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Abstract

Thompson Sampling (TS) has surged a lot of interest due to
its good empirical performance, in particular in the compu-
tational advertising. Though successful, the tools for its per-
formance analysis appeared only recently. In this paper, we
describe and analyze SpectralTS algorithm for a bandit prob-
lem, where the payoffs of the choices are smooth given an
underlying graph. In this setting, each choice is a node of a
graph and the expected payoffs of the neighboring nodes are
assumed to be similar. Although the setting has application
both in recommender systems and advertising, the traditional
algorithms would scale poorly with the number of choices.
For that purpose we consider an effective dimension d, which
is small in real-world graphs. We deliver the analysis show-
ing that the regret of SpectralTS scales as d

√
T lnN with

high probability, where T is the time horizon and N is the
number of choices. Since a d

√
T lnN regret is comparable to

the known results, SpectralTS offers a computationally more
efficient alternative. We also show that our algorithm is com-
petitive on both synthetic and real-world data.

1 Introduction
Thompson Sampling (Thompson, 1933) is one of the old-
est heuristics for sequential problems with limited feedback,
also known as bandit problems. It solves the exploration-
exploitation dilemma by a simple and intuitive rule: when
choosing the next action to play, choose it according to prob-
ability that it is the best one; that is the one that maximizes
the expected payoff. Using this heuristic, it is straightforward
to design many bandit algorithms, such as the SpectralTS al-
gorithm presented in this paper.

What is challenging though, is to provide the analysis and
prove performance guarantees for TS algorithms. This may
be the reason, why TS has not been in the center of interest of
sequential machine learning, where mostly optimistic algo-
rithms were studied (Auer, Cesa-Bianchi, and Fischer, 2002;
Auer, 2002). Nevertheless, the past few years witnessed the
rise of interest in TS due to its empirical performance, in
particular in the computational advertising (Chapelle and
Li, 2011), a major source of income for Internet companies.
This motivated the researchers to explain the success of TS.
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A major breakthrough in this aspect was the work
of Agrawal and Goyal (2012a), who provided the first finite-
time analysis of TS. It was shortly after followed by a re-
fined analysis (Kaufmann, Korda, and Munos, 2012) show-
ing the optimal performance of TS for Bernoulli distribu-
tions. Some of the asymptotic results for TS were proved
by May et al. (2012). Agrawal and Goyal (2013a) then pro-
vided distribution-independent analysis of TS for the multi-
arm bandit. The most relevant results for our work are
by Agrawal and Goyal (2013b), who bring a new martingale
technique, enabling us to analyze cases where the payoffs
of the actions are linear in some basis. Later, Korda, Kauf-
mann, and Munos (2013) extended the known optimal TS
analysis to 1-dimensional exponential family distributions.
Finally, in the Bayesian setting, Russo and Van Roy (2013,
2014) analyzed TS with respect to the Bayesian risk.

In our prior work (Valko et al., 2014), we introduced
a spectral bandit setting, relevant for content-based recom-
mender systems (Pazzani and Billsus, 2007), where the pay-
off function is expressed as a linear combination of a smooth
basis. In such systems, we aim to recommend a content to a
user, based on her personal preferences. Recommender sys-
tems take advantage of the content similarity in order to offer
relevant suggestions. In other words, we assume that the user
preferences are smooth on the similarity graph of content
items. The results from manifold learning (Belkin, Niyogi,
and Sindhwani, 2006) show that the eigenvectors related to
the smallest eigenvalues of the similarity graph Laplacian
offer a useful smooth basis. Another example of leveraging
useful structural property present in the real-world data is to
take advantage of the hierarchy of the content features (Yue,
Hong, and Guestrin, 2012).

Although LinUCB (Li et al., 2010), GP-UCB (Srinivas
et al., 2010), and LinearTS (Agrawal and Goyal, 2013b)
could be used for the spectral bandit setting, they would not
scale well with the number of possible items to recommend.
This is why we defined (Valko et al., 2014) the effective di-
mension d, likely to be small in real-world graphs, and pro-
vided an algorithm based on the optimistic principle: Spec-
tralUCB. In this paper, we focus on the TS alternative: Spec-
tral Thompson Sampling (Table 1). The algorithm is easy to
obtain, since there is no need to derive the upper confidence
bounds. Furthermore, one of the main benefits of SpectralTS
is its computational efficiency.



