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Abstract: The purpose of this paper is to explicitly characterize H∞ controllers for 4th order
single-input single-output (SISO) systems in terms of their coefficients considered as unknown
parameters. In the SISO case, computing H∞ controllers requires to find the real positive definite
solution of an algebraic Riccati equation (ARE). Due to the system parameters, no purely
numerical method can be used to find such a solution, and thus parametric H∞ controllers.
Using elimination techniques for zero-dimensional polynomial systems, we first give a rational
parametrization of all the solutions of the ARE. Then, as the problem reduces to solving
polynomials of degree 4, closed-form solutions are obtained for all the solutions of this ARE by
using expressions by radicals. Using the concept of discriminant variety, we then show that the
maximal real root of one of these polynomials is encoded by two different closed-form expressions
depending on the values of the system parameters, which yields to different positive definite
solution of the ARE. The above results are then used to explicitly compute the H∞ criterion γopt

and H∞ controllers in terms of the system parameters. Finally, we study in detail a particular
system: the two-mass-spring system with damping. Due to the low number of parameters, we
can plot the variations of γopt in function of the parameters, compute approximations of γopt

at a working point, and derive the expression of a weight function of the parameters to set γopt

to a desired value.

Keywords: Robust control theory, parametric control, linear systems theory, algebraic systems
theory, symbolic computation, polynomial methods.

1. INTRODUCTION

In the last decades, robust control theory has played a
major role in automatic control by providing methods
which take into account uncertainties, model errors, per-
turbations, etc. in the design of the controllers. One of
these methods, called H∞ control, provides a natural com-
promise between the performance and the robustness to
perturbations and uncertainties of the closed-loop system.
In this article, we focus on the H∞ loop-shaping robust
control problem, which was firstly introduced in Glover
et al. (1989) and then further developed, for instance,
in Vinnicombe et al. (2001); Zhou et al. (1996). This
problem involves the resolution of an Algebraic Riccati
Equation (ARE) and eigenvalues calculations, which are
both classically done numerically.

Another method consists in studying this problem in a
symbolic way, i.e., studying it for a class of systems de-
picted by some parameters (see Kanno et al. (2012, 2007);
Rance et al. (2016-a)). The goal is then to obtain para-
metric H∞ controllers for this class of systems. Given a
parametric controller for a system with unfixed parame-
ters, only numerical evaluations of these parameters are
then required to obtain an H∞ controller for the system
with these fixed values of parameters. This property can
be interesting in the design of adaptive controllers since
such symbolic controllers could easy be embedded. Such
a method is also interesting in a design stage of a project
to quickly select a good architecture that can satisfy some
given specifications. Finally, this paper has also an infor-
mative vocation since no particular theoretical knowledge
is required to use the parametric controllers.



This paper focuses on finding symbolic H∞ controllers for
linear single-input single-output (SISO) systems of order
4 with unknown parameters. The method is based on
Rance et al. (2016-a), which provides a symbolic-numeric
method for the H∞ design problem. The resolution of
the H∞ control problem is based on the computation of
the positive definite solution X of an ARE (Section 2).
Solving this ARE can be reduced to finding the roots of
a univariate polynomial P of order 4 (Section 3), which
roots can be found by radicals by means of Ferrari’s
formulas (see, e.g., Tignol (2002)). The study of the
discriminant variety of P gives a decomposition of the
space of parameters into cells above which the number
of real roots of P is constant (Lazard et al. (2007)).
Above each cell, we can identify the solution which is the
maximal real root of P, which yields to the positive definite
solution X of the ARE (Section 4). Moreover, given X,
the computation of the H∞ criterion γopt is reduced to
the search for the maximal real root of a characteristic
polynomial H of degree 4. Again, we can express the roots
of H by radicals and we can prove that the maximal real
root of H is defined by the same expression by radicals,
which directly yields γopt (Section 5) and thus closed-form
formulas of the H∞ controllers.

