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7.1 Introduction

As technology improves, the amount of information we collect about the world
increases. Sensor networks collect traffic or weather information in real-time,
documents and news articles are distributed and searched on-line, information
in medical records is collected and stored in electronic form. All of this infor-
mation can be mined so that the relations among components of the underly-
ing systems are better understood and their models can be built. Microarray
and mass spectrometry (MS) technologies are producing large quantities of
genomic and proteomic data relevant for our understanding of the behavior
and function of an organism, or characteristics of disease and its dynamics.
Thousands of genes are measured in a typical microarray assay; tens of thou-
sands of measurements comprise a mass spectrometry proteomic profile. The
high-dimensional nature of the data demands the development of special data
analysis procedures that are able to adequately handle such data. The central
question of this process becomes the identification of those features (measure-
ments, attributes) that are most relevant for characterizing the system and its
behavior. We study this problem in the context of classification tasks where
our goal is to find features that discriminate well among classes of samples,
such as samples from people with and without a certain disease.

Feature selection is a process that aims to identify a small subset of features
from a large number of features collected in the data set. Two closely-related
objectives may drive the feature selection process: (1) Building a reliable clas-
sification model which discriminates disease from control samples with high
accuracy. The model is then applied to early detection and diagnosis of the
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disease. (2) Biomarker discovery task where a small set of features (genes in
DNA microarrays, or peaks in proteomic spectra) that discriminate well be-
tween disease and control groups is identified so that the responsible features
can be subjected to further laboratory exploration.

In principle, building a good classification model does not require feature
selection. However, when the sample size is small in comparison to the number
of features, feature selection may be necessary before a classification model
can be reliably learned. With a small sample size, the estimates of parameters
of the model may become unreliable and may cause overfitting, a phenomenon
in which each datum is fit so rigidly that the model lacks flexibility for future
data. To avoid overfitting, feature selection is applied to balance the number
of features in proportion to the sample size. On the other hand, identifica-
tion of a small panel of features for biomarker discovery purposes requires a
classification model so that the discriminative behavior of the panel can be
assessed.

The dimensionality of typical genomic and proteomic data sets one has
to analyze surpasses the number of samples collected in typical studies by a
large margin. For example, a typical microarray study can consist of up to
a hundred samples with thousands of gene-expression measurements. Mass
spectrometry (MS) proteomic profiling is less expensive and as a result one
can often see data sets with two to three hundred profiles. MS profiles consist
of thousands of measurements. Typically, “peaks” are selected among those
measurements, and number in the hundreds. In either case, feature selection
becomes important for both the biomarker discovery and interpretive analysis
tasks; one has to seek a robust combination of feature selection methods and
classification models to assure their reliability and success. Finally, feature
selection may be a one-shot process, but typically, it is a search problem where
more than one feature subset is evaluated and compared. Since the number of
possible feature subsets is exponential in the number of constituent features,
efficient feature selection methods are typically sought.

Feature selection methods are typically divided into three main groups:
Filter, wrapper and embedded methods. Filter methods rank each feature ac-
cording to some univariate metric, and only the highest ranking features are
used; the remaining features are eliminated. Wrapper algorithms (Kohavi and
Johnl, [1998)) search for the best subset of features. To assess the quality of a
feature set, these methods rely on and interact with a classification algorithm
and its ability to discriminate among the classes. The wrapper algorithm
treats a classification algorithm as a black box, so any classification method
can be combined with the wrapper. Standard optimization techniques (hill
climbing, simulated annealing or genetic algorithms) can be used. Embed-
ded methods search among different feature subsets, but unlike wrappers, the
process is tied closely to a certain classification model and takes advantage of
its characteristics and structure. In addition to feature selection approaches,
in which a subset of original features is searched, the dimensionality problem
can be often resolved via feature construction. The process of feature construc-
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tion builds a new set of features by combining multiple existing features with
the expectation that their combination improves our chance to discriminate
among the classes as compared to the original feature space.

In this chapter, we first introduce the main ideas of four different methods
for feature selection and dimensionality reduction and describe some of their
representatives in greater depth. Later, we apply the methods to the analysis
of one MS proteomic cancer data set. We analyze each method with respect
to the quality of features selected and stress differences among the methods.
Since our measuring criterion for feature effectiveness is how well it allows
us to classify our samples, we compare the methods and their classification
accuracy by combining them with a fixed classification method — a linear
support vector machine (Vapnik, [1995). In closing, we analyze the results and
give recommendations on the methods.

7.2 Basic Concepts

7.2.1 Filter Methods

Filter methods perform feature selection in two steps. In the first step, the
filter method assesses each feature individually for its potential in discrimi-
nating among classes in the data. In the second step, features falling beyond
some thresholding criterion are eliminated, and the smaller set of remaining
features is used. This score-and-filter approach has been used in many recent
publications, due to its relative simplicity. Scoring methods generally focus
on measuring the differences between distributions of features. The resulting
score is intended to reflect the quality of each feature in terms of its discrim-
inative power. Many scoring criteria exist. For example, in the Fisher score
(Pavlidis et_al., [2001),
o (e () = oy (2))?
V()= —5—5—5 7
7in (@) + oy (@)
the quality of each feature is expressed in terms of the difference among the
empirical means of two distributions, normalized by the sum of their vari-
ances. Table (7.1 displays examples of scoring criteria used in bioinformatics
literature. Note that some of the scores can be applied directly to continuous
quantities, while others require discretization. Scores can be limited to two
classes, like the Fisher score, while others, such as the mutual information
score, can be used in the presence of three or more classes. For the remainder
of this chapter, we will assume our scoring metrics deal with binary decisions,
where the data either belong to a positive (4) or negative (—) group.

