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Previous Lecture
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Regularization of harmonic solution

Soft-harmonic solution

Inductive and transductive semi-supervised learning
Manifold regularization

Max-Margin Graph Cuts

Theory of Laplacian-based manifold methods
Transductive learning stability based bounds
Theory of Laplacian-based manifold methods

Transductive learning stability based bounds
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This Lecture

Online Semi-Supervised Learning

Online incremental k-centers

Examples of applications of online SSL
Analysis of online SSL

SSL learnability

When does graph-based SSL provably help?

vVvvyVvVvYVvyyypy

Scaling harmonic functions to millions of samples
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Next Lab Session

> 12.11.2019 by Omar (and Pierre)
Content

» Semi-supervised learning
» Graph quantization
» Offline face recognizer

v

v

Short written report
» Questions to piazza
Deadline: 26.11.2019

v
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Final class projects

detailed description on the class website

preferred option: you come up with the topic
theory/implementation /review or a combination
one or two people per project (exceptionally three)

grade 60%: report + short presentation of the team

vVvyvyVvVvyyypy

deadlines

> 19.11.2019 - strongly recommended DL for taking projects
» 26.11.2019 - hard DL for taking projects

» 07.01.2020 - submission of the project report

» 13.01.2020 or later - project presentation

> list of suggested topics on piazza
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OnlineSSL(G)

when we can't access future x

..and we want the results in real time




Online SSL with Graphs

Offline learning setup
Given {x;}IL; from R and {y;}",, with n; < n, find {y;}/_ il
(transductlve) or find f predicting y well beyond that (inductive).

sssspeefP ssssnasssssssnnnne
5 . :

Online learning setup
At the beginning: {x;,y;}7, from R
At time t:

receive X;

predict y;
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Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3:  Update L;
4:  Infer labels

f, = (Luu + ’Ygl)_l (WU/f/)

5. Predict y; = sgn (f, (1))
6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?
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Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with wd weights.
Each centroid represents several others.
Diagonal V = multiplicity. We have V;; copies of centroid /.

Can we compute it compactly? Compact harmonic solution.
09 = (L9, + v, V) 'WLe  where W9 = VWIV

Proof? Using electric circuits.

Why do we keep the multiplicities?
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2. k number of representative nodes
3: Initialization
4: 'V matrix of multiplicities with 1 on diagonal
5. while new unlabeled example x; comes do
6: Add x; to graph G
.
8
9

if # nodes > k then

quantize G
: end if
10:  Update L; of G(VWV)
11:  Infer labels

12:  Predict yr = sgn (f, (1))
13: end while
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Online SSL with Graphs: Graph Quantization

An idea: incremental k-centers
Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to k centers C; = {cj,¢a,. ..} with

» Distance c¢j,c; € C; is at least > R

» For each new x, distance to some ¢; € C; is less than R.
> |G| < k

» if not possible, R is doubled
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization

Doubling algorithm [Cha+-97]
To reduce growth of R, we use R < m x R, with m>1

C; is changing. 'How far can x be from some c?
R R 1 1
m m m m

Guarantees: (1 + ¢)-approximation algorithm.

Why not incremental k-means?
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Online SSL with Graphs: Graph Quantization

Online k-centers
1: an unlabeled x;, a set of centroids C;_1, multiplicities v;_1
2: if (|C—1| = k+ 1) then
3: R < mR

4:  greedily repartition C;_; into C; such that:

5 no two vertices in C; are closer than R

6: for any ¢; € Gy exists ¢; € C; such that d(c;,c;) < R
7 update v; to reflect the new partitioning

8: else

9: Ct — Ct—l

10: Vi ¢ Vi q

11: end if

12: if x; is closer than R to any c; € C; then
130 ve(i) v (i) +1

14: else

15 ve(|G|+1) 1

16: end if
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Online SSL with Graphs