Finally, Section 6 illustrates the above approach with
a standard Benchmark example, the two-mass-spring-
damper system, augmented with a static tuning parameter
w. For this system, γopt admits the same closed-form
expression over the entire space of the parameters, except
at a singularity. Furthermore, we can approximate γopt at
a working point by a Taylor expansion or a Puiseux ex-
pansion. By using a tuning parameter w, such expansions
allows us to ensure a value of γopt at the given working
point. Identifying the physical parameters in real time,
we can compute a controller that ensures good stability
margins in the neighbourhood of the working point.

2. THE STANDARD H∞-CONTROL PROBLEM

In this paper, we shall consider 4th order single-input
single-output (SISO) finite-dimensional linear systems
(Figure 1) defined by their transfer function

G :=
y1

e1
=

c3 s
3 + c2 s

2 + c1 s+ c0
s4 + a3 s3 + a2 s2 + a1 s+ a0

, (1)

where ai, ci ∈ R for i = 0, . . . , 3. We note a := (a0, . . . , a3)
and c := (c0, . . . , c3) the system parameters of (1). We also
consider its controllable canonical form defined by:

ẋ = Ax+B e1, y1 = C x, (2)

A :=


0 1 0 0

0 0 1 0

0 0 0 1

−a0 −a1 −a2 −a3

 ∈ R4×4, B :=

 0
0
0
1

 ∈ R4×1,

C := ( c0 c1 c2 c3 ) ∈ R1×4.

Given a rational controllerK, i.e., an element in the field of
rational functions with real coefficients R(s), we consider
the closed-loop system defined in Figure 1, and we have(

e1

y1

)
=

(
S K S
GS GK S

)(
u1

u2

)
,

S := (1 +GK)
−1

being the sensitivity transfer function.

u1 +

+

e1
G

e2 u2+
−y2

y1

K

Fig. 1. Control scheme

Let us consider the following standard control problem.

Robust Control Problem (RCP): Given γ > 0, find a
controller K which stabilizes G (i.e., such that the rational
transfer functions S, K S and GS are proper and stable)
and is such that:∥∥∥∥( S K S

GS GK S

)∥∥∥∥
∞
< γ. (3)

A controller K satisfying (3) ensures a compromise be-
tween the performance of the closed-loop system and
the robustness with respect to the perturbations u1 and
u2. For more details, see Glover et al. (1989); Zhou
et al. (1996); Vinnicombe et al. (2001) and the references
therein. The following standard result gives a solution to
the RCP.

Theorem 1. (Glover et al., 1989, Cor. 5.1), (Zhou et al.,
1996, Ch. 18), Let (A,B,C) be an observable state-space
representation (2) of the transfer function G defined by
(1). Let X be the unique real positive definite solution of
the following ARE

R :=X A+AT X −X BBT X + CT C = 0. (4)

Let Q = QT be an Hankel matrix defined by

Q−1 := P = (P1 · · · P4) ,

Pi
T := C

4−i∑
j=0

a4−j A
4−i−j , i = 1, . . . , 4,

(5)

Let Y := QXQ. Then, the minimal value of γ, denoted
γopt, such that the RCP admits a solution is given by

γopt :=
√

1 + λmax (Y X).

where λmax is the greatest eigenvalue of Y X (which
one has only real positive eigenvalues). For γ > γopt, a
controller Kγ satisfying the RCP is defined by

ż = Aγ z +Bγ e2, y2 = Cγ z,

with the following notations:
Zγ :=

(
I + Y X − γ2 I

)−1
,

Aγ := A−BBT X + γ2 Zγ Y C
T C,

Bγ := −γ2 Zγ Y C
T ,

Cγ := BT X.

(6)

Remark 1. Q is related to Kalman’s observability matrix

O :=
(
C,CA,CA2, CA3

)T
since we have:

∆o := det(O) = det(Q−1). (7)

Then, if the system is not observable, Q cannot be com-
puted. For instance, this happens when a0 = c0 = 0, i.e., s
can be factorized in both the numerator and denominator
of G. As a consequence, in what follows, we shall suppose
that (2) is observable. �



In this paper, for systems of order 4, we focus on the
explicit computation of γopt when the ai’s and cj’s are
unknown parameters and not fixed numerical values. In
particular, numerical algorithms cannot be used here. The
method follows Algorithm 1 of Rance et al. (2016-a),
which combines symbolical and numerical computations
to solve the RCP. Since we consider systems of order 4,
this algorithm helps us to compute purely symbolic H∞
controllers satisfying the RCP.