(7.1)

7.2.1.1 Criteria Based on Hypothesis Testing

Some of the scoring criteria are related to statistical hypothesis testing and
significance of their results. For example, the t-statistic is related to the null
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Table 7.1. Examples of univariate scoring criteria for filter methods. See section
Mathematical Details for definitions of these scores.

Criterion References
Fisher score (Golub et al., [1999; Furey et al., [2000; Pavlidis et al., 2001)

SAM scoring criterion (Tusher et al.l 2001} Storey and Tibshirani, 2003)
t-test (Baldi and Long, 2001} |Gosser, [1908)

Mutual information  (Tzannes and Noonan, [1973)

x> (Chi square) (Chernoff and Lehmann), [1954; [Liu and Setiono), [1995))
AUC (Hanley and McNeil, [1982])
J5 score (Patel and Lyons-Weiler, 2004])

hypothesis Hy under which the two class-conditional distributions p(x|y =
(+)) and p(z|y = (—)) have the identical mean, that is p) = p—y. The
degree of violation of Hy is captured by the p-value of the t-statistic with
respect to the Student distribution. As a result, features can be ranked using
the inverse of their p-value. Similarly, one can rank the features according to
the inverse of the p-value of the Wilcoxon rank-sum test (Wilcoxon| [1945), a
nonparametric method, testing the null hypothesis that the class-conditional
densities of individual features are equal.

7.2.1.2 Permutation Tests

Any differential scoring metric (statistic) can be incorporated into and evalu-
ated within the hypothesis testing framework via permutation tests. Permu-
tation (or randomization) tests define a class of non-parametric techniques
developed in the statistics literature (Kendall, [1945; (Good, 1994), that are
used to estimate the probability distribution of a statistic under the null (ran-
dom) hypothesis from the available data. The estimate of the probability
distribution of a scoring metric (Fisher score, J-measure, t-score, etc.) under
the null condition allows us to estimate the p-value of the score observed in
the data, similarly to the t-test or Wilcoxon rank-sum test. From the view-
point of feature selection, the null hypothesis assumes that the conditional
probability distributions for the two classes (y = (4) or (—)) are identical
under a feature x, that is, p(z|ly = (+)) = p(x|y = (—)); or equivalently, that
the data and the labels are independent, p(z,y) = p(z)p(y). The distribution
of data under the null hypothesis is generated through random permutations
(of labels) in the data. The permutation test algorithm is shown below. The
main cycle of the algorithm either scans through all possible permutations of
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labels, or, if this set is too large, a large number B of permutations is gen-
erated randomly. With sufficient cycles, the distribution of the test statistic
under the null hypothesis can be estimated reliably.

permutation_test
{
Compute the test statistic 7" for the original data;
For b =1 to B do
{Permute randomly the group labels in the data;
Compute the test statistic T}, for the modified data;

Calculate the p-value of T' with respect to the distribution defined by
permutations b as: p = NszT/B; where N, >7 is the number of
permutations for which the test statistic T} is better than T7;

Return p;

}

7.2.1.3 Choosing Features Based on the Score

Differential scores or their associated p-value scores allow us to rank all feature
candidates. However, it is still not clear how many features should be filtered
out. The task is easy if we always seek a fixed set of k features. In such a
case, the top k features are selected with respect to the ordering imposed
by ranking features by their score. However, the quality of these features may
vary widely, so selecting the features based solely on the order may cause some
poor features to be included in the set. An alternative method is to choose
features by introducing a threshold on the value of the score. Unfortunately,
not every scoring criterion has an interpretable meaning, so it is unclear how
to select an appropriate threshold. The statistic typically used for this purpose
is the p-value associated with the hypothesis test. For example, if the p-value
threshold is 0.05 then there is a 5% chance the feature is not differentially
expressed at the threshold value. Such a setting allows us to control the chance
of false positive selections. These are features which appear discriminative by
chance.

7.2.1.4 Feature Set Selection and Controlling False Positives

The high-dimensional nature of biological data sources necessitates that many
features (genes or MS-profile peaks) be tested and evaluated simultaneously.
Unfortunately, this increases the chance that false positives are selected. To
illustrate this, assume we measure the expression of 10 000 independent genes
and none of them are differentially expressed. Despite the fact that there is
no differential expression, we might expect 100 features to have their p-value
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smaller than 0.01. An individual feature with p-value 0.01 may appear good in
isolation, but may become a suspect if it is selected from thousands of tested
features. In such a case, the p-value of the combined set of the top 100 features
selected out of 10000 is quite different. Thus, adjustment of the p-value when
performing multiple tests in parallel is necessary.

