed by the test of Proposition [I} Similarly as
above, this test allows us to check whether or not each Dj does not have
complex zeros on [T\ {1}]"~!. But we still need to check that Dj, does not
vanish at the excluded points, namely, points that have at least one coordinate
in {z1,...,2k-1, Zk+1,- - -, 2n} equal to 1. This can then be done in the same
way as above by considering the polynomials Dy, obtained by substituting the
variable z; by in the Dy’s. Proceeding recursively until obtaining unvariate
polynomials of the form D(1,...,1,2,1,...,1), we can then check that D
does not vanish on the unit poly-circles T.

Note that at the step m of the above process, the set of polynomials we have
to consider are exactly the polynomials obtained from D after substituting m
of the n variables z;’s by 1. From this observation, we obtain the following
algorithm to check (9)) based on Theorem

Algorithm 1 1: procedure IntersectionEmpty(D(z1,...,2,)) > return
true if D satisfies (@

2: fork=0ton—1do
3: Compute the set Sy of polynomials obtained by substituting k of the
variables z;’s by 1 in D(z1,...,2n)

4: for each Dy in Sy do

5: {R,Z} = Mébius_transform(Dy)
6: if Ve({R,T}) # ) then

7: return False

8: end if

9: end for
10: end for
11: return True

12: end procedure

Let us now state our n-D stability test.

Algorithm 2 1: procedure IsStable(D(z1,...,2,)) b return true if D
satisfies (@
2: fork=1ton do
3 if D(1,...,2k,...,1) is not stable then
4 return False
5: end if
6 end for
7: return IntersectionEmpty(D(z1,...,2,))
8: end procedure
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Remark 4 In Algorithm [1] the polynomials considered at the last step are
D(,...,zg,...,1) for k = 1,...,n. Since the stability of these polynomials
are checked at step 1 of Algorithm [2] we can skip this test in Algorithm [2] by
stopping Algorithm [I| at step n — 2.

2.3 Examples and experiments
Let us illustrate Algorithms [T] and 2] with some explicit examples.

Ezample 8 We consider the polynomial D(zy, 20) = (222 + 1021 +12) + (27 +
521 + 6) zo which appears in several articles on the stability analysis (Li, Xu,
and Lin| (2013); Xu et al.| (2004)). It is known that D is structurally stable.
Let us check again this result.

The first step of our procedure consists in checking that the following two
polynomials

D(21,1) =327 +152, +18, D(1,2) = 122 + 24

are stable, which can be directly checked by, e.g., inspecting their solutions
(i.e., {-3, -2} and {-2}).

In a second step, we apply Algorithm [1] to D(z1, 22). As we have al-
ready checked that D(z1,1) and D(1, z3) are stable, we only have to consider
D(z1, z2) itself. Using the Mobius transformation (|9), this polynomial yields
the polynomial system defined by . In Example We proved that does
not admit real solutions.

Ezample 9 1f we consider D(z1,22) = =327 25+22% 20+2 21 25 -3 22 +4 21 29—
322 + 22 + 22z — 3, then, the Mobius transformation @D yields only one
polynomial z? + 23 — 1 (see Example [7) that admits an infinite number of
zeros. Checking for the existence of real zeros of this polynomial can be done
by checking for the existence of real solutions for the system of its critical

points (see (6)).

Ezample 10 We consider the polynomial D(z1, 22, 23) = (22 + 23 +4) (21 +
zo + z3 + 5) which is known to be structurally stable (Li et al.| (2013)). Our
procedure first checks that the polynomials D(z1,1,1) = (27 + 5) (21 + 7),
D(1,22,1) = (23 +5) (22 + 7) and D(1,1,23) = 623 + 42 are stable. Then,
applying Algorithm [I] to D, we have to test the existence of zeros on the
polycircle of the following polynomials
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by considering the set of polynomial systems obtained by applying the M&bius
transformation @D to each of them. The main difficult computation is to de-
cide whether or not the following polynomial system, which corresponds to
D(z1, 22, 23), has real solutions:

4813 a3 w3 — 7223 23 — 96 23 o w3 — 202 23 — 18422 ¥3 x5 — 96 21 73 23
+2423 + 12022 29 + 7223 23 + 12021 23 + 176 71 22 23 + 24 25 + 7223 23
—401’1 —40.’E2 —241’3 = 0,

36 23 3 + 100 23 23 x5 + 100 2% 23 x5 — 68 23 19 — 36 23 23 — 124 2% 23
—180;6% Tox3 — 6821 x% — 180z, x% T3 — 3696‘;’ T3 —|—44m% + 116 271 22
+68 x1 x3 —|—44x§ + 68923 — 12 =0.

Using one of the methods described in Section [2:1.1] we can check that the
above polynomial system does not have real zeros. Similarly, the second, third
and fourth polynomials of can be proved to be devoid from zeros in the
corresponding polycircle, and we find again that D is stable.