Linear Spectral

Optimistic Approach
D2N per step update

LinUCB
D
√
T lnT

SpectralUCB
d
√
T lnT

Thompson Sampling
D2 +DN per step update

LinearTS
D
√
T lnN

SpectralTS
d
√
T lnN

Table 1: Linear vs. Spectral Bandits

The main contribution of this paper is the finite-time anal-
ysis of SpectralTS. We prove that the regret of SpectralTS
scales as d

√
T lnN , which is comparable to the known re-

sults. Although the regret is
√

lnN away from the one of
SpectralUCB, this factor is negligible for the relevant ap-
plications, e.g., movie recommendation. Interestingly, even
for the linear case, there is no polynomial time algorithm
for linear contextual bandits with better than D

√
T lnN re-

gret (Agrawal and Goyal, 2012b), where D is the dimension
of the context vector. Optimistic approach (UCB) for lin-
ear contextual bandits is not polynomially implementable,
where the numbers of choices are at least exponential in D
(e.g., when set of arms is all the vectors in a polytope) and
the approximation given by Dani, Hayes, and Kakade (2008)
achieves onlyD3/2

√
T regret. Similarly for the spectral ban-

dit case, SpectralTS offers a computationally attractive alter-
native to SpectralUCB (Table 1, left). Instead of computing
the upper confidence bounds for all the arms in each step,
we only need to sample from our current belief of the true
model and perform the maximization given this belief. We
support this claim with an empirical evaluation.

2 Setting
In this section, we formally define the spectral bandit set-
ting. The most important notation is summarized in Table 2.
Let G be the given graph with the set V of N nodes. LetW
be the N × N matrix of edge weights and D is a N × N
diagonal matrix with the entries dii =

∑
j wij . The graph

Laplacian of G is aN×N matrix defined asL = D−W . Let
L = QΛLQT be the eigendecomposition of L, where Q is
N×N orthogonal matrix with eigenvectors ofL in columns.
Let {bi}1≤i≤N be the N rows of Q. This way, each bi cor-
responds to the features of action i (commonly referred to as
the arm i) in the spectral basis. The reason for spectral basis
comes from manifold learning (Belkin, Niyogi, and Sind-
hwani, 2006). In our setting, we assume that the neighbor-
ing content has similar payoffs, which means that the pay-
off function is smooth on G. Belkin, Niyogi, and Sindhwani
(2006) showed that that smooth functions can be represented
as a linear combination of eigenvectors with small eigenval-
ues. This explains the choice of regularizer in Section 3.

We now describe the learning setting. Each time t, the
recommender chooses an action a(t) and receives a payoff
that is in expectation linear in the associated features ba(t),

r(t) = bT

a(t)µ+ εt,

where µ encodes the (unknown) vector of user preferences
and εt is R-sub-Gaussian noise, i.e.,

∀ξ ∈ R, E[eξεt | {bi}Ni=1,Ht−1] ≤ exp

(
ξ2R2

2

)
.

• N – number of arms
• bi – feature vector of arm i

• d – effective dimension
• a(t) – arm played at time t
• a∗ – optimal arm
• λ – regularization parameter
• C – upperbound on ‖µ‖Λ
• µ – true (unknown) vector of weights
• v = R

√
6d ln((λ+ T )/(δλ) + C

• p = 1/(4e
√
π)

• l = R
√

2d ln((λ+ T )T 2/(δλ)) + C

• g = v
√

4 lnTN + l

• ∆i = bT
a∗µ− bT

iµ

Table 2: Overview of the notation.

The historyHt−1 is defined as:

Ht−1 = {a(τ), r(τ), τ = 1, . . . , t− 1}.

We now define the performance metric of any algorithm
for the setting above. The instantaneous (pseudo)-regret in
time t is defined as the difference between the mean payoff
(reward) of the optimal arm a∗ and the arm a(t) chosen by
the recommender,

regret(t) = ∆a(t) = bT

a∗µ− bT

a(t)µ.