The Bonferroni correction adjusts the p-value for each individual test by
dividing the target p-value for all findings by the number of findings. This as-
sures that the probability of falsely rejecting any null hypotheses is less than
or equal to the target p. The limitation of the Bonferroni correction is that it
operates under the assumption of independence and as a result it is too con-
servative if features are correlated. Two alternatives to the Bonferroni correc-
tion are offered by: (1) the family-wise error rate method (FWER, (Westfall
and Young;, [1993))) and (2) methods for controlling the false discovery rate
(FDR, (Benjamini and Hochberg) 1995} Tusher et al.l 2001). FWER takes
into account the dependence structure among features, which often translates
to higher power. Benjamini and Hochberg (1995) suggest to control FDR in-
stead of the p-value. The FDR is defined as the mean of the number of false
rejections divided by the total number of rejections. The significance analy-
sis of microarrays (SAM) method (Storey and Tibshirani, 2003) is used as
an estimate of the FDR. Depending on the chosen threshold value for the
test statistic T, it estimates the expected proportion of false positives on the
feature list using a permutation scheme.

7.2.1.5 Correlation Filtering

To keep the feature set small, the objective is to diversify the features as
much as possible. The selected features should be discriminative as well as
independent from each other as much as possible. The rationale is that two or
more independent features will be able to discriminate the two classes better
than any of them individually. Each feature may differentiate different sets of
data well, and independence between the features tends to reduce the overlap
of the sets. Similarly, highly dependent features tend to favor the same data
and thus are less likely to help when both are included in the panel. The
extreme case is when the two features are exact duplicates, in which case one
feature can be eliminated.

Correlation filters (Ross et al., [2000; Hauskrecht et al.,[2005) try to remove
highly correlated features since these are less likely to add new discrimina-
tive information (Guyon and Elisseeff, 2003)). Various elimination schemes are
used within these filters to reduce the chance of selected features being highly
correlated. Typically, correlation filters are used in combination with other
differential scoring methods. For example, features can be selected incremen-
tally according to their p-value; the feature to be added next is checked for
correlation with previously selected features. If the new feature exceeds some
correlation threshold, it is eliminated (Hauskrecht et al., 2005).
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7.2.2 Wrapper Methods

Wrapper methods (Kohavi and John| [1998) search for the best feature subset
in combination with a fixed classification method. The goodness of a fea-
ture subset is determined using internal-validation methods, such as, k-fold
or leave-one-out cross-validation (Krus and Fuller, [1982). Since the number of
all combinations is exponential in the number of features, the efficiency of the
search methods is often critical for its practical acceptance. Different heuris-
tic optimization frameworks have been applied to search for the best subset.
These include: Forward selection, backward elimination (Blum and Langley,
1997), hill climbing, beam search (Russel and Norvig, [1995), and randomized
algorithms such as genetic algorithms (Koza, [1995)) or simulated annealing
(Kirkpatrick et al., [1983)). In general, these methods explore the search space
(subsets of all features) starting with no features, all features, or a random
selection of features. For example, the forward selection approach builds a
feature set by starting from an empty feature set and incrementally adding
the feature that improves the current feature set the most. The procedure
stops when no improvement in the feature set quality is possible.

7.2.3 Embedded Methods

Embedded methods incorporate variable selection as part of the model building
process. A classic example of an embedded method is CART (Classification
and Regression Trees, (Breiman et al.l, [1984)).

CART searches the range of each individual feature to find the split that
optimally divides the observed data into a more homogeneous groups (with re-
spect to the outcome variable). Beginning with the subsets of the variable that
produces the most homogeneous split, each variable is again searched across
its range to find the next optimal split. This process is continued within each
new subset until all data are perfectly fit by the resulting tree, or the termi-
nal nodes have a small sample size. The group constituting the majority of
data points in each node determines the classification accuracy of the derived
terminal nodes. Misclassification error from internal cross-validation can be
used to backprune the decision tree and optimize its projected generalization
performance on additional independent test examples.

7.2.3.1 Regularization/Shrinkage Methods

Regularization or shrinkage methods (Hastie et al., 2001; Xing et al., 2001
offer an alternative way to learn classifications for data sets with large number
of features but small sample size. These methods trim the space of features
directly during classification. In other words, regularization “effectively” shuts
down (or zeros the influence of) unnecessary features.

Regularization can be incorporated either into the error criterion or di-
rectly into the model. Let w be a set of parameters defining a classification
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model (e.g., the weights of a logistic regression model), and let Error(w, D)
be an error function reflecting the fit of the model to data (e.g., least-squares
as likelihood-based error). A regularized error function is then defined as:

Errorgeg(w,D) = Error(w,D) + A||w||, (7.2)

where A > 0 is a regularization constant, and || - || is either the L; or
Lo norm. Intuitively, the regularization term penalizes the model for nonzero
weights so the optimization of the new error function drives all unnecessary
parameters to 0. Automatic relevance determination (ARD) (MacKay, 1992}
Neal, [1998)) achieves regularization effects in a slightly different way. The rel-
evance of an individual feature is represented explicitly via model parameters
and the values of these parameters are learned through Bayesian methods.
In both cases, the output of the learning is a feature-restricted classification
model, so features are selected in parallel with model learning.

7.2.3.2 Support Vector Machines

Regularization effects are at work also in one of the most popular classifi-
cation frameworks these days: The support vector machine (SVM) (Burges,
1998;Scholkopf and Smolal [2002). The SVM defines a linear decision boundary
(hyperplane) that separates case and control examples. The boundary max-
imizes the distance (also called margin) in between the two sample groups.
The effects of margin optimization are twofold: Only a small set of data points
(support vectors) are critical for the separation; the dimensions unnecessary
for separation are penalized. Both of these processes help to fight the problem
of model overfit. As a result, the SVM offers a robust classification framework
that works very well for situations with a moderately large number of features
and relatively small sample sizes.