3. PARAMETRIZATION OF ALL THE COMPLEX
SOLUTIONS OF THE ARE R = 0

In order to compute a controller K satisfying the above
problem, we first have to solve (4). The entries of X,
solution of R = 0, are determined only by the bk’s as
stated in Theorem 2 of Rance et al. (2016-a):

xi,4 = bi − ai, 0 ≤ i ≤ 4,

x1,j = b0 bj − (a0 aj + c0 cj) , 1 ≤ j ≤ 3,

x2,2 = b1 b2 − b0 b3 + a0 a3 + c0 c3 − (a1 a2 + c1 c2),

x2,3 = b1 b3 − b0 + a0 − (a1 a3 + c1 c3),

x3,3 = b2 b3 − b1 − (a2 a3 + c2 c3) + a1,

(8)

where the bk’s satisfy the polynomial system B

B :=


B0 := b20−d0 = 0,

B1 := b21 − 2 b0 b2−d2 = 0,

B2 := b22 − 2 b1 b3 + 2 b0 − d4 = 0,

B3 := b23 − 2 b2−d6 = 0,

(9)

and the di’s are defined by:
d0 := a2

0 + c20,

d2 := a2
1 + c21 − 2 (a0 a2 + c0 c2) ,

d4 := a2
2 + c22 − 2 (a1 a3 + c1 c3) + 2 a0,

d6 := a2
3 + c23 − 2 a2.

We want to find closed-form solutions of B. From B3 = 0,
we first obtain

b2 =
1

2

(
b23 − d6

)
, (10)

which, by substitution into B2 = 0, then yields:

b1 =
(
b43 − 2 d6 b

2
3 + 8 b0 + d2

6 − 4 d4

)
/ (8 b3) . (11)

Substituting (11) and (10) into B1 = 0, we get:

P(b3) := b83 − 4 d6 b
6
3 +

(
6 d2

6 − 8 d4 − 48 b0
)
b43

+4
(
−d3

6 + 4 (d4 + 2 b0) d6 − 16 d2

)
b23

+
(
d2

6 − 4 d4 + 8 b0
)2
.

(12)

Hence, R = 0 admits 16 complex solutions defined by b0 = ±
√
d0,

b1 =
(
b43 − 2 d6 b

2
3 + 8 b0 + d2

6 − 4 d4

)
/ (8 b3) ,

b2 =
(
b23 − d6

)
/2,

(13)

where b3 satisfies the polynomial equation P(b3) = 0 of
degree 8 (see (12)).

4. POSITIVE DEFINITE SOLUTION OF R = 0

Given P, we want to find the root which yields the positive
definite solution of R = 0. Kanno et al. (2009) shows that
X > 0 is obtained by choosing the maximal real root of P.
According to Proposition 5 of Rance et al. (2016-a), note

also that X > 0 satisfies b0 =
√
d0. To express the roots

of P, we introduce the following notations:

p := − 8 (6 b0 + d4) ,

q := − 64 (d2 + b0 d6) ,

r := 16 (2 b0 − d4)
2

− 64 d2 d6,

p2 :=−
(
p2

12
+ r

)
,

q2 :=
p

3

(
r − p2

36

)
− q2

8
,



ε1 := ±1, ε2 := ±1

ε := (ε1, ε2),

δ2 := 27
(
4 p3

2 + 27 q2
2

)
,

α2 :=

(√
δ2 − 27 q2

2

) 1
3

,

u2 :=
1

3

(
α2 −

3 p2

α2
− p
)
,

∆2 := −
(
u2 + p+

ε1 q√
2u2

)
.