The performance of any algorithm is measured in terms of
cumulative regret, which is the sum of regrets over time,

R(T ) =

T∑
t=1

regret(t).

3 Algorithm
In this paper, we use TS to decide which arm to play. Specif-
ically, we represent our current knowledge about µ as the
normal distribution N (µ̂(t), v2B−1t ), where µ̂(t) is our ac-
tual approximation of the unknown parameter µ and v2B−1t
reflects our uncertainty about it. As mentioned, we assume
that the reward function is a linear combination of eigenvec-
tors of L with large coefficients corresponding to the eigen-
vectors with small eigenvalues. We encode this assumption
into our initial confidence ellipsoid by setting B1 = Λ =
ΛL + λIN , where λ is a regularization parameter.

After that, every time step t we generate a sample µ̃(t)
from the distribution N (µ̂(t), v2B−1t ) and chose an arm
a(t) that maximizes bT

i µ̃(t). After receiving a reward, we
update our estimate of µ and the confidence of it, i.e., we
compute µ̂(t+ 1) and B(t+ 1),

Bt+1 = Bt + ba(t)b
T

a(t)

µ̂(t+ 1) = B−1t+1

(
t∑
i=1

ba(i)r(i)

)
.

Remark 1. Since TS is a Bayesian approach, it requires a
prior to run and we choose it here to be a Gaussian. How-
ever, this does not pose any assumption whatsoever about



the actual data both for the algorithm and the analysis. The
only assumptions we make about the data are: (a) that the
mean payoff is linear in the features, (b) that the noise is sub-
Gaussian, and (c) that we know a bound on the Laplacian
norm of the mean reward function. We provide a frequen-
tist bound on the regret (and not an average over the prior)
which is a much stronger worst case result.

The computational advantage of SpectralTS in Algo-
rithm 1, compared to SpectralUCB, is that we do not need
to compute the confidence bound for each arm. Indeed, in
SpectralTS we need to sample µ̃ which can be done in N2

time (note that Bt is only changing by a rank one update)
and a maximum of bT

i µ̃ which can be also done in N2 time.
On the other hand, in SpectralUCB, we need to compute a
B−1t norm for each of N feature vectors which amounts to
a ND2 time. Table 1 (left) summarizes the computational
complexity of the two approaches. Notice that in our setting
D = N , which comes to aN2 vs.N3 time per step. We sup-
port this argument in Section 5. Finally note, that the eigen-
decomposition needs to be done only once in the beginning
and since L is diagonally dominant, this can be done for N
in millions (Koutis, Miller, and Peng, 2010).

Algorithm 1 Spectral Thompson Sampling
Input:
N : number of arms, T : number of pulls
{ΛL,Q}: spectral basis of graph Laplacian L
λ, δ: regularization and confidence parameters
R, C: upper bounds on noise and ‖µ‖Λ

Initialization:
v = R

√
6d ln((λ+ T )/δλ) + C

µ̂ = 0N , f = 0N , B = ΛL + λIN
Run:
for t = 1 to T do

Sample µ̃ ∼ N (µ̂, v2B−1)
a(t)← arg maxa bT

aµ̃
Observe a noisy reward r(t) = bT

a(t)µ+ εt
f ← f + ba(t)r(t)
Update B← B + ba(t)b

T

a(t)

Update µ̂← B−1f
end for

In order to state our result, we first define the effective
dimension, a quantity shown to be small in the real-world
graphs (Valko et al., 2014).
Definition 1. Let the effective dimension d be the largest d
such that

(d− 1)λd ≤
T

ln(1 + T/λ)
.