7.2.4 Feature Construction

Better discriminatory performance can be often achieved using features con-
structed from the original input features. Building a new feature is an oppor-
tunity to incorporate domain specific knowledge into the process and hence
to improve the quality of features. Nevertheless, a number of generic feature
construction methods exist: Clustering; linear (affine) projections of the orig-
inal feature space; as well as more sophisticated space transformations such
as wavelet or kernel transforms. In the following, we briefly review three basic
feature construction approaches: Clustering, PCA and linear discriminative
projections.

7.2.4.1 Clustering

Clustering groups data components (data points or features) according to
their similarity. Every data component is assigned to one of the groups (clus-
ters); components falling into the same cluster are assigned the same value in
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the new (reduced) representation. Clustering is typically used to identify dis-
tinguished sample groups in data (Ben-Dor et al.| [2000; [Slonim et al., 2000).
In contrast to supervised learning techniques that rely heavily on class label
information, clustering is unsupervised and the information about the target
groups (classes) is not used. From the dimensionality reduction perspective, a
data point is assigned a cluster label which is then used as its representation.

Clustering methods rely on the similarity matrix — a matrix of distances
between data components. The similarity matrix can be built using one of the
standard distance metrics such as Euclidean, Mahalanobis, Minkowski, etc.,
but more complex distances based on, for example, functional similarity of
genes (Speer et al., [2005)), are possible. Table[7.2| gives a list of some standard
distance metrics one may use in clustering.

Table 7.2. Examples of distance metrics for clustering.

Metric Formula
Euclidean distance d(r,s) = \/(xr — Xs)(Xr — Xs)/
Standardized Euclidean distance d(r,s) = \/(xr — xs) D=1 (x, — x5’
Mahalanobis distance d(r,s) = \/(xT — X)X (% — x5)’
City Block (or Manhattan) metric d(rys) =377 1 [Xrj — Xsj
Minkowski metric d(r,s) = i/(zy:l [xr; — ij|p)
Cosine distance d(r,s) = (1 — xTixls)

( ) /XL X /x’sx5>
Correlation distance d(r,s) =1-— (er —%r) (x5 —%s)'

(r;s) Ve —%) (kr—%7) /(s — %) (x5 —%5 )’

Hamming distance d(r,s) = #(z%#”)
Jaccard distance d(r, s) = 2leriZre) N{r; 20V (2a;70))

#[(@r; #0)V (255 70)]

x and x’ denote a column vector and its transpose, respectively.

%, and x, indicate the r*" and s'* samples in the data set, respectively.

zrj indicates the jth feature of the r** sample in the data set.

%, indicates the mean of all features in the r** sample in the data set.

D is the diagonal matrix with diagonal elements given by vZ, which denotes the
variance of it" variable.

X is the sample covariance matrix.

The symbol # denotes counts; the number of instances satisfying the associated
property.
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7.2.4.2 Clustering Algorithms

The goal of clustering is to optimize intra- and inter-cluster distances among
the components. T'wo basic clustering algorithms are: k-means clustering (Mc-
Queen, 1967; Ball and Hall, 1967), and hierarchical agglomerative clustering
(Cormack, 1971; [Eisen et al., [1998).

Briefly, the k-means algorithm clusters data into groups by iteratively op-
timizing positions of cluster centers (means) so that the sum of within-cluster
distances (the distances between data points and their cluster centers) is min-
imized. Initial positions for cluster centers are generated randomly or by using
heuristics. The algorithm is not guaranteed to converge to the optimal solu-
tion. On the other hand, hierarchical agglomerative methods work by com-
bining pairs of data entities (features) or clusters into a hierarchical structure
(called a dendrogram). The algorithm starts from unit clusters and merges
them greedily (i.e., choosing the merge which most improves the fit of the
clusters to the data) into larger clusters using an a priori selected similarity
measure.

7.2.4.3 Probabilistic (Soft) Clustering

The k-means and agglomerative clustering methods assign every data point
into a single cluster. However, sometimes it may be hard to decide what
cluster the point belongs to. In probabilistic (soft) clustering methods, a data
point belongs to all clusters, but the strength (weight) of its association with
clusters differs by how well it fits cluster descriptions. Typically, the weight
has probabilistic meaning and defines a probability with which a data point
belongs to a cluster.

To calculate the probability, an underlying probabilistic model must be
first fit to the data. Briefly, data are assumed to be generated from k different
classes that correspond to clusters. Each class has its own distribution for
generating data points. The parameters of these distributions as well as class
(cluster) priors are fit (learned) using Expectation-Maximization techniques
(Dempster et all [1977). Once the model parameters are known, the proba-
bilistic weights relating a data point and clusters are posterior probabilities
of the point belonging to classes. A classic example of a probabilistic model
often used in clustering is the Mixture of Gaussians model (McLachlan et al.,
1997)), where k clusters are modeled using k Gaussian distributions.

7.2.4.4 Clustering Features

Clustering methods can be applied to group either data points or features in
the data. When clustering features, the dimensionality reduction is achieved
by selecting a representative feature (typically the feature that is closest to
the cluster center (Guyon and Elisseeff, 2003)), or by aggregating all fea-
tures within the cluster via averaging to build a new (mean) feature. If we
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assume k different feature clusters, the original feature space is reduced to
a new k-dimensional space. An example method of feature clustering is to
cluster features based on intra-correlation, and use the cluster center as a rep-
resentative. Closely correlated features are not likely to help when separated,
so grouping them away from more unrelated features will help diversify the
resulting features.

