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Abstract:
This paper aims at studying the stability of linear differential systems with commensurate delays
and arbitrary real parameters. Parameters naturally arise in numerous problems such as, for
instance, the design of stabilizing controllers. It is well-known that the asymptotic stability
of a purely retarded linear differential system is related to the condition that all the complex
roots of the corresponding quasipolynomial have negative real parts. In different approaches, the
stability analysis strongly relies on the computation of the critical pairs of a quasipolynomial,
i.e., the amplitudes of the delay and the frequencies which are roots of the quasipolynomial.
The delays which correspond to the critical zeros/frequencies define a boundary for which the
behavior of the system regarding to its stability can change. The number of the critical zeros as
well as their multiplicities give important information about the stability and usually reflect the
difficulty of the stability analysis of the system. In this work, using standard computer algebra
techniques, particularly on the resolution of algebraic systems with parameters, we propose a
new method that characterizes the set of critical pairs of a quasipolynomial in terms of the system
parameters. More precisely, starting from a quasipolynomial p(s, e−τ s, u) ∈ k[s, u][e−τ s], where
u = {u1, . . . , ur} are r real parameters, our method decomposes the parameter space Rr into
disjoint regions (semi-algebraic sets) on which the number of the critical zeros is constant. As a
consequence, we can choose values of the parameters u which reduce the number/multiplicities of
the critical zeros of the quasipolynomial, which can substantially simplify the stability analysis
of the corresponding system.

Keywords: Time-delay systems, systems with parameters, stability analysis, quasipolynomials,
critical pairs, discriminant variety.

1. INTRODUCTION

In this extended abstract, we develop computer algebra
methods towards the stability analysis of linear time-
invariant differential systems with commensurate time-
delays and whose coefficients depend polynomially on a
finite set of real parameters {u1, . . . , ur}. More precisely,
we consider systems whose dynamics in the frequency
domain are defined by quasipolynomials of the form

f(s, τ, u) =

n∑
k=0

ak(s, u) e−k τ s, (1)

where the ak’s are polynomials in the complex variable s
with coefficients belonging to the commutative polynomial
ring A = Q[u1, . . . , us], i.e., ak ∈ A[s] for k = 0, . . . , n.

In this extended abstract, we investigate the stability of
linear time-invariant differential commensurate time-delay
systems whose dynamics are defined by quasipolynomials
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of the form of (1). We recall that the (asymptotically)
stability of a quasipolynomial of the form of (1) is (par-
tially) related to the real part of the complex zeros s of
f(s, τ, u) = 0. Clearly, the real part of such complex zeros
can change with the system parameters u, and so does the
behavior of the corresponding system. For instance, the
quasipolynomial (1) can be the dynamics of a closed-loop
system where the parameters u appear in the controller,
and they have to be tuned in a way to achieve the stability
of the global system. Thus, the study of the location of the
complex solutions s of a quasipolynomial f(s, τ, u) with
parameters u is an important issue in stability analysis.

In the absence of parameters, a classical approach for
analyzing the asymptotic stability of purely retarded sys-
tems is based on the computation of the so-called critical
pairs of f(s, τ), i.e., the pairs (ω, τ) ∈ R × R+ such that
f(i ω, τ) = 0. For instance, see Li et al. (2015); Gu et al.
(2003); Marshall et al. (1992); Niculescu (2001) and the
references therein. If such critical pairs exist, the stability
is then derived from the asymptotic behavior of the coor-



dinates s of these pairs, called critical imaginary roots of
f(s, τ), that is to say the way these critical imaginary roots
behave under a small variation of the time-delay τ . For
more details, see Niculescu (2001); Bouzidi et al. (2016)
and the references therein. As a consequence, the number
of the critical pairs has a direct and significant impact on
the difficulty of analyzing the asymptotic stability of the
system.

In the case of systems with parameters as (1), the number
of the critical pairs obviously depends on the parameters
values. A challenging problem consists in analyzing the
variation of the number of critical pairs with respect to
the variation of the parameters u. We can then select
parameter values that reduce this number and thus eases
the analysis of stability.