Our stability test was implemented in a Maple routine named IsStable.
It takes a polynomial defining the denominator of a transfer function in input
and returns true if this polynomial satisfies @ and false otherwise. For test-
ing the first n conditions of Theorem [2] we use the classical 1-D Bistritz test
(see Bistritz (1984))) that was implemented in Maple. To test the emptiness
of a real algebraic set, which is the main critical step in Algorithm [1] two
different methods are proposedﬂ The first one uses the classical cylindrical al-
gebraic decomposition. Such a decomposition is provided by the Maple routine
CylindricalAlgebraicDecompose which can be found in the native package
RegularChains[SemiAlgebraicSetTools]. The second method is based on
the computation of the set of critical points of a given function restricted to
the real algebraic set under consideration. An efficient implementation of this
method has been done is the external Maple library RAG1ib (RAGLIBI(2007))
(see the command HasRealSolutions). Finally, we use the routine Isolate
of the Maple package RootFinding in order to compute numerical approxima-
tions of the solutions through the computation of a univariate representation.

In Table [I we show the average running times in CPU seconds of the
IsStable routine for random (sparse or dense) polynomials in 2, 3 and 4 vari-
ables with rational coeﬁicient&ﬂ The two running time columns correspond to
the two variants IsStableCAD and IsStableCRIT (depending on the method
used for testing the emptiness of a real algebraic set) of the routine IsStable.

1 The user can choose one of these two methods by means of an option in the routine IsStable.
2 The experiments were conducted on 1.90 GHz 3-Core Intel i3-3227U with 3MB of L3 cache under
a Linux platform.
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Data Running time
nbvar degree density | IsStableCAD IsStableCRIT

3 sparse 0.039 0.074
dense 0.047 0.078
5 sparse 0.055 0.087

9 dense 0.17 0.13
g sparse 0.29 0.21

dense 2.74 0.61

10 sparse 1.91 0.38

dense 8.59 1.82

3 sparse t/o 0.31

dense t/o 0.36

5 sparse t/o 0.51

3 dense t/o 1.05
3 sparse t/o 2.31

dense t/o 9.77

10 sparse t/o 4.71
dense t/o 38.70

Table 1 CPU times in seconds of IsStableCAD and IsStableCRIT run on random polyno-
mials in 2, 3 and 4 variables with rational coefficients. t/o: time out

Remark 5 Note that Algorithm [2] was used to to check the structural stability
of polynomials in 4 and 5 variables with degree up to 12 in less than 20 minutes.

3 A stability test for 2-D systems

In Section [2] a general framework was proposed for the stability analysis of
n-dimensional systems with n > 2. In this section, we restrict the study to
the particular case of n = 2 and we show that substantial improvements
with respect to practical efficiency can be obtained by using state-of-the-art
algorithms developed in [Bouzidi (2014a)) for the computation of the solutions
of bivariate algebraic systems of equations.

Recall that testing the stability of a 2-dimensional system can be reduced to
deciding whether an algebraic system of the form of {R(z1,z2) = Z(z1,22) =
0} admits real solutions. In the present case, without loss of generality, we
can assume that the ideal I generated by the two polynomials R and 7 is
zero-dimensional, i.e., gcd(R,Z) = 1|ﬂ Our contribution in this section is a
dedicated method for deciding if a system of two polynomial equations in two
variables, having a finite number of complex solutions, admits real solutions.

Our approach is similar to the one used in the last step of the critical point
methods. Recall that in the latter methods, the study of the real zero set of
a variety is reduced to the study of the real solutions of a zero-dimensional

3 If gcd(R, T) is non-trivial, then it is sufficient to compute their gcd G in Q[z1, 22] and to consider
the two zero-dimensional systems: the system {%, é} and the system {Q, g—xgl} which

encodes the critical points of G with respect to zj.
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polynomial system, which, in turn, is reduced to the study of the real roots
of a univariate polynomial by means of a Rational Univariate Representation
of the solutions of the zero-dimensional system. Similarly, starting from a
zero-dimensional bivariate ideal I, we propose an algorithm that reduces the
problem of deciding the existence of real solutions of I to that of deciding the
existence of real roots of a univariate polynomial.

Let Ve(I) = {(a1,a2) € C? | R(a1,a2) = Z(ag,az) = 0} be the set of
complex solutions of the ideal I = (R, Z) and A := Q[x1,x2]/I the quotient
algebra of the Q-algebra Q[x1, x2] by the ideal I, i.e., two elements of Q[z1, 23]
are set to be equal in A if their difference belongs to I. Let 7 : Q[z1, 22] — A
be the canonical projection sending p € Q[z1,x2] to its residue class 7(p) in
A. Hence, we have m(p) = w(q) if and only if p — ¢ € I. Under the hypothesis
that I is zero-dimensional, this quotient algebra inherits a finite-dimensional
Q-vector space structure. We then have the following classical result.

Theorem 3 (Cox et al.| (2007)) Let R,Z € Q[z1,22], I = (R, Z) be a
zero-dimensional ideal, i.e., A = Q[z1,x2]/I is a finite-dimensional Q-vector
space, and w : Q[zy1,x2] — A the canonical projection onto A. Moreover,
let P € Q[z1,22] and Mp be the Q-endomorphism of A (seen as a finite-
dimensional Q-vector space) defined by the multiplication by P in A, i.e.:

Mp: A— A

(12)
(p) — (P p).

The eigenvalues of Mp are defined by P(o1, az), where (a1, a2) € V(I). The

multiplicity p(aq, ) of Play,as) as an eigenvalue of Mp is equals to the

multiplicity of (a1, a2) as a zero of 1.