7.2.4.5 Principal Component Analysis

Principal component analysis (PCA) (Jolliffe, 1986) is a widely used method
for reducing the dimensionality of data. PCA finds projections of high-
dimensional data into a lower dimensional subspace such that the variance
retained in the projected data is maximized. Equivalently, PCA gives uncor-
related linear projections of data while minimizing their least square recon-
struction error. Additionally, PCA works fully unsupervised; class labels are
ignored. PCA can be extended to nonlinear projections using kernel methods
(Bach and Jordanl 2001). Dimensionality reduction methods similar to PCA
that let us project high dimensional features into a lower dimensional space
include multidimensional scaling (MDS) (Cox and Cox| [1994) used often for
data visualization purposes or independent component analysis (ICA) (Jutten
and Herault), [1991)).

7.2.4.6 Discriminative Projections

Principal component analysis identifies affine (linear) projections of data that
maximize the variance observed in data. The method operates in a fully un-
supervised manner; no knowledge of class labels is used to find the principal
projections. The question is whether there is a way to identify linear pro-
jections of features such that they optimize the discriminability among the
two classes. Techniques which try to achieve this goal include Fisher’s linear
discriminant (FLD) (Duda et al.l 2000), linear discriminant analysis (Hastie
et al. 2001) and more complex methods like partial least squares (PLS) (Den-
ham!, 1994} Dijkstral [1983)).

Take, for example, the linear discriminant analysis model. The model as-
sumes that cases and controls are generated from two Gaussian distributions
with means p(_), p4) and the same covariance matrix Y. The parameters
of the two distributions are estimated from data using the maximum likeli-
hood methods. The decision boundary that is defined by data points that give
the same probability for both distributions is a line. The linear projection is
defined as:

w= 2" (g — o), (7.3)

where p(_y, j1(4) are the means of the two groups and X' is the covariance for
both groups, where p(x|y) ~ N(u, X).



160 Milos Hauskrecht, Richard Pelikan, Michal Valko, and James Lyons-Weiler

7.3 Advantages and Disadvantages

Each of the aforementioned methods comes with advantages and disadvan-
tages. The following text briefly summarizes them.

Filter methods:

e Advantages: Univariate scores are very easy to calculate and thus, filter
methods have a short running time. If our goal is a prediction, they often
perform well in combinations with more robust classification methods such
as the SVM.

e Disadvantages: Many differential scoring methods exist, it is unclear which
one is best for the data set at hand. The features are analyzed independent
of each other. This is a problem if our goal is to identify a small panel of
discriminative features (biomarkers). Multivariate relations/dependencies
must be incorporated through additional criteria, e.g., correlation filters.

Wrapper methods:

e Advantages: More comprehensive search of the feature set space. The fea-
ture set with the best discriminative potential on a fixed classification
method is selected.

e Disadvantages: Running time is much longer than filter methods; many
feature sets need to be analyzed and assessed. In addition, scoring of fea-
ture sets is based on internal cross-validation methods, which lengthens
their running time. The reliability of the estimate of the internal cross-
validation error needs to be considered. Low reliability of the internal
validation error in combination with a large number of subsets examined
can be lethal especially in various greedy search schemes.

Embedded methods:

e Advantages: Features and their selection are tuned to a specific model.
Learning methods which incorporate aspects of regularization, like the
SVM or regularized logistic regression, can learn very good predictive mod-
els even in the presence of high-dimensional data. We recommend trying
SVM as a first step if the goal is only to build a predictive model.

e Disadvantages: Identification of a small set of features may be problematic.
Backward feature elimination routines (Guyon and Elisseeff, 2003)) can be
used to reduce the feature panel to a more reasonable size.

Feature construction methods:

e Advantages: May incorporate the domain knowledge which may translate
to improved feature sets.

e Disadvantages: If features are constructed using one of the out-of-box
methods (e.g., PCA) the new features may be hard to interpret biolog-
ically. In addition, many feature construction techniques (e.g., clustering,
PCA, ICA) work in an unsupervised mode, so high-quality features for
discriminatory purposes are not guaranteed.
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7.4 Case Study: Pancreatic Cancer

To illustrate some of the advantages and disadvantages of feature selection
methods, we use a data set of MS proteomic profiles for pancreatic cancer
collected at the University of Pittsburgh Cancer Institute (UPCI). Since full
feature selection comparison is very hard to do without a full predictive model
that combines both the feature selection and the classification stages we test
feature selection methods in combination with one classification method —
the linear support vector machine (SVM) (Vapnik, 1995). All classification
results presented in the following text were obtained by using the repeated
random subsampling strategy with 40 different train/test data splits using
70/30 train/test split ratio. The optimization criterion for the SVM method
was a zero-one loss function, which focuses on improving classification er-
ror instead of sensitivity or specificity. The statistics reported are: Average
test classification error (ACE), sensitivity (SN) and specificity (SP) and their
standard deviations.