In what follows, we propose a method for studying the
critical pair of f(s, τ, u) with respect to the parameter
values u. More precisely, given a quasi-polynomial of the
form of (1) that depends on a set of parameters u, we
show how to compute regions U1, . . . ,Us in the parameter
space Rr such that the number of critical pairs of f(s, τ, µ)
is constant for all µ = (µ1, . . . , µr) ∈ Uj and for all
j = 1, . . . , s. Note that the number of critical pairs can
change from a region Uj to another but stays constant
inside a given Uj .
The paper is organized as follows, in Section 2, we intro-
duce the concept of a discriminant variety associated to an
algebraic set, which will be our main tool in what follows.
In Section 3, we present our approach for studying the
critical pairs of a quasipolynomial that depends on a set
of parameters. The idea behind this approach is to first
construct an algebraic system that encodes these critical
pairs, and then to use the discriminant variety in order to
obtain a suitable characterization of the latters. Finally,
in Section 4, we illustrate our method through simple
examples.

2. DISCRIMINANT VARIETY

The main tool we use is the so-called discriminant variety
associated to an algebraic set, which was introduced in
Lazard and Rouillier (2007). Before recalling the definition
of this object, let us start with some useful notations.

For polynomials p1, . . . , pm ∈ Q[x1, . . . , xn−r, u1, . . . , ur],
we can consider the following corresponding algebraic set:

S = {α ∈ Cn | p1(α) = 0, . . . , pm(α) = 0}. (2)

We can also consider the canonical projection onto the
parameter space Cr, namely, the following map:

Πu : Cn −→ Cr

(x1, . . . , xn−r, u1, . . . , ur) 7−→ (u1, . . . , ur).

Finally, we denote by Πu(S) the so-called Zariski closure
of the projection of S onto the parameter space Cr.

Definition 1. (Lazard and Rouillier (2007)). With the above
notations, an algebraic variety V ⊂ Cr is called a discrim-
inant variety of S if the following conditions are satisfied:

(1) V is contained in Πu(S).
(2) The connected components U1, . . . ,Us of

Πu(S) \ V

are analytic submanifolds (note that if Πu(S) is
connected, there is only one component).

(3) For j = 1, . . . , s, (Π−1
u (Uj) ∩ S,Πu) is an analytic

covering of Uj .

A consequence of Definition 1 is a fundamental property
of the discriminant variety which is stated in the next
theorem. In this theorem, we assume that the polynomial
system S defined by (2) is generically zero-dimensional,
namely, for almost all values of the parameters µ ∈ Cr,
the polynomial system Su=µ, obtained by substituting the
parameters u to µ, admits a finite number of complex
solutions.

Theorem 1. [Lazard and Rouillier (2007)] Let S be an
algebraic system and U1, . . . ,Us defined as in Definition 1.
Then, for two vectors of parameters µ, ν ∈ Uj , the special-
ized polynomial systems Su=µ and Su=ν have exactly the
same number of zeros.

Given a system S defined by a set of polynomials
{p1, . . . , pm} ⊂ Q[x1, . . . , xn−r, u1, . . . , ur], we can com-
pute a set of polynomials {h1, . . . , hs} ⊂ Q[u1, . . . , ur]
whose zeros define a discriminant variety associated to S.
The polynomials {h1, . . . , hs} are computed by means of
variable eliminations using, for instance, standard Gröbner
bases computations (see, e.g., Lazard and Rouillier (2007)).
Once we have computed the discriminant variety, the
complementary of this algebraic variety in Cs can be
partitioned into a set of connected components using, for
instance, the classical Cylindrical Algebraic Decomposition
(CAD) algorithm (Arnon et al. (1984)). Given a set of
polynomials F = {h1, . . . , hs} ⊂ Q[u1, . . . , ur]

s, a cylin-
drical algebraic decomposition adapted to F is, roughly
speaking, a disjoint union of cells in Rr (these cells are de-
scribed by semi-algebraic sets, namely, a set of polynomial
equations and inequalities) in which the signs of all the
polynomials hk’s are constant.

For more details, see Lazard and Rouillier (2007).