If 1; denotes the identity matrix of size d = dimg(.A), then the character-
istic polynomial of Mp can be written as follows:

Cp(t)=det(tly— Mp)= [  (t—Plar,az)) 022 (13)
(a1, a2)€V(I)

Definition 2 P € Q[z1,x2] is called a separating element for V (I) if and only
if the polynomial map (a1, as) € V(I) — P(ou, a2) is injective.

If P is a separating element of V(I), then the polynomial C'p coincides with
the polynomial f of the Rational Univariate Representation of I computed
with respect to P (see and Section [2.1.2)). Furthermore, the fact that P
is a separating element for V(I) yields an important property regarding to
the existence of real solutions of V(I) and of Cp. The following result can

be proved considering a univariate representation of the solutions (see, e.g.,
Rouillier| (1999)).

Theorem 4 Let P € Q[z1, 2] be a separating element for V(I). Then, the
univariate polynomial Cp has real roots if and only if V(I) has real solutions.
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Consequently, the computation of a separating element of V(I) and the cor-
responding polynomial Cp reduces the problem of searching for real solutions
of V(I to the search for real roots of Cp. Furthermore, for computational is-
sues, in particular, to avoid degree and coefficient swells, a separating element
is usually sought in the following set of simple linear forms

d(d-—1
{x1+ax2|a20,...,(2)},

where d denotes the cardinal of V(I), i.e., the dimension dimg(A) of A as
a Q-vector space. Indeed, such a set always contains a separating form since
the number of non-separating forms is bounded by the number @ of lines

passing through two distinct points among d points in the plane.

Before going into the computational details (Section , let us introduce
some theoretical material that will be used for the description of our algorithm,
namely the concepts of resultant and subresultant sequence, as well as some of
their basic properties.

3.1 Resultant and subresultant sequence

Let A be a unique factorization domain (Cox et al| (2007)), e.g., A := K[y],
where K is a field. Let f =7 ja;2* € Afz] and g = Y°]_ bj 2/ € Afz], that
is, the a;’s and b;’s belong to A. Let us suppose that a, # 0 and b, # 0 so that
deg, f = p and deg, g = ¢, and p > q. Let A[z], = {P € Alx] | deg, P < n}
be the set of polynomials with degree at most n and {z'};—o ., the standard
basis of the free A-module A[z],, of rank n. We set A[z], = 0 for negative
integer n. For 0 < k < ¢, we can consider the following homomorphism of free
A-modules:

or  Alrlg—r—1 X Alz]p—r—1 — Alzlpsg—r—1
U, V)—Uf+Vg.

Using the standard basis of Alx],—r—1 (resp., Alx]p—p—1, Alz]prq—r—1) and
identifying the polynomial Zg;éﬁl u; ' € Alz],_p—1 with the row vector
(w0, -y Ug—k—1) € A*(P=F) "we obtain that

Ok (U0, - -y Ugek—1,V0s - -« s Up—k—1) = (U0, -+« s Ug—k—1, V0, - - - » Up—k—1) Sk,
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where the matrix S is the matrix defined by:

Sk = (%’:) e Ala—ktp—k)x(ptq—Fk)

ap @i ... Gg— --- ap 0 ... 0

U, = O .ao aq__k_l a_p_l _ap O € Ala=k)x(p+a—k)
0 0 (€70 ap
bo b1 ... bp_p ... bg 0 ... 0
0 by ...bg—j—1...b5-1b,...0

G | O b b O s,
0...0 bo ... ... ......b

To be coherent with the degree of polynomials, we attach index ¢ — 1 to the
™ column of Sy, so that the index of the columns goes from 0 to p+q —k — 1.

Definition 3 For 0 < j < p+g—-k—-1and 0 < k < g, let sry; be the
determinant of the submatrix of Sy formed by the last p4+q— 2k — 1 columns,
the column of index j and all the p+¢—2 k rows. The polynomial Sres(f, g) =
STk k k4. .+s1y 0 is the kY subresultant of f and g, and its leading term STk k
is the &k principal subresultant of f and g. The matrix Sy € APTO*(P+a) g
the Sylvester matriz associated with f and g, and Res,(f,g) = det Sy is the
resultant of f and g.

Remark 6 For k < j < p+q— 2k — 1, we note that sy ; = 0 since sry ; is
the determinant of a matrix having twice the same column. Moreover, we can
check that we have:

Stqq =09, Vq<p, Sresy(f, g)=b"9""g.

Since A is an integral domain, we can consider its field of fractions which
we denotes by IF, namely, F := {5 | 0 # d, n € A}, and the Euclidean domain
F[z]. Since f, g € F[x], we can define the greatest common factor ged(f, g),
which is defined up to a non-zero element of F, so that we can suppose that

ged(f, g) € A.

Theorem 5 (Basu et al.| (2006)) The first Sres,(f,g) such that sty # 0
is equal to ged(f, g).

Now, if we consider two polynomials in two variables f = >Y_a;(z1) x}
and g = Y °9_ bj(x1) 3, and = x5 so that A = K[z1] and Afz] = K[zy, z2],
then we have the important results.

Theorem 6 (Basu et al.| (2006))) Let f(x1,22), g(x1,z2) € Klz1,22] be two
bivariate polynomials.

— The roots of Resg, (f, g)(x1) are the projection onto the x1-axis of the com-
mon solutions of f and g and of the common roots of a, and by.
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— For any a root of Resy, (f, g) such that ap(a) and by(a) do not both vanish,
the first polynomial Sresg(a, x2), for increasing k, that does not identically
vanish is of degree k and is the ged of f(a, x2) and g(a, x2), up to a nonzero
constant in the field of fractions of A(a).