7.4.1 Data and Pre-Processing

The data set consists of 116 MS profiles, with 57 cancer cases (+ group) and
59 controls, matched according to their smoking history, age, and gender (—
group). The data were generated using Ciphergen Biosystems Inc. SELDI-
TOF (surface-enhanced laser desorption/ionization time-of-flight) mass spec-
trometry. Compounds such as proteins, peptides and nucleic acids for masses
of up to 200000 Daltons are recorded using this technology. Before apply-
ing feature selection techniques the data set was pre-processed using the
Proteomic Data Analysis Package (PDAP) (Hauskrecht et al., 2005). The
following pre-processing steps were applied: (1) Cuberoot variance stabiliza-
tion, (2) local min-window baseline correction, (3) Gaussian kernel smooth-
ing, (4) range-restricted intensity normalization, and (5) peak-based profile
alignment. The quality of all profiles were tested beforehand on raw MS pro-
file readings using total ion current (TIC). None of the profiles differed by
more than two standard deviations from the mean TIC, which is our current
quality-assurance/quality—control threshold for sample exclusion. After basic
pre-processing, peaks in the range of 1500 — 1 650 Daltons were identified and
their corresponding intensities were extracted.* This gave us a data set of 116
samples with 602 peak features.

4 The region below 1500 Daltons is unsuitable for analysis because of known signal
reproducibility problems. The region is often referred to as the junk region. On the
other hand, signals for higher mass-to-charge-ratios are of lower intensity which
makes them hard to separate from the noise. An a priori upper limit is typically
set to restrict the search for signal.
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7.4.2 Filter Methods
7.4.2.1 Basic Filter Methods

Many univariate scoring metrics that assess the individual quality of features
were proposed in the literature. An important question is how the rankings and
subsequent feature selection induced by these metrics vary. Table [7.3 shows
the number of overlapping features for the top 20 features selected according
to four frequently used scoring criteria: Correlation, Fisher, t¢-statistic and
Wilcoxon’s p-value measures.

Table 7.3. Overlap of top 20 features for four different metrics.

Correlation Fisher t-statistics Wilcoxon
Correlation - 18 12 18
Fisher 18 — 11 16
t-statistics 12 11 - 11
Wilcoxon 18 16 11 -

The table shows that different scoring metrics may induce rather different
feature orders and as a result, different feature panels. It is very hard to
argue that any one of them is the best. The quality depends strongly on
the classification technique used in the next step, but even there the story
is often unclear, and the best method tends to vary among the data sets.
Table [7.4 illustrates the results obtained using top 20 choices of four scoring
methods from Table (7.3 after we combine them with the linear SVM model.
Standard deviations of performance statistics are also given. We see that the
best classification error was obtained using the features selected based on the
t-statistic score. While our experience is that the ¢-statistic score performs well
on many proteomic data sets, other scoring metrics may often outperform it.

Table 7.4. Results for classifiers based on different feature filtering methods and
the linear SVM. Standard deviations are given in parentheses.

Correlation Fisher t-statistics Wilcozon
ACE 0.2500 (0.1178) 0.2188 (0.1075) 0.1743 (0.0684) 0.2611 (0.1091)
SN 0.8022 (0.0945) 0.8102 (0.1210) 0.8259 (0.0997) 0.7956 (0.1200)
SP 0.7142 (0.1249) 0.7628 (0.1423) 0.8327 (0.0852) 0.6961 (0.1607)

7.4.2.2 Controlling False Positive Selections

A problem with high-dimensional data is that some features may appear as
good discriminators simply by chance. The problem of false positive identifi-
cations of features is critical for the biomarker discovery task. Clearly, a more



7 Feature Selection and Dimensionality Reduction 163

comprehensive analysis and validation of the feature in the lab may incur a
significant monetary cost. While positive feature selections may influence also
the generalizations of the predictive model and its classification accuracy, the
classification methods are often more robust to handle them and the prob-
lem of false positive features is less pressing than for the biomarker discovery
applications.

The false positive selection rate can be controlled via p-value on individual
features, Bonferroni corrected p-value for the panel of features, or through false
discovery rate. Table [7.5 shows the number of features out of 602 original
features selected by each of these methods.

Table 7.5. P-value for ¢-statistics.

original number of features p < 0.05 Bonferroni p < 0.05 FDR 0.2
602 13 0 5

Assuming that all features are independent and random, we expect to
see about 30 false positive features under the simple p-value of 0.05 for each
feature. Using this estimate and the fact that we see only 13 features for the
p-value of 0.05 would lead us to the conclusion that all of these are likely
obtained by chance. The caveat is that when features are dependent and
correlated the expected numbers are very different. Indeed, features in this
and other proteomic data sets exhibit a large amount of correlation among
the features; so the result in the table is indicative of such a dependency. The
Bonferroni correction typically leads to a very conservative bound that may
be very hard to satisfy. For example, none of the features in our cancer data
passed Bonferroni-corrected p-value of 0.05. FWER and FDR methods and
their thresholds give better estimates of false positive selections and their rates
for the real-world data and should be preferred over simple and Bonferroni-
corrected p-value thresholding.

When selecting features, our objective is to strike the right balance be-
tween the number of features, the flexibility they may offer when building
multivariate discriminators, and the risk of inclusion of false positive features.
The FWER and FDR methods give better control over risks of false positives.
However, choosing the optimal thresholds for these techniques is a matter
of personal preference. For example, two different approaches can be taken.
If the selected features are meant only for use with an automated classifica-
tion routine, it may be more acceptable to risk selecting false positives, and
thusly the threshold can be less stringent. On the other hand, if the selected
features are to be investigated more thoroughly (e.g., to analyze them using
wet lab techniques), it would be far less acceptable to suggest that false pos-
itives are informative features. In this case, the threshold should be set more
aggressively.
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7.4.2.3 Correlation Filters

Biological (genomic and proteomic) data sets often exhibit a relatively high
number of correlations. The correlations can be introduced by the technol-
ogy producing the data or they reflect true underlying dependencies among
measured species. For example, a peak in a proteomic profile is formed by a
collection of correlated measurements, triple or double charged ions cause the
same signal to be replicated at different parts of the profiles, and finally some
peaks are correlated because they share a common regulatory (or interaction)
pathway.