(14)
The polynomial P is even. Finding its roots is equivalent
to finding the roots of the following univariate polynomial

P̃(t) = t4 + p t2 + q t+ r, (15)

where t := b23 − d6. Since P̃ is a polynomial of degree 4,
its roots can be expressed by means of radicals (Ferrari’s
formula) as follows (see, e.g., Tignol (2002)):

if q 6= 0 : t(ε) :=

√
2

2

(
ε1
√
u2 + ε2

√
∆2

)
,

if q = 0 : t(ε) :=

√
2

2
ε1

√
ε2

√
p2 − 4 r − p.

(16)

The following notations will be used below to find the
maximal real root of P:

∆P̃ := r3 + β2 r
2 + β1 r + β0, (17)

β2 :=
−p2

2
, β1 :=

p

16

(
p3 + 9 q2

)
, β0 :=

−q2

64

(
27

4
q2 + p3

)
,

p3 := −1

3
β2

2 + β1,

q3 :=
2β3

2

27
− β1β2

3
+ β0

δ3 := 27
(
4 p3

3 + 27 q2
3

)
,

α3 :=

(√
δ3 − 27 q3

2

) 1
3

,



j :=
(
−1 + i

√
3
)
/2,

r1 :=
1

3

(
α2

3 − 3 p3

α3
− β2

)
,

r2 :=
1

3

(
α2

3 − 3 p3

α3 j
− β2

)
,

r3 :=
1

3

(
α2

3 − 3 p3

α3 j2
− β2

)
.

(18)
Note that the ri’s are the roots of ∆P̃(r), the discriminant

of P̃ (see Tignol (2002)). We also note q0 :=
√
−8 p3/27.

The following proposition gives the maximal real root of

P̃ depending on the value of the parameters.

Proposition 1. Suppose that P̃, defined in (15), has at
least one real root, i.e. (2) is observable. Assuming q 6= 0,

t(1, 1) (see (16)) is the greatest real root of P̃ if and only if
(p, q, r) (see (14)) satisfies one of the following conditions

C1 := {p ≤ 0, q ∈ [−q0 ; 0[ , r ∈]−∞ ; r3] ∪ [r2 ; r1]} ,
C2 := {p ≤ 0, q ≤ q0, r ≤ r1} ,
C3 := {p ≤ 0, q ∈ [−q0 ; q0] \ {0} , r ∈ [r3 ; r2]} ,
C4 := {p ≥ 0, q < 0, r ≤ r1} ,

(19)

and t(1,−1) (see (16)) is the greatest real root of P̃ if and
only if (p, q, r) satisfies one of the following conditions:

C5 := {p ≤ 0, q ∈ ]0 ; q0] , r ∈]−∞ ; r3] ∪ [r2 ; r1]} ,
C6 := {p ≤ 0, q ≥ q0, r ≤ r1} ,
C7 := {p ≥ 0, q > 0, r ≤ r1} .

(20)

Assuming q = 0, t(1, 1) is the maximal real root of P̃.



Proof. The proof is based on the concept of discriminant
variety (Lazard et al. (2007)). Given an open connected set
in the space of parameters which does not encounter the
discriminant variety of P, for any values of the parameters
in this set, P has a constant number of real roots. Over
the discriminant variety, some roots are crossing, i.e., 2
closed-form solutions can define the same maximal real
root. In this case, the discriminant variety of P equals its
discriminant ∆P̃ as P is monic. The reader is referred to

Rance et al. (2016-b) for a detailed proof.

Let E := {(−1,−1), (−1, 1), (1,−1), (1, 1)}. We note

tmax := max
ε∈E
{t(ε) | t(ε) ∈ R} the greatest real root of P̃.

Then, we denote by σ the maximal real root of P, i.e.,
σ :=

√
tmax + d6. Thus, we have:

σ =


√
t(1, 1) + d6, (p, q, r) ∈ Ci, 1 ≤ i ≤ 4,√
t(1,−1) + d6, (p, q, r) ∈ Ci, 5 ≤ i ≤ 7,√
t(1, 1) + d6, q = 0.

where t is defined in (16). The solution of (9) corresponding
to X > 0 is of the form:

b0 =
√
d0,

b1 =
σ4 − 2 d6 σ

2 + 8 b0 + d2
6 − 4 d4

8σ
,

 b2 =
σ2 − d6

2
,

b3 = σ.