The subresultant sequences can be computed either by means of deter-
minant computations or by applying a variant of the classical Euclidean al-
gorithm (see Basu et al.| (2006)). The latter method, combined with evalua-
tion/interpolation strategies, turns out to be much more efficient in practice,
especially for the case of univariate or bivariate polynomials.

3.2 Computation of a separating form of bivariate polynomial systems

Given linear form z; + a x2, the following theorem shows that, up to a non-
zero factor in Q, the univariate polynomial Cy, 144, (see (13])) is equal to the
resultant of the two polynomials obtained by applying a certain change of
variables to R and Z.

Theorem 7 (Bouzidi, Lazard, Pouget, and Rouillier|(2015a)) Let R, 7 €
Q[x1,x2] and let us define the polynomials

R/(t,mg) = R(t*CLIEQ,(EQ), I/(t,Ig) = I(t*(lZZZQ,IEQ), (14)

where a € Z is such that the leading coefficient of R’ and I’ with respect to xa
are coprime. Then, the resultant of R’ and I' with respect to x5, denoted by
Res,, (R/,C"), is equal to:

c H (t—ag —aag) @192 e Q) {0}.

(a1, a2)EV(I)

In practice, the computation of Cy, 444, as a resultant (see Theorem @
is much more efficient than computing the characteristic polynomial of the
Q-endomorphism M, 14, (see (12)) since the computation of the matrix
My, +a 2, usually requires the costly pre-computation of a Grobner basis of
the ideal I = (R, Z) for the graded reverse lexicographic order.

Let us now focus on the computation of a separating form for V(I). Below,
we propose a method that consists in applying a change of variables to the
initial system and then, using resultant and subresultants, to check whether
or not the resulting system is in generic position as defined below.

Definition 4 Let f(x1,x2), g(x1,22) € Q[z1, z2]. If §S denotes the cardinal-
ity of a finite set S, then the system {f,g} is said to be in generic position
with respect to x1 if we have:

VaeC, #{peC|f(a,B)=g(a,B)=0}<1

Let us first illustrate our approach with an example.
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Ezample 11 Consider the following polynomial ideal I = {f = 2 — 2%, g =
22 + 23 — 2} whose set of solutions V(I) consists in four points of C2. The
resultant Res,,(f,g) of f and g with respect to x is equal to 2} + 2% — 2.
The roots of Res,,(f,g) correspond to the projections of the four solutions
of V(I) onto the x;-axis. Since all these roots are distinct, 21 is a separating
form (see Figure [1| for the real solutions of V(I)). The fact that the solutions
of V(I) project distinctly onto z; can be algebraically described by the fact
that for each root a of Res,, (f,g), the ged a9 + o2 of f(a, z2) = 3 — a? and
g(a, x2) = 22 + a? — 1 has only one root.

Fig. 1 Intersection between a circle and a parabola

Let us now consider the polynomial ideal I’ = {f = (z; — 2)? + 23 —
2,9 = o2 + 23 — 2}. The resultant Res,,(f’,¢’) of f' and g’ with respect
to x, namely, 16 (z; — 1)?, has a single (real) root 1 of multiplicity 2, and
ged(f'(1,22),9'(1,22)) = 22 — 1 admits two distinct roots —1 and 1 which
correspond to two different solutions of V(I’). This means that the system is
not in generic position, and thus that z; is not a separating form (see Figure.
In order to compute a separating form for V(I’), we can apply a change of
variables to f’ and ¢’, for instance ¢ = x1 + x5, and then compute the resultant
of these new polynomials f'(t — z2,22) and ¢'(t — xa, x2) with respect to xs.
This yields the polynomial ¢ (¢ — 2) whose two distinct roots {0, 2} are the
projections of the solutions onto the t-axis (see Figure [3]). For a3 = 0 (resp.,
ag = 2), the ged of f/(—x9,x2) and ¢'(—x2,x2) (resp., of f/(2 — x9,22) and
9’ (2 — 29,22)) is x5 + 1 (resp., x2 — 1). Since both geds admit only one root,
then the system {f'(t—x2,22), ¢’ (t—x2,z2)} is in generic position with respect
to t and thus x1 + 2 is a separating form for V(I").
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Fig. 3 After the change of variables
Fig. 2 Intersection between two circles (z1 =t — @2, T2)

Given a linear form ¢ = x; + axs, it can be shown that it is separating
for V((R, Z)) if and only if the system {R’, Z'} is in generic position (see
Definition ). Algebraically, this means that for each root « of Res,(R/,Z")
(where R’ and Z’ are defined as in Theorem 7)), the ged of R/ (v, ) and Z'(«v, z),
denoted G(«, x), has exactly one distinct root.