Selecting two features that are near duplicates, even if they are highly
discriminative, does not help the classification model and its accuracy. Corre-
lation filtering alleviates the problem by removing features highly correlated
with existing features in the panel. Table [7.6 illustrates the number of fea-
tures one obtains by filtering out correlated features at different maximum
allowed absolute correlation (MAC) thresholds from the original 602 features.
We note that the amounts of correlates filtered out at higher thresholds are
statistically significantly different (at p = 0.01) from what one would obtain
for independent feature sets.

Table 7.6. Effect of correlation filtering.

Threshold 1 09 08 07 06 05 04 03 02 01 0
Number of Features 602 460 247 119 52 22 12 9 6 3 1

Figure 7.1 illustrates the effect of correlation filtering when it is combined
with the univariate feature scoring based on the t-statistic. We see that test
errors for smaller feature sets (size 5) are improved if feature panels are decor-
related. However, for larger feature panels the effect of feature decorrelation
may vanish since some good features that add some discriminative value to
the panel are filtered out. For example, for 20 features in Figure [7.1] the effect
of correlation filtering has disappeared and the SVM classifier based on the
unrestricted ¢-statistic score performs better than classifiers with correlation
thresholds of 0.75 and 0.5. This illustrates one of the problems of the method,
identification of an appropriate MAC threshold. We must note that the effect
as seen in Figure [7.1/ may be less pronounced on other classification methods
or on other data sets, while in some cases correlation thresholds may lead to
superior performance. These differing outcomes are the results of tradeoffs of
feature quality and overfit processes.

The plain correlation threshold filtering method suffers from a couple of
problems. First, an identification of an appropriate correlation threshold in
advance is hard. Moreover, for different feature sizes there appears to be a
different threshold that works best so switching of thresholds may be appro-
priate. One solution to this problem is the parallel correlation filtering method



7 Feature Selection and Dimensionality Reduction 165

(Hauskrecht et al., [2005) that works at multiple correlation threshold levels in
parallel and uses internal cross-validation methods to decide on what feature
(correlation level) to select next. The performance of the method is compared
to the unrestricted ¢-statistic filter and two correlation filtering methods based
on simple MAC thresholds in Figure [7.1.
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Fig. 7.1. Effect of correlation filtering on classification errors. Results of correlation
filtering on the t-statistic score and SVM are shown.

7.4.3 Wrapper Methods

Wrapper methods search for the best subset of features by trying them in
combination with a fixed classification method. However, there is a natural
tradeoff between the quality of the feature set found, and the time taken to
search for it. Table[7.7 displays performance statistics for two search methods:
Greedy forward selection and simulated annealing.

The forward selection approach, also called the greedy approach, adds
the feature which improves the set the most. The panel begins empty and
is built incrementally, stopping when no improvement in the feature set is
possible. Simulated annealing is a randomized algorithm and if it is left to
search long enough all possible combinations may be reached and evaluated.
Thus, simulated annealing may arrive at a better solution than the greedy
method when given enough time. This quality/time tradeoff is captured in
the table. The model based on the greedy forward selection method leads to
average errors of 0.1750 while simulated annealing approaches 0.1660. To reach
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Table 7.7. Wrapper methods with two search algorithms: Forward selection and
simulated annealing. Standard deviations are given in parentheses.

Greedy Simulated Annealing
ACE 0.1750 (0.0668) 0.1660 (0.0603)
SN 0.8239 (0.1123) 0.8149 (0.1097)
SP 0.8261 (0.1100) 0.8614 (0.0784)
# steps 7037.4 10000

the result, 7037.4 feature sets were evaluated on average by forward selection,
while simulated annealing was run for 10000 steps on every train/test split.

Evaluating a new feature set in any wrapper method is done by internal
validation methods, such as k-fold cross-validation or leave-one-out validation.
The overhead incurred by the evaluation step contributes to the running time
of the algorithm. In general, using more internal splits improves the estimate
of the error for each feature set. The price paid for it is an additional increase
in the running time. Despite the downfalls, the results obtained from wrapper
methods powered by various search heuristics are often quite good, especially
when computational time is not an issue.

7.4.4 Embedded Methods

Table [7.8 shows the results of three classification methods with embedded
feature selection: CART (Breiman et al., [1984)), reqularized logistic regression
(RLR) (Hastie et al., 2001) and support vector machines (SVMs) (Burges,
1998)). Each of these methods handles features differently, and consequently
leads to different classification accuracies. We see that two of the methods,
RLR and SVM, achieved results comparable or better than filter and wrapper
methods. While this is not the rule, the linear SVM appears to be a very
stable method across a large range of features so we always recommend to try
it on the full feature set.

Table 7.8. Performance statistics for embedded methods. Standard deviations are
given in parentheses.