Example: To better grasp the concept of discriminant
variety, let’s describe it through a standard example.
Consider the quadratic polynomial whose coefficients are
given as parameters, f := a x2 + b x + c. A discriminant
variety of the polynomial f is nothing but the zeros of
its discriminant b2 − 4 a c. Indeed for any a0, b0, c0 such
that b20 − 4 a0 c0 6= 0, the polynomial a0 x

2 + b0 x+ c0 has
exactly two distinct roots. Furthermore, this discriminant
is computed by eliminating the variable x, in the system
defined by f and its derivative with respect to x, ∂f

∂x .

3. CRITICAL PAIR CHARACTERIZATION

Theorem 1 can be used to directly study the zeros s of the
quasipolynomial f(s, τ, u) with respect to the parameter
values u. But, due to the presence of transcendental terms,
this quasipolynomial usually admits, for a generic value
of parameters u, an infinite number of complex zeros,
a fact which contradicts the assumption of Theorem 1.
Following the approach developed in Niculescu (2001), we
can reduce the problem of studying the zeros s of f(s, τ, u)
to the study of the real solutions of a generically zero-
dimensional polynomial system. To do that, the standard
transformation, called Rekasius transformation, is used.



This transformation, which appears in Rekasius (1980),
has been used in the context of time-delay systems in
a series of papers (see, e.g., Niculescu (2001) and the
references therein).

Rekasius transformation. This transformation consists
in replacing in the quasipolynomial f(i ω, τ, u) the term
e−τ i ω by the rational fraction 1−T i ω

1+T i ω , where T ∈ R.
Cleaning the denominators, we then obtain a polynomial of
the form R(ω, T, u) + i I(ω, T, u). One can notice that the
above transformation yields a one-to-one mapping between
the zeros (ω, τ) of f(ω, τ, u) that satisfy τ ω 6= (2 k + 1)π
for k ∈ Z (the roots (ω, τ) such that e−τ i ω = −1), and
the solutions of the following polynomial system:{

R(ω, T, u) = 0,

I(ω, T, u) = 0.
(3)

Moreover, given a solution (ω, T ) ∈ R2 of (3), the critical
delays can then be obtained by:

τk =
2

ω
(arctan(ω T ) + k π), k ∈ Z. (4)

In order to catch the remaining zeros of f(ω, τ, u) (i.e.,
(ω, τ) such that ω τ = (2 k + 1)π), we also need to
consider the polynomial f0(ω, u) resulting from f(ω, τ, u)
after substituting e−τ i ω by −1. Similalry as above, this
polynomial yields the following polynomial system:

{
R0(ω, u) = 0,

I0(ω, u) = 0,
(5)

and the critical delays are then deduced from the solutions
of (5) as:

τk =
(2 k + 1)

ω
π, k ∈ Z. (6)

Combining the previous results, the critical pairs of the
polynomial f(s, τ, u) can be deduced from the union of
the solutions of both the systems (3) and (5).

we are now in position to apply Theorem 1 in order to
characterize the zeros of each of the systems (3) and
(5) with respect to the parameters u. Precisely, we first
compute discriminant varieties for the zeros of {R, I}
and the zeros of {R0, I0}, which yields a set of polyno-
mials h1, . . . , hs ∈ Q[u]. Then, we compute a cylindrical
algebraic decomposition of this set of polynomials. This
yields a set of disjoint cells in Rr from which we only keep
those that do not intersect the variety of h1, . . . , hs, i.e.,
U1, . . . ,Us. Finally, for the computation of the (constant)
number of critical pairs over each Uj , it suffices to take
one vector µ of parameter values in Uj and to solve
the zero-dimensional systems resulting from (3) and (5)
after substituting u by µ. For instance, this can easily
be done by first computating Rational Univariate Rep-
resentations of the corresponding zero-dimensional poly-
nomial systems Su=µ (Rouillier (1999)) and then use a
very efficient algorithm algorithm for the numerical iso-
lation of roots of univariate polynomials (Kobel et al.
(2016)). These two steps can be done, e.g., by means
of the RationalUnivariateRepresentation command of
the Maple package Groebner.

4. ILLUSTRATIVE EXAMPLES

We now illustrate our approach on the following examples.