We would like to stress that we consider the regime when
T < N , because we aim for applications with a large set
of arms and we are interested in a satisfactory performance
after just a few iterations. For instance, when we aim to rec-
ommend N movies, we would like to have useful recom-
mendations in the time T < N , i.e., before the user saw all
of them. In the typical T > N setting, d can be of the or-
der of N and our approach does not bring an improvement

over linear bandit algorithms. The following theorem upper-
bounds the cumulative regret of SpectralTS in terms of d.
Theorem 1. Let d be the effective dimension and λ be the
minimum eigenvalue of Λ. If ‖µ‖Λ ≤ C and for all bi,
|bT
iµ| ≤ 1, then the cumulative regret of Spectral Thompson

Sampling is with probability at least 1− δ bounded as

R(T ) ≤ 11g

p

√
4 + 4λ

λ
dT ln

λ+ T

λ
+

1

T

+
g

p

(
11√
λ

+ 2

)√
2T ln

2

δ
,

where p = 1/(4e
√
π) and

g =
√

4 lnTN

(
R

√
6d ln

(
λ+ T

δλ

)
+ C

)

+R

√
2d ln

(
(λ+ T )T 2

δλ

)
+ C.

Remark 2. Substituting g and p we see that regret bound
scales as d

√
T lnN . Note that N = D could be exponential

in d and we need to consider factor
√

lnN in our bound.
On the other hand, if N is indeed exponential in d, then our
algorithm scales with lnD

√
T lnD = ln(D)3/2

√
T which

is even better.

4 Analysis
Preliminaries In the first five lemmas we state the known
results on which we build in our analysis.
Lemma 1. For a Gaussian distributed random variable Z
with mean m and variance σ2, for any z ≥ 1,

1

2
√
πz
e−z

2/2 ≤ Pr(|Z −m| > σz) ≤ 1√
πz
e−z

2/2.

Multiple use of Sylvester’s determinant theorem gives:
Lemma 2. Let Bt = Λ +

∑t−1
τ=1 bτb

T
τ , then

ln
|Bt|
|Λ|

=

t∑
τ=1

ln(1 + ‖bτ‖B−1
τ

)

Lemma 3. (Abbasi-Yadkori, Pál, and Szepesvári, 2011). Let
Bt = Λ +

∑t−1
τ=1 bτb

T
τ and define ξt =

∑t
τ=1 ετbτ . With

probability at least 1− δ, ∀t ≥ 1 :

‖ξt‖2B−1
t
≤2R2 ln

(
|Bt|1/2

δ|Λ|1/2

)
.

The next lemma is a generalization of Theorem 2 in Abbasi-
Yadkori, Pál, and Szepesvári (2011) for any Λ.
Lemma 4. (Lemma 3 by Valko et al. (2014)). Let ‖µ‖Λ ≤ C
and Bt is as above. Then for any x with probability at least
1− δ, ∀t ≥ 1 :

|xT(µ̂(t)− µ)| ≤‖x‖B−1
t

(
R

√
2 ln

(
|Bt|1/2
δ|Λ|1/2

)
+ C

)
Lemma 5. (Lemma 7 by Valko et al. (2014)). Let d be the
effective dimension. Then:

ln
|Bt|
|Λ|
≤ 2d ln

(
1 +

T

λ

)
.



Cumulative Regret analysis Our analysis is based on the
proof technique of Agrawal and Goyal (2013b). The sum-
mary of the technique follows. Each time an arm is played,
our algorithm improves the confidence about our actual es-
timate of µ via update of Bt and thus the update of confi-
dence ellipsoid. However, when we play a suboptimal arm,
the regret we obtain can be much higher than the improve-
ment of our knowledge. To overcome this difficulty, the arms
are divided into two groups of saturated and unsaturated
arms, based on whether the standard deviation for an arm is
smaller than the standard deviation of the optimal arm (Def-
inition 3) or not. Consequently, the optimal arm is in group
of unsaturated arms. The idea is to bound the regret of play-
ing an unsaturated arm in terms of standard deviation and to
show that the probability that the saturated arm is played is
small enough. This way we overcome the difficulty of high
regret and small knowledge obtained by playing an arm. In
the following we use the notation from Table 2.
Definition 2. We define Eµ̂(t) as the event that for all i,

|bT

i µ̂(t)− bT

iµ| ≤ l‖bi‖B−1
t

and Eµ̃(t) as the event that for all i,

|bT

i µ̃(t)− bT

i µ̂(t)| ≤ v‖bi‖B−1
t

√
4 ln(TN).