CART Regularized LR SVM
ACE 0.3681 (0.0897) 0.1382 (0.0584) 0.1382 (0.0623)
SN 0.6321 (0.1888) 0.8619 (0.1026) 0.8536 (0.0913)
SP 0.6361 (0.2088) 0.8624 (0.0942) 0.8769 (0.0881)

Embedded methods may not be optimal, if we want to use them for bio-
marker discovery, that is, if our objective is to find a small set of original
features with a good discriminatory performance. The embedded methods
may rely on too many features so a follow-up selection of a smaller subset
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is necessary. Wrapper methods based on the backward feature elimination
(Guyon and Elisseeff, [2003) achieve this by gradually eliminating the features
that affect the performance the least.

7.4.5 Feature Construction Methods

To illustrate feature construction methods we use three unsupervised methods:
sample clustering, feature clustering and PCA projections, all aimed to reduce
the dimensionality of data. The results of these methods in combination with
the linear SVM are in table 7.9

Table 7.9. Construction methods: Sample clustering using squared Euclidean dis-
tance, feature clustering using correlation coefficient, and PCA. Standard deviations
are given in parentheses.

Sample Clustering Feature Clustering PCA Projections
ACE 0.4525 (0.0810) 0.2104 (0.0652) 0.1681 (0.0594)
SN 0.4721 (0.1604) 0.7932 (0.1426) 0.8223 (0.0984)
SP 0.6444 (0.1633) 0.7968 (0.0920) 0.8492 (0.0842)

The first entry in the table (sample clustering with Euclidean distance)
illustrates the major weakness of clustering methods: The clustering does not
give reasoning as to why the data components group together, other that their
distance is close, which obviously depends on the choice of the metric. Thus,
one has to assure that the distance selected is not arbitrary and makes sense for
the data and the prediction task. The result for clustering of features based
on the correlation metric also supports this point. There are many feature
correlates in the proteomic data set, so grouping the features based on their
mutual correlation and replacing the features in each cluster with a feature
corresponding to the cluster center tends to eliminate high correlates in the
new (reduced) data. This is very similar in spirit to the correlation filtering
method. The difference is that the correlation filtering is closely combined with
and benefits from the univariate score filtering, while correlation clustering
works fully unsupervised.

PCA constructs features using linear projections of complete data. Since
PCA arranges projections along uncorrelated axes, it helps to relieve us from
identifying feature correlates. As a result, we see an improvement in classi-
fication error over some other construction and filtering methods. Note that
PCA can be a good “one shot” technique, avoiding necessities like the choice
of the number of clusters, k, in k-means clustering, or scoring metric in fil-
tering methods. The effort saved by not choosing parameters is in exchange
for knowledge about a targetable panel of biomarkers, but PCA can still be
convenient if the only interest is constructing a predictive model.
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7.4.6 Summary of Analysis Results and Recommendations

There are multiple feature selection/dimensionality reduction methods one
may apply to reduce the feature size of the data and make it “comparable”
to its sample size. Unfortunately, there is no perfect recipe for what method
to choose but here are some guidelines.

e Having prior information about how features can be related to the predic-
tion task will always help feature selection and its subsequent application.
So whenever possible try to use this information. For example, when the
biological relevance of features can be ascertained, the potentially irrele-
vant or obvious features can also be eliminated.

e In the presence of no prior information, more generic information can be
used for steering feature selection in the right direction. The effect of a
feature on the target class and the presence of multivariate dependencies
(e.g., correlations) among feature candidates appear to be the most impor-
tant ones. The importance of a feature is captured by a univariate scoring
metric. Dealing with highly correlated features, either by grouping them
or eliminating redundancies, can help the selection process by narrowing
the choice of features.

e Feature selection coupled with more robust classification methods, like
SVM, can perform extremely well on all features. Backward feature elimi-
nation methods can be applied if we would like to identify a smaller panel
of informative features.

e The feature selection method applied to data does not have to match a sin-
gle method. A combination of feature selection methods may be beneficial
and may work much better (Xing et al.l 2001)). For example, it may help
to exclude some features outright with a basic filtering method by remov-
ing the lowest-scoring features and apply other methods (e.g., wrapper or
PCA methods) only on the remaining features.

Since there are many feature selection methods, one may be tempted to
try many of them in combination with a specific classifier and pick the one
that gives the best test set result post hoc. Note that in such a case the error is
biased and does not objectively report on the generalizability of the approach.
Model selection methods based, for example, on an internal cross-validation
loop should be applied whenever a choice out of many candidates is allowed.

In closing, it is important to note that the selection of the feature selection
technique should first be driven by prior knowledge about the data, and then
by the primary goal you wish to accomplish by analyzing the data: Obtain
a small, easy to interpret, feature panel or build a good classification model.
Feature selection techniques vary in their complexity and interpretability, and
the issues discussed above must be taken into careful consideration.
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7.5 Conclusions

In this chapter, we have presented four basic approaches to feature selection
and dimensionality reduction. Filter, wrapper, and embedded methods work
with the available features and choose those which appear important. In slight
contrast, feature construction methods build new features which can be more
powerful than previous ones. To discuss the entire gamut of feature selection
methods would be exhaustive, as researchers must constantly meet their needs
of analyzing high-dimensional data. The techniques covered here are among
the most effective for analyzing genomic and proteomic data, in terms of
building predictive models and developing biologically relevant information.

7.6 Mathematical Details

Table 7.10. Formulae for popular filter scores.

Filter Name Formula
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in a permutation setting, however, the employed statistics can still be used

for feature filtering. The terms sgan () and sgans,o are computed as follows:
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