Example 1. As a first example, we consider the following
quasipolynomial, which appeares in several work, e.g.,:
Kamen (1980); Thowsen (1981); Hertz et al. (1984):

f(s, τ) = s+ u1 + u2 e
−τ s (7)

Following the approach descibed in 3, we first construct
the set of critical pairs of f(s, τ). The latter is given by
the two following systems:

{
−T ω2 + u1 + u2 = 0,

u1 T ω − u2 T ω + ω = 0,

{
ω = 0,

u1 − u2 = 0,
. (8)

Then, using the Maple routine CellDecomposition of
the RootFinding[Parametric] package, we compute a set
of polynomials whose zeros define a discriminant variety
of the systems (8),

d1 := u1 − u2, d2 := u1 + u2,

as well as a cylindrical algebraic decomposition of the
complementary of this discriminant variety, which yields
the six following cells, depicted in Figure 1.

c1 : u2 < 0, u1 < u2

c2 : u2 < 0, u2 < u1 < −u2
c3 : u2 < 0, u1 > −u2
c4 : u2 > 0, u1 < −u2
c5 : u2 > 0,−u2 < u1 < u2

c6 : u2 > 0, u1 > u2

Fig. 1. Output of CellDecomposition of (8)



Now, for each cell, we choose an arbitrary point, we
substitute it in the systems (8) and then we compute
the corresponding number of solutions (the sum of the
solutions of S1 and S2). Doing so, we can remark that the
cells c1, c3, c4, c6 correspond to regions of the parameters
where there is no critical pair of f(s, τ), which means that
the asymptotic stability is independent of the delay. Thus,
to conclude on the stability, it suffices to replace the delay
in f(s, τ) by an arbitrary value τ0 (e.g., τ0 = 0) and to
check the stability of the resulting polynomial. Doing so,
we remark that the stability cells are c3 and c6.

For the cells c2, c5, the number of critical pairs of f(s, τ) is
equal to two, and we can easily find values for the delay τ0
such that the polynomial f(s, τ0) is unstable which implie
that the system is asymptotically unstable. Note however
that for general systems, further computations might be
needed in order to conclude.

Finally, in order to complete the analysis, we need to check
for the stability on the discriminant variety itself, i.e. for
the parameters that satisfy u1 + u2 = 0 and u1 − u1 = 0.

Setting u2 = −u1 in the systems (8), we obtain the
following system {−T ω = 0, 2u1 T ω + ω = 0} which we
analyze the zeros by means of a descriminant variety. The
latter yields two cells u1 > 0 and u1 < 0 inside which,
the previous system does not admit any solutions. Thus, a
simple substitution by an arbitrary point in each cell and
an arbitrary delay value τ0 (e.g. τ0 = 0) shows that the
system is unstable in each of these two cells.

We now set u2 = u1 in (8), and obtain the system
{−T ω2 = 0, ω(u1 T + 1) = 0}. We use again the descrim-
inant variety which yields the two cells u1 > 0 and u1 < 0
with the same property as above regarding the number of
solutions. After substitution, we obtain that the system is
stable only for the cell u1 > 0.

To summarize, the system (7) is asymptotically stable if
and only if (u2 < 0 and u1 > −u2) or (u2 > 0 and u1 > u2)
or (u1 = u2 > 0).

Example 2. We now consider the following quasipolyno-
mial which depends on two parameters u1 and u2:

f(s, τ) = (u21 + u2) e−τ s + 3u2 e
−2 τ s + 2u1 s

2 + u21

The systems corresponding to the critical pairs are{
2T 2 u1 ω4 − 4T 2 u2 ω2 − 2u1 ω2 + 2u2

1 + 2u2 = 0,

−4T u1 ω3 + 2T u2
1 ω − 6T u2 ω = 0,

(9)

and

−2u1 ω
2 + 4u2 = 0, (10)

whose a discriminant variety consists of u1 = 0, u2 = 0
and the zeros of the following polynomials:

d1 := u21−7u2, d2 := u21−3u2, d3 := u21+u2, d4 := u21+5u2

Computing a cylindrical algebraic decomposition of the
complementary of this discriminant variety yields 12 cells
(see Figure 2), among which only the cells 1, 2, 7 and 8
represente the regions of the parameters for which the sta-

bility is independent of the delay. By simple substitutions
and isolation of the roots, we can remark that for these four
cells, the system is unstable independently of the delay.

Fig. 2. Output of CellDecomposition of (9) and (10)
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