Then, (8) is used to obtain explicitly X > 0.

5. COMPUTING γOPT AND H∞ CONTROLLERS

The Hankel matrix Q (see (5)) is of the form Q = ∆−1
o Qr

(see (7)), where Qr is also an Hankel matrix. Given Q,
we can compute Y := QXQ. Then, the characteristic
polynomial of Y X is of the form:

H(λ, a, c) = λ4+ν3(a, c)λ3+ν2(a, c)λ2+ν1(a, c)λ+ν0(a, c).

where νi’s are coefficients depending on a and c. Note that
Qr, X, Y , ∆o and νi’s can all be computed in terms of a
and c using a symbolic computing environment such as
Maple. Let us now introduce the following notations:



ε1 := ±1, ε2 := ±1,
ε := (ε1, ε2),

µ2 := −3

8
ν2

3 + ν2,

µ1 :=
ν3

3

8
− ν2 ν3

2
+ ν1,

µ0 :=
ν2

3

16

(
ν2 −

3 ν2
3

16

)
−1

4
ν1 ν3 + ν0,



p4 := −
(
µ2

2/12 + µ0

)
,

q4 :=
µ2

3

(
µ0 −

µ2
2

36

)
− µ2

1

8
,

δ4 := 27
(
4 p3

4 + 27 q2
4

)
,

α4 :=

(√
δ4 − 27 q4

2

) 1
3

,

u4 :=
1

3

(
α4 −

3 p4

α4
− µ2

)
,

∆4 := −
(
u4 + µ2 +

ε1 µ1√
2u4

)
.

(21)

SinceH is a polynomial of degree 4, we can obtain its roots
by radicals as explained, e.g., in Tignol (2002):

if µ1 6= 0: λ(ε) :=

√
2

2

(
ε1
√
u4 + ε2

√
∆4

)
− ν3

4
,

if µ1 = 0: λ(ε) :=

√
2

2
ε1

√
ε2

√
µ2

2 − 4µ0 − µ2.

(22)

Since Y X is the product of two positive definite matrices,
the roots of H are all real strictly positive. The following
proposition, which is a consequence of Proposition 1 in the
case where the polynomial under study as only real roots,
helps us to find which root is the greatest one.

Proposition 2. Given λ(ε) as defined in (22), the expres-
sion by radicals of the maximal real root of H is

λmax(Y X) = max
ε∈E
{λ(ε) | λ(ε) ∈ R} = λ(1, 1).

Then, Proposition 2 yields λmax = λ(1, 1). From the
expression of λmax, we deduce γopt as follows:

γopt =
√

1 + λ(1, 1). (23)

Using the results of Section 4 giving X > 0 depending
on the parameters, and using (6) of Theorem 1, we can
deduce (sub)-optimal H∞ controllers Kγ .

6. A STANDARD EXAMPLE: THE
TWO-MASS-SPRING-DAMPER SYSTEM

6.1 Problem under consideration

We illustrate the above approach with the model of a
two-mass-spring-damper system (see Figure 2) considered
in Wie et al. (1992); Vinnicombe et al. (2001); Alazard
et al. (1999). The latter system is a standard benchmark
in robust control theory.

Fig. 2. The two-mass-spring-damper system

Two masses m1 and m2 are linked by a spring of stiffness
k and a damper of magnitude f . With the notations of
Figure 2, we study the displacement y1 of m2, while m1 is
excited by a force e1. We consider the transfer function of
the physical plant from the input e1 to the output y1:
y1

e1
:= P =

a3 s+ a2

ms2 (s2 + a3 s+ a2)
, m := m1 +m2 > 0,

a2 :=
(m1 +m2) k

m1m2
> 0, a3 :=

(m1 +m2) f

m1m2
> 0.