Definition 3. We say that an arm i is saturated at time t if
∆i > g‖bi‖B−1

t
, and unsaturated otherwise (including a∗).

Let C(t) denote the set of saturated arms at time t.
Definition 4. We define filtration Ft−1 as the union of the
history until time t− 1 and features, i.e.,

Ft−1 = {Ht−1} ∪ {bi, i = 1, . . . , N}
By definition, F1 ⊆ F2 ⊆ · · · ⊆ FT−1.
Lemma 6. For all t, 0 < δ < 1, Pr(Eµ̂(t)) ≥ 1 − δ/T 2

and for all possible filtrations Ft−1,

Pr(Eµ̃(t) | Ft−1) ≥ 1− 1/T 2.

Proof. Bounding the probability of event Eµ̂(t): Using
Lemma 4, where C is such that ‖µ‖Λ ≤ C, for all i with
probability at least 1− δ′ we have

|bT

i (µ̂(t)− µ)| ≤ ‖bi‖B−1
t

(
R

√
2 ln

(
|Bt|1/2
δ′|Λ|1/2

)
+ C

)

= ‖bi‖B−1
t

(
R

√
ln
|Bt|
|Λ|

+ 2 ln
1

δ′
+ C

)
.

Therefore, using Lemma 5 and substituting δ′ = δ/T 2, we
get that with probability at least 1− δ/T 2, for all i,

|bT

i (µ̂(t)− µ)|

≤ ‖bi‖B−1
t

(
R

√
2d ln

λ+ T

λ
+ 2d ln

T 2

δ
+ C

)

= ‖bi‖B−1
t

(
R

√
2d ln

(
(λ+ T )T 2

δλ

)
+ C

)
= l‖bi‖B−1

t
.

Bounding the probability of event Eµ̃(t): The probability
of each individual term |bT

i (µ̃(t) − µ̂(t))| <
√

4 ln(TN)
can be bounded using Lemma 1 to get

Pr
(
|bT

i (µ̃(t)− µ̂(t))| ≥ v‖bi‖B−1
t

√
4 ln(TN)

)
≤ e−2 lnTN√

π4 ln(TN)
≤ 1

T 2N
.

We complete the proof by taking a union bound over all
N vectors bi. Notice that we took a different approach
than Agrawal and Goyal (2013b) to avoid the dependence
on the ambient dimension D.

Lemma 7. For any filtration Ft−1 such that Eµ̂(t) is true,

Pr (bT

a∗µ̃(t) > bT

a∗µ | Ft−1) ≥ 1

4e
√
π
.

Proof. Since bT
a∗µ̃(t) is a Gaussian random variable with

the mean bT
a∗µ̂(t) and the standard deviation v‖ba∗‖B−1

t
,

we can use the anti-concentration inequality in Lemma 1,

Pr (bT

a∗µ̃(t) ≥ bT

a∗µ | Ft−1)

=Pr

(
bT
a∗µ̃(t)− bT

a∗µ̂(t)

v‖ba∗‖B−1
t

≥ bT
a∗µ− bT

a∗µ̂(t)

v‖ba∗‖B−1
t

| Ft−1

)

≥ 1

4
√
πZt

e−Z
2
t ,

where |Zt| =

∣∣∣∣∣bT
a∗µ− bT

a∗µ̂(t)

v‖ba∗‖B−1
t

∣∣∣∣∣ .
Since we consider a filtration Ft−1 such that Eµ̂(t) is true,
we can upperbound the numerator to get

|Zt| ≤
l‖ba∗‖B−1

t

v‖ba∗‖B−1
t

=
l

v
≤ 1.

Finally, Pr (bT

a∗µ̃(t) > bT

a∗µ | Ft−1) ≥ 1

4e
√
π
.

Lemma 8. For any filtration Ft−1 such that Eµ̂(t) is true,

Pr(a(t) 6∈ C(t) | Ft−1) ≥ 1

4e
√
π
− 1

T 2
.