Video examples
http://www.bkveton.com/videos/Coffee.mp4
http://www.bkveton.com/videos/Ad.mp4

http://researchers.lille.inria.fr /~valko/hp/serve.php?what=
publications/kveton2009nipsdemo.adaptation.mov

http://researchers.lille.inria.fr /~valko/hp/serve.php?what=
publications/kveton2009nipsdemo.officespace.mov

http://researchers.lille.inria.fr /~valko/hp/publications/press-intel-2015-mac.mp4
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SSL with Graphs: Some experimental results

* 8 people classification
e Making funny faces
* 4 faces/person are labeled

Precision [%]
8 & 8

Nearest Neighbor "% 40 s e 70 80 9%

Recall [%]
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SSL with Graphs: Some experimental results
¢ One person moves among various indoor locations
¢ 4 labeled examples of a person in the cubicle

Labeled Unlabeled Unlabeled

Unlabeled
Dataset VO Dataset VO
100 = O— 100
99
g g
S 5 98
® 90 ®
g —O— NN classifier g o7
o 0OSSB (all) o —O— NN classifier
L] | [— 0QSSB (half) by 96 | | —%— Commercial solution
—{— Online HFS 5 —— Online HFS
80 1 95 x 1
70 75 80 85 90 95 100 70 75 80 85 90 95 100
Recall [%] Recall [%]
Online HFS outperforms OSSB (even when the Online HFS yields better results than a commercial solution at
weak learners are chosen using future data) 20% of the computational cost
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SSL with Graphs: Some experimental results

* Logging in with faces
instead of password

* Able tolearnand improve

/
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SSL with Graphs: Some experimental results

* 16 people log twice into a tablet PC at 10 locations

| | e
- l ":‘, l\\\\\

1 labeled example

4 |abeled examples

100 100

% %

96 96

9% 94
—O— NN classifier —O—NN classifier

92 || —— Commercial solution 92 || —=F— Commercial solution
—0— Online HFS —0— Online HFS

%0 %

0

90
00 0 20 40 60

Recall [%]

Precision [%]
Precision [%

100
RecaH [/]

Online HFS yields better results than a commercial solution at 20% of
the computational cost
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Online SSL with Graphs: Analysis

What can we guarantee?

Three sources of error
> generalization error — if all data: (£} — y;)?
» online error — data only incrementally: (£9[t] — £})?

P> quantization error — memory limitation:

All together:

N N N
Y (e -y )< 5 v+ 2 S @l -+ % S
t=1

t=1 t=1

Mz

Il
—

t

Since for any a, b, ¢, d € [-1,1]:
(a—b)?<2[(a—c)P+(c—d)+ ]
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Online SSL with Graphs: Analysis

Bounding transduction error (£; — y;)?
If all labeled examples [ are i.i.d., ¢, =1 and ¢; > ¢, then

2 |n(2/5)

R(€*) < R(€")+ S (B o+ 4)

transductive error A1(8,n,6)

+r Cu>\M )+7g

B <
’Yg + 1 Cy ’yg + 1
holds with the probability of 1 — §, where
1 ~ 1
RE) =5 > (6= %) and R(&)=—3 (€ —y)

t tel

How should we set ;7
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Online SSL with Graphs: Analysis
Bounding online error (£9[t] — £})?

Idea: If L and L° are regularized, then HFSs get closer together.
since they get closer to zero
Recall £ = (C71Q + 1)y, where Q = L + 7,4l

and also v € R"™1, X (A)|lvlla < [|Av]lo < Ap(A)llv]

lyll2 [lyll2 Vi
< = <
I€llz < An(CIQ+1) ~ M@ 7 ~ 4 +1
Am(C)

Difference between offline and online solutions:

0 * 0 * 0 * 2 nj 2
(€18] — €)% < [[€°[d] — €712, < [[€°[e] — | < ( f)
7g+1

Again, how should we set ~z?
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Online SSL with Graphs: Analysis

Bounding quantization error

How are the quantized and full solution different?