As in (Vinnicombe et al., 2001, §2.6, §4), we consider a
static weight w as e1 = w ẽ1 and define the fictive plant
by:

y1

ẽ1
:= G = wP =

w

ms2

a3 s+ a2

(s2 + a3 s+ a2)
. (24)

Given a robust controller Kγ stabilizing G, we get a
robust controller Cγ := wKγ stabilizing P since Kγ G =
Cγ P . This controller Cγ only satisfies ‖S‖∞ < γ and

‖GKγ S‖∞ < γ (Vinnicombe et al., 2001, Cor. 5.1).

Note that the weight w modifies the norms ‖Kγ S‖∞ and

‖GS‖∞, but provides a degree of freedom that will be
used later on to fix γopt to a desired value. Hence, using
the results previously developed, we focus on computing
an explicit controller stabilizing G.

In this example, the problem involves only 4 parameters

θ := (a2, a3, m, w) ,

and the d2i’s are

d0 =
w2 a2

2

m2
, d2 =

w2 a2
3

m2
, d4 = a2

2, d6 = a2
3 − 2 a2, (25)

which highly simplifies the computation of the solution
X > 0 of R = 0 and γopt as shown in the next paragraph.



6.2 Solution of the RCP

This example implies a fewer number of parameters than
in the general previous context. As a consequence, and
using again the concept of discriminant variety (as in
Proposition 1), we show that the maximal real root of P
has the same closed-form expression over the entire space
of the parameters θ (except at q = 0):

σ =
√
t(1, 1) + d6,

where t(1, 1) is defined in (16), and yields X > 0. Using
(5), we compute the matrix Q, and thus Y := QX Q.
We then compute the characteristic polynomial H of Y X,
and write its roots as in (22). Then, using (23), we deduce

γopt =
√

1 + λ(1, 1), We note that γopt only depends on
the two variables Gr and ρ defined as follows:

Gr :=
w

ma2
, ρ :=

a3√
a2
. (26)

A plot of γopt depending on Gr and ρ is given in Figure 3.

Fig. 3. Plot of γopt in function of Gr and ρ.

Using Theorem 1, we can deduce a (sub-)optimal H∞
controller Kγ stabilizing G, which yields a (sub-)optimal
stabilizing controller Cγ := wKγ of the physical plant P .

6.3 Setting γopt to a desired value

In the previous section, we have found an explicit formula
(23) of γopt depending on Gr and ρ. In practice, engineers
want to ensure some performance and robustness prop-
erties for a given configuration. Vinnicombe et al. (2001)
provides a link between γ ≥ γopt(Gr, ρ) and guaranteed
gain and phase margins δG and δΦ:∆G(G,Kγ) ≥ δG(γ) :=

1 + γ−1

1− γ−1
,

∆Φ(G,Kγ) ≥ δΦ(γ) := 2 arcsin
(
γ−1

)
,

(27)

where ∆G (resp. ∆Φ) represents the gain (resp. phase)
margin of the open-loop. In practice, a good value for
γopt(Gr, ρ) is 3, which ensures good stability margins (i.e.,
∆G ≥ 6 dB, ∆Φ ≥ 39◦). Then, in this section, we study
how to set w to ensure γopt(Gr, ρ) = γ̄opt, where:

γ̄opt := 3.

In this perspective, we study the algebraic variety defined
by the polynomial expression of γopt in terms of the
parameters Gr and ρ.

Study of the algebraic varieties L and L̄. In order to
compute γopt, we have to choose λmax the maximal real λ
satisfying H(λ, σ) = 0, while σ is the maximal real root of
P in b3. The following system{

P(b3, θ) = 0,

H(λ, b3, θ) = 0,
(28)

parametrizes all the eigenvalues of all the possibles ma-
trices Y X = QXQX, where X is a solution of R = 0.
As only λ is of interest here (because it directly leads to

γopt =
√

1 + λ(1, 1)), instead of (28), we can consider the
projection of (28) onto the variable λ:

L(λ, θ) = 0.

To compute the polynomial L, we have to eliminate b3
from (28) by computing, for instance, the resultant of H
and P for the variable b3 (see, e.g., Chapter 3 of Cox et al.
(2005)). The polynomial L contains λ = λmax as well as the
other λ which correspond to non positive definite matrices
(i.e., non real maximal b3), or to non maximal real λ.