Proof. The algorithm chooses the arm with the highest value
of bT

i µ̃(t) to be played at time t. Therefore if bT
a∗µ̃(t) is

greater than bT
jµ̃(t) for all saturated arms, i.e., bT

a∗µ̃(t) >
bT
jµ̃(t), ∀j ∈ C(t), then one of the unsaturated arms (which

include the optimal arm and other suboptimal unsaturated
arms) must be played. Therefore,

Pr(a(t) 6∈ C(t) | Ft−1)

≥Pr(bT

a∗µ̃(t) > bT

jµ̃(t), ∀j ∈ C(t) | Ft−1).

By definition, for all saturated arms, i.e., for all j ∈ C(t),
∆j > g‖bj‖B−1

t
. Now if both of the events Eµ̂(t) and Eµ̃(t)

are true then, by definition of these events, for all j ∈ C(t),
bT
jµ̃(t) ≤ bT

jµ(t) + g‖bj‖B−1
t

. Therefore, given the filtra-
tion Ft−1, such that Eµ̂(t) is true, either Eµ̃(t) is false, or
else for all j ∈ C(t),

bT

jµ̃(t) ≤ bT

jµ+ g‖bj‖B−1
t
≤ bT

a∗µ.



Hence, for any Ft−1 such that Eµ̂(t) is true,

Pr(ba∗
Tµ̃(t) > bT

jµ̃(t), ∀j ∈ C(t) | Ft−1)

≥Pr(bT

a∗µ̃(t) > bT

a∗µ | Ft−1)− Pr
(
Eµ̂(t) | Ft−1

)
≥ 1

4e
√
π
− 1

T 2
.

In the last inequality we used Lemma 6 and Lemma 7.

Lemma 9. For any filtration Ft−1 such that Eµ̂(t) is true,

E[∆a(t) | Ft−1] ≤ 11g

p
E[‖ba(t)‖B−1

t
| Ft−1] +

1

T 2

Proof. Let a(t) denote the unsaturated arm with the smallest
norm ‖bi‖B−1

t
, i.e.,

a(t) = arg min
i 6∈C(t)

‖bi‖B−1
t
.

Notice that since C(t) and ‖bi‖B−1
t

for all i, are fixed on
fixing Ft−1, so is a(t). Now, using Lemma 8, for any Ft−1
such that Eµ̂(t) is true,

E[‖ba(t)‖B−1
t
| Ft−1]

≥E[‖ba(t)‖B−1
t
| Ft−1, a(t) 6∈ C(t)]

· Pr(a(t) 6∈ C(t) | Ft−1)

≥‖ba(t)‖B−1
t

(
1

4e
√
π
− 1

T 2

)
.

Now, if the events Eµ̂(t) and Eµ̃(t) are true, then for all i,
by definition, bT

i µ̃(t) ≤ bT
iµ+g‖bi‖B−1

t
. Using this obser-

vation along with bT

a(t)µ̃(t) ≥ bT
i µ̃(t) for all i,

∆a(t) = ∆a(t) + (bT

a(t)µ− bT

a(t)µ)

≤∆a(t) + (bT

a(t)µ̃(t)− bT

a(t)µ̃(t))

+ g‖ba(t)‖B−1
t

+ g‖ba(t)‖B−1
t

≤∆a(t) + g‖ba(t)‖B−1
t

+ g‖ba(t)‖B−1
t

≤ g‖ba(t)‖B−1
t

+ g‖ba(t)‖B−1
t

+ g‖ba(t)‖B−1
t
.

Therefore, for any Ft−1 such that Eµ̂(t) is true, either
∆a(t) ≤ 2g‖ba(t)‖B−1

t
+ g‖ba(t)‖B−1

t
, or Eµ̃(t) is false.

We can deduce that

E[∆a(t) | Ft−1]

≤E
[
2g‖ba(t)‖B−1

t
+ g‖ba(t)‖B−1

t
| Ft−1

]
+ Pr

(
Eµ̃(t)

)
≤ 2g

p− 1
T 2

E
[
‖ba(t)‖B−1

t
| Ft−1

]
+ gE

[
‖ba(t)‖B−1

t
| Ft−1

]
+

1

T 2

≤ 11g

p
E[‖ba(t)‖B−1

t
| Ft−1] +

1

T 2
.