To check the above genericity condition, we can consider a triangular de-
scription of the solutions of {R’, 7'} given by a finite union of triangular
systems:

l

VR, T") U {(e, B) € C? | i) = G(ev, B) = 0}

Such a triangular description can be obtained via a triangular decomposi-
tion algorithm based on the resultant and subresultant polynomials (see Algo-
rithm 1 of Bouzidi et al.| (2015a)) for more details). Such a triangular decompo-
sition yields a set of triangular systems of the form {ry(¢), Sresk (¢, x2) }r=1,... 1
where [ = min{deg,, R/, deg,, '}, Res,,(R',I’) = H2:1 ri(t), v, € K[t] is
the factor of Res,,(R’,Z’) (possibly equal to 1) whose roots «’s satisfy the
property that the degree of G(a, x2) (i.e., ged(R (o, x2), T (e, x2))) in zg is
equal to k and Sresy (¢, z2) = Zf:o sti.i(t) % is the ™™ subresultant of R’ and
Z’'. Once a triangular decomposition {ry(t), Sres,(t, z2) tr=1,...1 of {R', T} is
computed, the genericity condition is equivalent to the fact that Sresy(¢,z2)
can be written as (ag(t) z2 — by (t))¥ modulo 74(t), with ged(ag, by) = 1. The
next theorem checks this last condition.

Theorem 8 (Daouda, Mourrain, and Ruatta) (2008)) Let R(z1, z2), Z(z1,22) €
Q[z1,22]. Define the polynomials R'(t,x2), I'(t, x2) as in Theorem[], and let
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{ri(t), Sresk(t, x2) tr=1,..1 be the triangular decomposition of {R', I'}. Then,
{R', I'} is in generic position if and only if we have

k(k—1i)sry stpr — (i 4+ 1)stg p—1Sk,i+1 =0 mod ry, (15)
for allk € {1,...,1} and for alli € {0,...,k—1}.

Finally, our algorithm for checking whether the system {R, Z} admits real
solutions consists in computing the above triangular decomposition for the
system {R', 7'} obtained after applying an arbitrary linear change of variable
t = x1 + axs. If the condition of Theorem |§| is satisfied, then x1 + axs is a
separating form. It then remains to check if the resultant Res,, (R’,Z’) of R’
and Z’ with respect to x5 has real roots, a fact which can be done using, for
instance, Sturm sequences (Basu et al.| (2006])).

Remark 7 In practice, several strategies are used in order to reduce the compu-
tational time of the above algorithm. For instance, the computation is stopped
when the resultant, computed for an arbitrary form 1 4+ a x2, that is the re-
sultant of R(t — a x2, x2) and Z(¢t — a x2, x2) with respect to x2, is devoid from
multiple factors, which implies that the form x; + a x5 is separating by The-
orem [7} The computation is also stopped when the computed resultant does
not have real zeros, since it implies that the system does not have real zeros
as well. Another improvement is the way we can choose the form x; + axo
candidate to be a separating form. Indeed, in order to increase the probability
that a form is separating, a first computation is performed modulo a prime
number p (coefficients are then considered in the finite field F,, = Z/Zp). Such
a computation turns out to be very fast since it avoids coefficient swells in the
algorithm. Providing that a linear form is separating modulo a prime p, then
it has a high probability to be separating over Z and we can choose it as a
candidate for the algorithm over Z.

3.3 Experiments

In order to measure the gain of our algorithm with respect to the general
algorithm described in Section we compare it with the general method
Isolate partially developed by the same authors and available in the package
RootFinding of the Maple computer algebra system. This function first com-
putes a Rational Univariate Representation (Rouillier| (1999)) from a Grobner
basis computed with the Fy algorithm (Faugere (1999))), and then uses of a
variant of Descartes algorithm (Rouillier and Zimmermann| (2003))) as well as
multi-precision interval arithmetic (Revol and Rouillier| (2005))) to isolate the
real roots of the system.

For the present experiments, we re-use black boxes developed for the algo-
rithms described in [Bouzidi| (2014b); Bouzidi, Lazard, Pouget, and Rouillier
(2013} [2015b)) which use exactly the same technical base to design the compo-
nent of the algorithm that computes the univariate polynomial Cy, 44, and
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performs the separation check. All the other components are shared with the
Maple RootFinding[Isolate] function.

For dense polynomials with coefficients that can be encoded on 23 bits
(such as if there were coming from floating point numbers), the results —
obtained on a core i7 3.5 Ghz with 32 GB of memory — are summarized in
the following table in which Degree denotes the total degree of the polynomial
D(z1, z2) to be studied, §V(I) the number of complex roots of the bivariate
system to be solved to decide stability, Root F'inding the computational time of
the function RootFinding[Isolate] and Dedicated the computational time
of our new dedicated algorithm.

Degree #V(I) RootFinding Dedicated

10 200 2.3 <1
15 450 29.8 <1
20 800 223.4 <1
25 1280  866.9 1.42
30 1800  3348.2 2.79
35 2450 > 1 hour 7.81
40 3200 > 1 hour 15.51

For these examples, note that we did not report the computation times
required for the two 1-dimensional stability tests (i.e., the stability test for
D(1,2) and D(z1,1)) since they are small compared with the resolution of
the bivariate polynomial system.

Finally, we point out that our naive implementation of the Md&bius trans-
form in Maple is the main bottleneck of our dedicated algorithm compare with
the extremely efficient algorithm for the real solution computation of systems
of two polynomials in two variables.

4 A stability test for 2-D systems with parameters

In what follows, let u = {u1,...,un} denote a set of parameters. In this last
section, we study the structural stability of 2-dimensional systems given by a
transfer function of the form of that depends on the set of parameters u,
i.e.,, where n = 2 and D € Q)|z1, 22, u]. In other words, our goal is to study
in terms of the parameters uy’s. Roughly speaking, our approach consists
in computing a set of polynomials {hq,...,hs}, where hy € Quy,...,u,] for
k=1,...,s, satisfying the property that the stability of does not change
provided that the sign of the sequence {hi, ..., hs} does not change. Then, R™
can be decomposed into cells in which the signs of {h1, ..., hs} remain the same
and the cells for which the system is structurally stable can then be selected
by testing the structural stability of the system for a single parameter’s value
in each cell.