£ = min (£—y)'C(l—y)+£'QL
[nin (£-y)'Cl—y)+£Q

In Q! Q° (online) vs. Q% (quantized)
We have: £° = (C71Q° + )7ty vs. £9= (C71Q4 + 1)ty
Let Z4=C!'Q%+1land Z°=C!'Q° + 1.

= (@) Yy = (20 Yy = (22) (2 - 2
= (279)C @ - Q%)
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Online SSL with Graphs: Analysis
Bounding quantization error
e = (29 Ty~ (29) Yy = (292°) (20 - 29y
~ (22)7'c (@ - Q")y
Am(CHII(QY - Q°)yl2
Am(Z9)Am(Z°)

[| - l|r and || - ||2 are compatible and y; is zero when unlabeled:

Q" = Q°)yll2 < Q% = Q°[[r - [lyll2 < vm[[Q" = Q°[|

€9 = £°]|2 <

Am(Q°)
Am(C)

Furthermore, \p,(Z°) > +1>7, and Ay (C7Y) <t

u

n
We get [|64 — £°]» < Y= |Q% — Q°|
Cug

Michal Valko — Graphs in Machine Learning DeepMind - 24/50



Online SSL with Graphs: Analysis

Bounding quantization error

The quantization error depends on [|Q% — Q°||r = ||[LY — L°||£.
When can we keep [|[LY — L°||r under control?

Charikar guarantees distortion error of at most Rm/(m — 1)
For what kind of data {x;}i—1,. n is the distortion small?
Assume manifold M

» all {x;}i>1 lie on a smooth s-dimensional compact M
» with boundary of bounded geometry Def. 11 of Hein [HALO7]
» should not intersect itself
» should not fold back onto itself
» has finite volume V
» has finite surface area A
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Online SSL with Graphs: Analysis

Bounding quantization error
Bounding ||LY — L°||r when x; € M

Consider k-sphere packing* of radius r with centers contained

n M *only the centers are packed, not necessarily the entire ball

What is the maximum volume of this packing*?
kcsr® < V 4+ Acapr with cs, caq depending on dimension and M.

If k is large — r < injectivity radius of M [HALO7] and r < 1:
r<((V+Acn) / (ke)s = 0 (k1)
r-packing is a 2r-covering:

. _ —-1/s\ _ —1/s
max[x;—cll> < Rm/(m—1) < 2(1+£)0 <k ) =0 (k )

=1,...,

But what about [[LY — L°||£?
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Online SSL with Graphs: Analysis

Bounding quantization error

If similarity is M-Lipschitz, L is normalized, c}} = ,/D2D¢ > cminlV

ii=jj
Wi — Wg| < 2MRm/(m — 1) and |cj} — | < 2nMRm/(m — 1) :
q
Lo _po— i Wi
ij y q o
cj cp
q q
Wi -Wy (e — o)
- c,f} clfj’.c,f}
4MRm 4M(NMRm)

~ (m—=DcminN  ((m—1)cminN)?

R
-o(7)
Finally, L9 — L°||2 < N2O(R?/N?) = O(k=2/%).

Are the assumptions reasonable?
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Online SSL with Graphs: Analysis

Bounding quantization error

We showed ||L9 — L°||2 < N?O(R?/N?) = O(k=2/5) = O(1).

(€31t] — £2[1]) La—Loj2 <
Z:: [] [] = 2/}/3” HF—Clgl,yg

This converges to zero at the rate O(N~Y/2) with v, = Q(NY/8).

With properly setting g, e.g., 7g = Q(NY®), we can have
1< 2
=D (8 -ye) = 0 (N).
t=1

What does that mean?
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SSL with Graphs: What is behind it?

Why and when it helps?
Can we guarantee benefit of SSL over SL?

Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:

» SL: does not know about M and only knows (x;, y;)

» SSL: perfect knowledge of M = humongous amounts of x;

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf
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SSL with Graphs: What is behind it?