In the last inequality we used that 1/(p − 1/T 2) ≤ 5/p,
which holds trivially for T ≤ 4. For T ≥ 5, we get that
T 2 ≥ 5e

√
π, which holds for T ≥ 5.

Definition 5. We define regret′(t) = regret(t) · I(Eµ̂(t)).
Definition 6. A sequence of random variables (Yt; t ≥ 0) is
called a super-martingale corresponding to a filtration Ft,
if for all t, Yt is Ft-measurable, and for t ≥ 1,

E[Yt − Yt−1 | Ft−1] ≤ 0.

Next, following Agrawal and Goyal (2013b), we establish
a super-martingale process that will form the basis of our
proof of the high-probability regret bound.
Definition 7. Let

Xt = regret′(t)− 11g

p
‖ba(t)‖B−1

t
− 1

T 2

Yt =

t∑
w=1

Xw.

Lemma 10. (Yt; t = 0, . . . , T ) is a super-martingale pro-
cess with respect to filtration Ft.

Proof. We need to prove that for all t ∈ {1, . . . , T}, and any
possible Ft−1, E[Yt − Yt−1 | Ft−1] ≤ 0, i.e.

E[regret′(t) | Ft−1] ≤ 11g

p
‖ba(t)‖B−1

t
+

1

T 2
.

Note that whether Eµ̂(t) is true or not, is completely deter-
mined by Ft−1. If Ft−1 is such that Eµ̂(t) is not true, then
regret′(t) = regret(t) · I(Eµ̂(t)) = 0, and the above in-
equality holds trivially. Moreover, for Ft−1 such that Eµ̂(t)
holds, the inequality follows from Lemma 9.

Unlike (Agrawal and Goyal, 2013b; Abbasi-Yadkori, Pál,
and Szepesvári, 2011), we do not want to require λ ≥ 1.
Therefore, we provide the following lemma that shows the
dependence of ‖ba(t)‖2B−1

t

on λ.

Lemma 11. For all t,

‖ba(t)‖2B−1
t
≤
(

2 +
2

λ

)
ln
(

1 + ‖ba(t)‖2B−1
t

)
.

Proof. Note, that ‖ba(t)‖B−1
t
≤ (1/

√
λ)‖ba(t)‖ ≤ (1/

√
λ)

and for all 0 ≤ x ≤ 1 we have

x ≤ 2 ln(1 + x). (1)

Now we consider two cases depending on λ. If λ ≥ 1, we
know that 0 ≤ ‖ba(t)‖B−1

t
≤ 1 and therefore by (1),

‖ba(t)‖2B−1
t
≤ 2 ln

(
1 + ‖ba(t)‖2B−1

t

)
.

Similarly, if λ < 1, then 0 ≤ λ‖ba(t)‖B−1
t
≤ 1 and we get

‖ba(t)‖2B−1
t
≤ 2

λ
ln
(

1 + λ‖ba(t)‖2B−1
t

)
≤ 2

λ
ln
(

1 + ‖ba(t)‖2B−1
t

)
.

Combining the two, we get that for all λ ≥ 0,

‖ba(t)‖2B−1
t
≤ max

(
2,

2

λ

)
ln
(

1 + ‖ba(t)‖2B−1
t

)
≤
(

2 +
2

λ

)
ln
(

1 + ‖ba(t)‖2B−1
t

)
.



Proof of Theorem 1. First, notice that Xt is bounded as
|Xt| ≤ 1+11g/(p

√
λ)+1/T 2 ≤ (11/

√
λ+2)g/p. Thus, we

can apply Azuma-Hoeffding inequality to obtain that with
probability at least 1− δ/2,

T∑
t=1

regret′(t) ≤
T∑
t=1

11g

p
‖ba(t)‖B−1

t
+

T∑
t=1

1

T 2

+

√√√√2

(
T∑
t=1

g2

p2

(
11√
λ

+ 2

)2
)

ln
2

δ
.