Considering D(z1, z2,u) as a polynomial in the variables z; and zo with co-
efficients in Q[u1, . .., u,], we can apply the transformation given in Section
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which yields the following set of conditions:

D(z1,1,u) #0, |z1] <1,
D(]-vZQau) 7& 07 |22‘ < ]-7 (16)
V({(R(x1,x2,u), Z(x1,x2,u))) NR? = ().

We start with the study of the first two conditions involving univariate
polynomials with parameters. We first transform these conditions so that con-
tinuous stability tests can be applied. More precisely, we can apply the follow-
ing change of variables

1—21 1—22
= So =
T+z 2 112

S1

to the polynomials D(z1,1,u) and D(1, 22, u). We denote by D1(s1,1,u), re-

1—
spectively Ds(1, s2,u), the numerator of D <1+81, 1,u>, respectively of
1
1—
D (1, —#, u) The first two conditions of 1} then become:
52

Di(s1,1,u) #0, Vs €C: Re(s;) >0,
Dy(1,s9,u) #0, Vs2€C: Re(sz2) >0.
Then, we can use a classical result of Liénard and Chipart ((Basu et al.,
2006, Thm. 9.30)) that expresses the stability condition of a continuous poly-
nomial D(s) as a positivity condition of its coefficients as well as a certain
signed principal subresultant sequence of two polynomials F(s) and G(s) sat-
isfying D(s) = F(s?) + sG(s?) (see (Basu et al., 2006, Thm. 9.30)). Using
the specialization property of subresultants (see Basu et al.| (2006)), we can
generalize this result to the case of univariate polynomials depending on pa-
rameters. In particular, applying this test to the polynomials Dj(s1,u) and
D4 (s2,u) yields a set of polynomials depending only on the parameters u, and
the stability of D1 (s1, ) and Dy(s2,u), and thus of D(z1,1,u) and D(1, 23, u),
is then satisfied providing that these polynomials {h;(u)};=1, .. are all posi-
tive.

The next problem is to decide whether or not the following polynomial
system

{R(ml,xg,u) =0, (17)

Z(x1,xe,u) =0,

admits real solutions. In what follows, we can assume that is generically
zero-dimensional, that is, for almost all values of the parameters u € C™,
admits a finite number of complex solutions. The main tool we use to solve
this problem is the so-called discriminant variety, first introduced in |Lazard
and Rouillier| (2007)), and recalled in the next section.
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4.1 Discriminant varieties: definition and properties

Before recalling the definition of a discriminant variety of an algebraic set, let
us start with some useful notations.

For a set of polynomials p1,...,p € Q[z1,..., Tn_m, U1, ..., Uny], the cor-
responding algebraic set is defined as:

S={aecC"|pi(a)=0,...,p(a) =0} (18)

We consider the canonical projection onto the parameter space C™, namely,
the following map

I, : cn — cr

(T1ye ey Ty ULy e v ey Upn) —> (UL, ooy U )y

and we denote by II,,(S) the so-called Zariski closure of the projection of S
onto the parameter space C™. For more details, see |Cox et al.| (2007)).

Definition 5 (Lazard and Rouillier| (2007))) With the above notations,
an algebraic set V' of C™ is called a discriminant variety of S if the following
two conditions are satisfied:

1. V is contained in IT,(S).

2. The connected components Uy, ..., Us of IT,(S) \ V are analytic submani-
folds (note that if IT,(S) is connected, there is only one component).

3. For j=1,...,s, (II;'(U;) N S,1I,) is an analytic covering of U;.

u

In broad terms, a discriminant variety yields a partition of the parameter’s
space C™ into cells U, such that for each cell, the cardinal of IT;!(u) N S,
where 1 € C™, is locally constant on U, and IT, }(U4) N S consists of a finite
collection of sheets which are all locally homeomorphic to U.

A consequence of Definition [5] stated in the following theorem, is a fun-
damental property of the discriminant variety regarding to the number of
solutions. In this theorem, we assume that the polynomial system S defined
by is generically zero-dimensional, i.e., for almost all values of the pa-
rameters y € C™, the polynomial system S,—,, obtained by substituting the
parameters u to p admits a finite number of complex solutions.

Theorem 9 (Lazard and Rouillier| (2007)) Let S be an algebraic system
and Uy, ..., Us defined as in Definition[5 Then, for two vectors of parameters
W, v € Uj, the specialized polynomial systems Sy—,, and Sy—, have ezactly the
same number of zeros.

For a given set S, the smallest algebraic variety V' that satisfies the con-
ditions of Definition [5| is called the minimal discriminant variety (see Lazard
and Rouillier| (2007)).
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Ezxample 12 A classical exemple of a discriminant variety is the zeros of the
discriminant of a quadratic univariate polynomial f := ax? 4+ bz + ¢ whose
coefficients are given as parameters. This discriminant is given as b> —4 a ¢ and
satisfies that for all ag, by and cg such that b3 — 4agco # 0, the polynomial
ag x% + by x + co has exactly two distinct roots.