Since P is of degree 8 in b3 and H is of degree 4 in λ,
L is of degree 32 in λ. Thus, L is too long to be printed
here. We can also find again that L(λ, θ) only depends on
the two parameters Gr and ρ defined in (26). With these
changes of variable, we obtain:

L(λ,Gr, ρ) = 0

A plot of L for ρ ∈ {0, 1/100, 1/10} is given in Figure 4.

Fig. 4. L(λ,Gr, ρ) = 0 for ρ ∈ {0, 1/100, 1/10}

Rouillier et al. (2016) shows an animated drawing of L
where ρ varies from 0 to 3/4. Since we are only interested
in values of (Gr, ρ) yielding to γopt = γ̄opt, i.e., to λmax =
λ̄max where

λ̄max := γ̄2
opt − 1 = 8,

we define L̄(Gr, ρ) := L(λ̄max, Gr, ρ). Figure 5 represents
L̄ = 0, which consists in a series of branches. On each
branch, an eigenvalue of all the possible matrices Y X
is equal to λ̄max. Thus, we have to identify the one
corresponding to λ(1, 1)(Gr, ρ) = λ̄max in all of them. This
task can be done by computing the discriminant variety
(see proof of Proposition 1) of L̄, which encodes all the
critical points of L̄ and splits the space {Gr, ρ} into cells
above which the roots of L̄ in ρ are not crossing. Picking a
point in each cell, we identify the curve corresponding to
λ(1, 1)(Gr, ρ) = λ̄max as the green one in Figure 5.



Approaching L̄ L̄(Gr, ρ) = 0 is not solvable explicitly in
ρ. However, approaching this curve around a working point
(using a Taylor or Puiseux expansion for example), we can
get an explicit formula of Gr depending on ρ, which asso-
ciated curve coincides with L̄(Gr, ρ) in the neighbourhood
of the working point. For example, a Puiseux expansion of
order 3 around ρ̄ := 1, gives (red curve in Figure 5):

Ĝr(ρ) := 0.033 (ρ− 1.0)
2

+ 0.11 ρ+ 0.13

Then, we set the tuning parameter w as follows:

w = ŵ := ma2 Ĝr(ρ).

Using this w, we ensure that γopt is close to γ̄opt around our

working point. Noting γ :=
√
λ+ 1, we can verify the value

of γopt by plotting L(γ2−1, Ĝr(ρ), ρ) = 0 (Figure 6). Then,

given ρ around ρ̄, we can compute γopt(Ĝr(ρ), ρ) using

(23), choose γ > γopt(Ĝr(ρ), ρ) and obtain an auto-tuned
controller Cγ(θ) = Kγ(θ)/ŵ stabilizing P and ensuring

γopt(Ĝr(ρ), ρ) close to γ̄opt.

Fig. 5. Blue: L̄(Gr, ρ) = 0 – Green: branch corresponding

to γopt(Gr, ρ) – Red: Gr = Ĝr(ρ).

Fig. 6. Blue: L(γ2 − 1, Ĝr(ρ), ρ) = 0 – Green: branch

corresponding to γopt(Ĝr(ρ), ρ) – Red: Expected γopt.

7. CONCLUSION

In this article, we gave explicit H∞ controllers for SISO
systems of order 4. We also gave a closed-form expression
of γopt, the H∞ criterion satisfied by the closed-loop. By
introducing a tuning parameter w and approximating γopt

around a working point, we showed how to set γopt to a
desired value. With on-line identification of the physical

parameters, we obtain an adaptive controller that ensures
good stability margins for any values of the parameters in
the neighbourhood of the working point.

To avoid the use of the complicated closed-form expression
of γopt in real time, we must ensure that the real γopt

must not exceed the expected γ̄opt (to avoid creating
destabilizing controllers). Therefore, future work will focus
on the study of the variations of γopt depending on the
parameters, or other ways to ensure γopt > γ̄opt. Future
work will also consider the estimation of the degradation
of stability margins and problems brought by uncertain
estimations of the parameters.
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