Since p and g are constants, then with probability 1− δ/2,

T∑
t=1

regret′(t) ≤11g

p

T∑
t=1

‖ba(t)‖B−1
t

+
1

T

+
g

p

(
11√
λ

+ 2

)√
2T ln

2

δ
.

The last step is to upperbound
∑T
t=1 ‖ba(t)‖B−1

t
. For this

purpose, Agrawal and Goyal (2013b) rely on the analysis of
Auer (2002) and the assumption that λ ≥ 1. We provide
an alternative approach using Cauchy-Schwartz inequality,
Lemma 2, and Lemma 11 to get

T∑
t=1

‖ba(t)‖B−1
t
≤

√√√√T

T∑
t=1

‖ba(t)‖2B−1
t

≤

√
T

(
2 +

2

λ

)
ln
|BT |
|Λ|

≤
√

4 + 4λ

λ
dT ln

λ+ T

λ
.

Finally, we know that Eµ̂(t) holds for all t with probabil-
ity at least 1 − δ

2 and regret′(t) = regret(t) for all t with
probability at least 1− δ

2 . Hence, with probability 1− δ,

R(T ) ≤ 11g

p

√
4 + 4λ

λ
dT ln

λ+ T

λ
+

1

T

+
g

p

(
11√
λ

+ 2

)√
2T ln

2

δ
.

5 Experiments
The aim of this section is to give empirical evidence that
SpectralTS – a faster and simpler algorithm than Spec-
tralUCB – also delivers comparable or better empirical per-
formance. For the synthetic experiment, we considered a
Barabási-Albert (BA) model (1999), known for its preferen-
tial attachment property, common in real-world graphs. We
generated a random graph using BA model with N = 250
nodes and the degree parameter 3. For each run, we gen-
erated the weights of the edges uniformly at random. Then
we generated µ, a random vector of weights (unknown to
the algorithms) in order to compute the payoffs and evalu-
ated the cumulative regret. The µ in each simulation was a
random linear combination of the first 3 smoothest eigen-
vectors of the graph Laplacian. In all experiments, we had

δ = 0.001, λ = 1, and R = 0.01. We evaluated the algo-
rithms in T < N regime, where the linear bandit algorithms
are not expected to perform well. Figure 1 shows the results
averaged over 10 simulations. Notice that while the result
of SpectralTS is comparable to SpectralUCB, its computa-
tional time is much faster due the reasons discussed in Sec-
tion 3. Recall that while both algorithms compute the least-
square problem of the same size, SpectralUCB has then to
compute the confidence interval for each arm.
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Figure 1: Barabási-Albert random graph results

Furthermore, we performed the comparison of the algo-
rithms on the MovieLens dataset (Lam and Herlocker, 2012)
of the movie ratings. The graph in this dataset is the graph
of 2019 movies with edges corresponding to the movie sim-
ilarities. For each user we have a graph function, unknown
to the algorithms, that assigns to each node, the rating of the
particular user. A detailed description on the preprocessing
is deferred to (Valko et al., 2014). Our goal is then to rec-
ommend the most highly rated content. Figure 2 shows the
MovieLens data results averaged over 10 randomly sampled
users. Notice that the results follow the same trends as for
the synthetic data.

Our results show that the empirical performance of the
computationally more efficient SpectralTS is similar or
slightly better than the one of SpectralUCB. The main con-
tribution of this paper is the analysis that backs up this evi-
dence with a theoretical justification.
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Figure 2: MovieLens data results

6 Conclusion
We considered the spectral bandit setting with a reward func-
tion assumed to be smooth on a given graph and proposed
Spectral Thompson Sampling (TS) for it. Our main contri-
bution is stated in Theorem 1 where we prove that the re-
gret bound scales with effective dimension d, typically much
smaller than the ambient dimension D, which is the case
of linear bandit algorithms. In our experiments, we showed
that SpectralTS outperforms LinearUCB and LinearTS, and
provides similar results to SpectralUCB in the regime when
T < N . Moreover, we showed that SpectralTS is computa-
tionally less expensive than SpectralUCB.
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