In the sequel, we simplify say “discriminant variety” for “minimal discrim-
inant variety”.

4.2 Computation of discriminant varieties

For a system F defined by a set {p1,...,pi} C Q[z1,. ..\ Tnom, U1, .., Un,
by means of variable eliminations using, e.g. standard Grobner bases compu-
tations (see, e.g., |Lazard and Rouillier| (2007)), we can compute a sequence of
polynomials {h1,...,hs} C Quq, ..., u,] whose zeros define the discriminant
variety of F. For instance, in the case of the quadratic polynomial given in
Example the discriminant is computed by eliminating the variable x in
the system defined by f and its derivative % with respect to x, which can be
done, e.g. by computing the resultant of f and % with respect to x.

In our setting, namely a system of two polynomial equations in two vari-
ables S = V((R, I)), the discriminant variety, denoted by Vp, consists in the
union of the following two subsets (see|Lazard and Rouillier| (2007)) for details):

— The set Oy of a € C™ such that IT, () N'S is not compact for any
compact neighborhood U of « in C™.

— The set O, of the union of the critical values of IT,, and of the projection
of the singular points of V(S) onto C™.

Intuitively, O, represents parameter values such that there exist either
vertical leafs of solutions or leafs that go to infinity above some of their neigh-
borhoods, while O, represents parameter values such that above some of their
neighborhoods, the number of leafs varies. Thus, the minimal discriminant
variety Vp roughly represents parameter values over which the number of
solutions of changes. Furthermore, an important remark for the compu-
tation of the discriminant variety of S is that both O, and O, are algebraic
sets. Vp can thus be described as the union of two algebraic sets that can be
computed independently.

Both Oy and O, are projections of algebraic set. Computing these varieties
remains to eliminating variables in the systems of equations corresponding
to these varieties, which corresponds to the following problem: given I =
(f1,..-, fi) € Klz1,x2,u], compute IT,,(V(I)) = V(I,), where I, C K[u] is
defined by I, = I N KJu]. Algorithmically, I, can be obtained by means of
a Grobner basis for any elimination ordering < satisfying u < z1,x4. More
precisely, it suffices to compute a Grobner basis for such an ordering and to
keep only the polynomials that belong to Ku].

In [Lazard and Rouillier| (2007)), it was shown that the set O. is equal to
II,(V((R, Z, Jacg, 2,(R,Z)))), where Jacy, ,(R,Z) denotes the determinant
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of the Jacobian matrix with respect to the variables 1 and x5. Hence, comput-
ing an ideal I, such that O. = V(I.) remains to computing the determinant
Jacg, 2,(R,Z) and a Grébner basis of the ideal (R, Z, Jacy, 4,(R,T)) for any
elimination monomial ordering < satisfying u < z1,2,. It was also noticed
that such an elimination ordering allows us to compute an ideal I, C Q[u]
such that On, = V(I). Precisely, suppose that G is a reduced Grobner basis
of (R,I) for a monomial ordering <4 4 z,, that is, the product of two de-
gree reverse lexicographic orderings <, for the parameters and <, ,, for the
variables. For more details, see |Cox et al| (2007). Let us define the following
ideal

I'={LM., . (9) | g€ G, Im>0,1<i<2 LM, , (9) =2}

where LM denotes the leading monomial of a polynomial for an admissible
monomial ordering < (see |Cox et al.| (2007)). Then, we have:

— I', C K[u] is a Grobner basis for <.
— O =V(I5,) U VUZ) =VILNI).

4.3 Discussing the number of real solutions

Once a discriminant variety Vp of S = V((R, Z)), represented by a set of
polynomials {hq,...,hs}, is computed, we can compute a CAD adapted to
these polynomials (see Section in order to obtain a partition of the pa-
rameter space C™ defined by the discriminant variety Vp and the connected
components of its complementary C™ \ Vp (which has the property that over
any cell U that does not meet Wp, II,1(U) is an analytic covering of U). In
particular, the number of zeros of S is constant over any connected set that
does not intersect the discriminant variety.

Also, for computing the constant number of solutions over a connected
component that does not meet the discriminant variety, it suffices to take a
particular value of parameter values p in this component and then solve the
corresponding zero-dimensional polynomial system S,—,,.

Remark 8 Note that the structure of the solutions is not known above the dis-
criminant variety itself. Since the discriminant variety is a set of null measure,
it is useless here to study what is going on for such parameter values. However,
the discriminant variety is defined by a polynomial system which can be added
to the original system in order to follow the study recursively.

The discriminant variety is defined for the complex solutions of . For
real solutions, only two cases may occur:
1. I1,(SNR™2) C Vp. We then need to study S N II;1(Vp) instead of S.

2. I1,(S NR™2)ZVp. Then, we have Vp NR™ is a discriminant variety for
S NR™t2 which is the usual situation.

In the second case, note that if Vp is minimal for S, then Vp NR™ is not
necessarily minimal for S N R™+2,
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4.4 Computing stability regions

Let us now come back to the original problem, namely the computation of the
regions of the parameter space such that are satisfied, and thus define
stable systems. As mentioned at the beginning of Section [d] we can compute
a set of polynomials {p;(u)}i=1,...+ such that the first two conditions of
are satisfied if and only if p;(u) > 0 for ¢ = 1,...,¢. We can also compute a set
of polynomials {g;(u)};=1,.. s that defines a partition of the parameter space
in which the number of real solutions of is constant. Now, considering
the global set of polynomials F' := {p1(u),...,p:(u),q1(u),...,qs(u)}, we can
compute a CAD adapted to F' (see Section . This yields a disjoint union
of cells in R™ in which the signs of all the polynomials of F' (both p;’s and
gi’s) are constant. In particular, inside each of these cells, both the sign of the
polynomials p;’s and the number of real solutions of are constant. This
implies that the system is either stable or unstable. To determine the cells for
which the system is stable, it suffices to select a simple point © = p in each
cell and to test after the evaluation of the parameters.