Set of learning problems - collections P of probability distributions:

P =UmPm = Up{p € Plpx is uniform on M}

+1

+1

M1 M2
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SSL with Graphs: What is behind it?

Set of problems P = UprPrq = {p € P|px is uniform on M}
Regression function m, = E [y |x] when x € M

Algorithm A and labeled examples z = {7}, = {(x;,yi)}1;
Minimax rate

R(n;,P) = 'nf sup Ez [HA(?)_ mp||L2(px)]
peP

Since P = UpmPum

R(ni, P) = inf sup sup Bz [|IA(2) = mpll 2

PEP M

(SSL) When A is allowed to know M

Qm, P) = =up inf sup Ez [ IA(2) = mpl 2|
A pEP M

In which cases there is a gap between Q(n;, P) and R(n;,P)?
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SSL with Graphs: What is behind it?
Hypothesis space #: half of the circle as +1 and the rest as —1

i -
/ \ / R /ﬁ\\\'\
/ \ ( T
\\ /s \ /,/‘
\\\ // \\ +1//,/
— =
M, M,
Case 1: M is known to the learner (H /)
What is a VC dimension of H 4?
) 3log ny
Optimal rate Q(n,P) <2
ny
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SSL with Graphs: What is behind it?

Case 2: M is unknown to the learner

(. P) = inf sup Bz [JAGZ) — ml x| = 21

We consider 29 manifolds of the form
M = Loops U Links U C where C = U, G

Loops (A) Loops (A)

Main idea: d segments in C, d — / with no data, 2/ possible
choices for labels, which helps us to lower bound [|A(Z) — mp | 12(5y)
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SSL with Graphs: What is behind it?

Loops (A) Loops (A)

Links

Links

Knowing the manifold helps
» (; and (4 are close
» (; and C3 are far
> we also need: target function varies smoothly

> altogether: closeness on manifold — similarity in labels
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SSL with Graphs: What is behind it?

What does it mean to know M7?

Different degrees of knowing M

P> set membership oracle: x é M
approximate oracle

knowing the harmonic functions on M
knowing the Laplacian £

knowing eigenvalues and eigenfunctions
topological invariants, e.g., dimension

metric information: geodesic distance
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Huge ¢

when G does not fit to memory

..or when we can't invert L




Scaling SSL with Graphs to Millions

Semi-supervised learning with graphs

"=min (f—y)'C(f—y)+
feRN
Let us see the same in eigenbasis of L = UAUT, i.e., f = U

a*= min (Ua—y)'C(Ua—y)+
acRV

What is the problem with scalability?

Diagonalization of NV x /N matrix

What can we do? Let's take only first k eigenvectors f = Ua!
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Scaling SSL with Graphs to Millions
U is now a n X k matrix
* : —v)'C _
o' = min (Ua —y)'C(Ua —y) +

Closed form solution is (N + U"CU)a = U'Cy
What is the size of this system of equation now?

Cool!  Any problem with this approach?

Are there any reasonable assumptions when this is feasible?

Let's see what happens when N — oc!
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Scaling SSL with Graphs to Millions

Landmarks

Density

{——

Limitasn — oo Reduce n
Linear in number Polynomial in number of
of data-points landmarks

https://cs.nyu.edu/~fergus/papers/fwt_ ssl.pdf
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Scaling SSL with Graphs to Millions
What happens to L when N — c0?

We have data x; € R sampled from p (x).
When n — oo, instead of vectors f, we consider functions F(x).

Instead of L, we define £, - weighted smoothness operator
Ly (F) = %/(F(Xl) — F (x2))? W(x1,x2)p (x1) p (x2) dx1x2

— _ 2
with W(xy,x2) = w

L defined the eigenvectors of increasing smoothness.