Finally, in practice, to reduce the running time computation, we only com-
pute the cells that have maximal dimension during the CAD.

4.5 An illustrating example

We consider a 2D system defined by a transfer function G (see ) depending
on the parameters u = {uy, uz} and whose denominator D is defined by:

D(Zl,ZQ) = (4U1 +2U2+3)21+(72U1+1)22+2(2U1 — U2 71)212’2
+(2u1 — 2ug +4) 22 25 + (—up —ug + 1) 21 23.

Applying the algebraic transformation defined in Section 2:2] to D, the
bivariate polynomial system is defined by:

R(z,y) = Tur2?y? —3ug 22 y?> + 722 y? + ug 2% + Tug y* — Sug 2% + ug y?
—x? —3y® 4 uy —uy — 11,

I(x,y) = 10uy 22y — 8uyxy?> + 6us 2%y + dus v y? + 42y — 6092
—8uix+10ury+4usxr+6usy —6x+4y.
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Fig. 4 Global view - Parameter space decomposition

The minimal discriminant variety of this bivariate system with respect to
the projection onto (uj, uz) can be obtained by means of the Maple func-
tion RootFinding[Parametric] [Discriminant Variety]. The discriminant
variety is the union of 8 lines, 2 quadrics and 1 curve of degree 6 defined by:

— [ua], Juz], [4u1r — 2ug + 3], [ur — ug — 11], [ug — Suz — 1], [Bus + 3ug + 2],
[7U1 — 3ug +7], [7U1 + U9 —3].

— [6u? +4usus +2u3 —8ug + 1], [6u? — 6ug ug — 4u3 +25u; + 3ug + 11].

— [1276 u§ — 2828 uf us — 168 uf u3 + 2896 u? u3 + 1544 u3 uj + 340uy uj +
76 uS + 874 uf — 10474 uf us — 4984 u$ u2 — 4300 u? u3 — 1866 uy us + 14 uj —
72 ut — 6542 uf ug +6663 u2 u2 — 1396 uy uj — 1053 us — 239 uf — 2461 u2 uy +
8675 u1 u3 + 665 uj + 170 u? — 1834 uy up + 2064 u3 + 301 uy — 557 ug + 91].

Now, computing the conditions on the parameters u that discriminate the
situations where D(z1, 1) (resp., D(1, 22)) has (or not) roots in the complex
unit disc lead to following 5 lines

[4'1,&1 +2U2 +3},[7U1 — 3U2 +7],[4U1 +3],[—2U1 + 1], [3’11,1 — Ug +4],

where [Tu; — 3ug + 7] is already in the discriminant variety.

Decomposing the parameter space cylindrically with respect to these 14
curves gives 1161 cells shown in Figure

For parameters which belong to these cells, the system is either stable or
unstable. To test the stability of the corresponding system, it is sufficient to
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Fig. 5 Zoom u; = —4...2,uz2 = —7...7 - Parameter space decomposition

test the stability of the system obtained by evaluating the parameters u to
a numerical value p in this cell and to count the number of real solutions of
the (non parametric) zero-dimensional polynomial system defined with
u = u, and to perform the stability test of D(z1,1) and D(1, z3).

It should be noticed that in some regions of the parameter space, some
cells are very small.

Finally, it turns out that 118 of these regions correspond to unstable sys-
tems. For instance, the cell containing the pair (u; = —.4717912847, uy =
—.5389591122) defines unstable systems while the cell containing the pair
(u1 = —.6152602220, uy = —.5389591122) as well as the cell containing the
pair (u; = —.3942379536, us = —.5389591122) define stable systems (see Fig-

ure@.

5 Conclusion

The main goal of this paper was to point out some advantages of using clas-
sical techniques from the computer algebra community in the context of the
stability analysis of multidimensional systems. Indeed, using state-of-the-art
algorithms for solving algebraic systems of equations, several methods for the
study of structural stability of these systems have been developed. The nov-
elty of these methods compared to the existing ones is that they are both
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Fig. 6 Zoom around an unstable region : u; = —0.4...—0.6,u2 = —0.4...—0.6 - Parameter

space decomposition

non-conservative and show promising results in practice especially for 2D and
3D systems. Moreover, despite of their own interests for testing the stability,
the obtained algorithms can also be used for solving similar problems such
as the computation of stabilizing feedback control for 1D linear systems or
for the stabilization of nD systems. From the computational point of view,
we would try to improve the practical behavior of these methods in the case
of nD systems (n > 3) by investigating the use of numerical routines while
keeping the exactness aspect of the approach since it is critical in our prob-
lems. This investigation will be the subject of further works. In addition, other
classes of linear systems such as time-delay systems share the same type of
representation, and can thus be addressed using the same computer algebra
techniques.
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