What defines £,7? Eigenfunctions!
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Scaling SSL with Graphs to Millions

Lo (F) =4 [ (F (xa) = F (x2))* Wlxa, x2)p (1) p(s2) e
First eigenfunction

¢ = arg min L, (F)
F: [ F2(x)p(x)D(x) dx=1

where D (x) = [ W (x,x2) p (x2) dx2

What is the solution? ®; (x) =1 because £, (1) =0

How to define 57 same, constraining to be orthogonal to ®4

/ F (x) ®1 (x) p (x) D(x) dx = 0
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Scaling SSL with Graphs to Millions
Eigenfunctions of £,
®3 as before, orthogonal to ®; and ®; etc.
How to define eigenvalues? A\, = £, (®y)
Relationship to the discrete Laplacian
LfTLf = oL Z W (f; —:—+ L, (F)

http://www.informatik.uni-hamburg.de/ML /contents/people/luxburg/publications/

Luxburg04_ diss.pdf
http://arxiv.org/pdf/1510.08110v1.pdf

Isn't estimating eigenfunctions p (x) more difficult?

Are there some “easy” distributions?

Can we compute it numerically?

DeepMind - 42/50
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Scaling SSL with Graphs to Millions

Eigenvectors
Data C01,61=0  $,0,=0.0002 ¢35, 03=0.038
& @ .:

Eigenfunctions

Density ®,6,=0 ®,,0,=0.0002 @ c;3=0.035

DeepMind - 43/50
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Scaling SSL with Graphs to Millions
Factorized data distribution What if

p(s)=pr(s)p(s2)-..p(sd)

In general, this is not true. But we can rotate data with s = Rx.

Al

Treating each factor individually

def . L. .
px = marginal distribution of s

d; (sk)d:ﬁ eigenfunction of £, with eigenvalue \;
Then: ®;(s) = ®;(sk) is eigenfunction of £, with \;

We only considered single-coordinate eigenfunctions.
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Scaling SSL with Graphs to Millions
How to approximate 1D density? Histograms!
Algorithm of Fergus et al. [fergus2009semi-supervised] for
eigenfunctions
» Find R such that s = Rx

» For each "independent” s, approximate p(sk)
» Given p(sk) numerically solve for eigensystem of L,

(6 — PWP) g = \PDg (generalized eigensystem)

g - vector of length B = number of bins
P - density at discrete points
D diagonal sum of the columns of PWP
D - diagonal sum of the columns of PW
» Order eigenfunctions by increasing eigenvalues

https://cs.nyu.edu/~fergus/papers/fwt__ssl.pdf
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Scaling SSL with Graphs to Millions

Numerical 1D Eigenfunctions

T, il

Sy

b

1t Eigenfunction 2" Eigenfunction 3" Eigenfunction
of h(x,) of h(x,) of h(x,)

https://cs.nyu.edu/~fergus/papers/fwt_ ssl.pdf
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Scaling SSL with Graphs to Millions

Computational complexity for N x d dataset

Typical harmonic approach

one diagonalization of N/ x /N system

Numerical eigenfunctions with B bins and k eigenvectors

d eigenvector problems of B x B
(D-PWP) g = APDg

one k x k least squares problem
(N+U'CU)a =U'Cy

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors, ..

When d is not too big then /V can be in millions!
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Scaling SSL with Graphs to Millions

0.7 T T T T 1 1 1

065f - -+ - - - - - - - A 11
o6 - - - - - -'- - - AN - - |-

0.55 1/ i o - - 1-1

0.5

=== Eigenfunction
0.45

H Nystrom

Least-squares

- - - == Eigenvector

I‘IIIITII_SVM
-~ 7 |===NN

= = = Chance

0.4

Mean precision at 15% recall
averaged over 16 classes

0.35

0.3

0.25
=Inf 0

1 2 3 .. 4 5 6
Log2 number of +ve training examples/class

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt__ssl.pdf
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Next lecture: Tuesday, November 19th at 13:30!

ppppppp
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