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Previous Lecture

I Regularization of harmonic solution
I Soft-harmonic solution
I Inductive and transductive semi-supervised learning
I Manifold regularization
I Max-Margin Graph Cuts
I Theory of Laplacian-based manifold methods
I Transductive learning stability based bounds
I Theory of Laplacian-based manifold methods
I Transductive learning stability based bounds
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This Lecture

I Online Semi-Supervised Learning
I Online incremental k-centers
I Examples of applications of online SSL
I Analysis of online SSL
I SSL learnability
I When does graph-based SSL provably help?
I Scaling harmonic functions to millions of samples
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Next Lab Session

I 12. 11. 2019 by Omar (and Pierre)
I Content

I Semi-supervised learning
I Graph quantization
I Offline face recognizer

I Short written report
I Questions to piazza
I Deadline: 26. 11. 2019
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Final class projects

I detailed description on the class website
I preferred option: you come up with the topic
I theory/implementation/review or a combination
I one or two people per project (exceptionally three)
I grade 60%: report + short presentation of the team
I deadlines

I 19. 11. 2019 - strongly recommended DL for taking projects
I 26. 11. 2019 - hard DL for taking projects
I 07. 01. 2020 - submission of the project report
I 13. 01. 2020 or later - project presentation

I list of suggested topics on piazza
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OnlineSSL(G)
when we can’t access future x
…and we want the results in real time



Online SSL with Graphs

Offline learning setup
Given {xi}Ni=1 from Rd and {yi}nl

i=1, with nl � n, find {yi}Ni=nl+1
(transductive) or find f predicting y well beyond that (inductive).

Online learning setup
At the beginning: {xi , yi}nl

i=1 from Rd

At time t:
receive xt
predict yt
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Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example xt comes do
2: Add xt to graph G(W)
3: Update Lt
4: Infer labels

fu = (Luu + γg I)−1 (Wul fl)

5: Predict ŷt = sgn (fu (t))
6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?
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Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2: k number of representative nodes
3: Initialization
4: V matrix of multiplicities with 1 on diagonal
5: while new unlabeled example xt comes do
6: Add xt to graph G
7: if # nodes > k then
8: quantize G
9: end if

10: Update Lt of G(VWV)
11: Infer labels
12: Predict ŷt = sgn (fu (t))
13: end while
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Online SSL with Graphs: Graph Quantization

An idea: incremental k-centers

Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to k centers Ct = {c1, c2, . . . } with

I Distance ci , cj ∈ Ct is at least ≥ R
I For each new xt , distance to some ci ∈ Ct is less than R .
I |Ct | ≤ k
I if not possible, R is doubled
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization

Doubling algorithm [Cha+97]

To reduce growth of R , we use R ← m × R , with m ≥ 1

Ct is changing. How far can x be from some c?

R +
R
m +

R
m2 + · · · = R

(
1 +

1
m +

1
m2 + · · ·

)
=

Rm
m − 1

Guarantees: (1 + ε)-approximation algorithm.

Why not incremental k-means?
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Online SSL with Graphs: Graph Quantization
Online k-centers

1: an unlabeled xt , a set of centroids Ct−1, multiplicities vt−1
2: if (|Ct−1| = k + 1) then
3: R ← mR
4: greedily repartition Ct−1 into Ct such that:
5: no two vertices in Ct are closer than R
6: for any ci ∈ Ct−1 exists cj ∈ Ct such that d(ci , cj) < R
7: update vt to reflect the new partitioning
8: else
9: Ct ← Ct−1

10: vt ← vt−1
11: end if
12: if xt is closer than R to any ci ∈ Ct then
13: vt(i)← vt(i) + 1
14: else
15: vt(|Ct |+ 1)← 1
16: end if
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Online SSL with Graphs

Video examples

http://www.bkveton.com/videos/Coffee.mp4

http://www.bkveton.com/videos/Ad.mp4

http://researchers.lille.inria.fr/~valko/hp/serve.php?what=
publications/kveton2009nipsdemo.adaptation.mov

http://researchers.lille.inria.fr/~valko/hp/serve.php?what=
publications/kveton2009nipsdemo.officespace.mov

http://researchers.lille.inria.fr/~valko/hp/publications/press-intel-2015-mac.mp4
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SSL with Graphs: Some experimental results
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SSL with Graphs: Some experimental results
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Online SSL with Graphs: Analysis
What can we guarantee?

Three sources of error
I generalization error — if all data: (`?t − yt)

2

I online error — data only incrementally: (`o
t [t]− `?t )

2

I quantization error — memory limitation: (`q
t [t]− `o

t [t])2

All together:

1
N

N∑
t=1

(`q
t [t]−yt)

2≤ 9
2N

N∑
t=1

(`?t−yt)
2+ 9

2N

N∑
t=1

(`o
t [t]−`?t )2+ 9

2N

N∑
t=1

(`q
t [t]−`o

t [t])2

Since for any a, b, c, d ∈ [−1, 1]:

(a − b)2 ≤ 9
2
[
(a − c)2 + (c − d)2 + (d − b)2]
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Online SSL with Graphs: Analysis
Bounding transduction error (`?t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(`?) ≤ R̂(`?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1− cu
cu

λM(L) + γg
γ2

g + 1

]
holds with the probability of 1− δ, where

R(`?) =
1
N

∑
t
(`?t − yt)

2 and R̂(`?) =
1
nl

∑
t∈l

(`?t − yt)
2

How should we set γg?

Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.
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Online SSL with Graphs: Analysis
Bounding online error (`o

t [t]− `?t )
2

Idea: If L and Lo are regularized, then HFSs get closer together.
since they get closer to zero

Recall ` = (C−1Q + I)−1y, where Q = L + γg I
and also v ∈ Rn×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM (A)‖v‖2

‖`‖2 ≤
‖y‖2

λm(C−1Q + I) =
‖y‖2

λm(Q)
λM(C) + 1

≤
√nl

γg + 1

Difference between offline and online solutions:

(`o
t [t]− `?t )

2 ≤ ‖`o[t]− `?‖2∞ ≤ ‖`o[t]− `?‖22 ≤
(

2√nl
γg + 1

)2

Again, how should we set γg ?

If we want O
(

n−1/2
)

? Then γg = Ω
(

n1/4
)
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Online SSL with Graphs: Analysis
Bounding quantization error

(
`q

t [t]−`o
t [t]

)2

How are the quantized and full solution different?

`? = min
`∈RN

(`− y)TC(`− y) + `TQ`

In Q! Qo (online) vs. Qq (quantized)

We have: `o = (C−1Qo + I)−1y vs. `q = (C−1Qq + I)−1y

Let Zq = C−1Qq + I and Zo = C−1Qo + I.

`q − `o = (Zq)−1y− (Zo)−1y = (ZqZo)−1(Zo − Zq)y
= (ZqZo)−1C−1(Qo −Qq)y
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Online SSL with Graphs: Analysis
Bounding quantization error

(
`q

t [t]−`o
t [t]

)2

`q − `o = (Zq)−1y− (Zo)−1y = (ZqZo)−1(Zo − Zq)y
= (ZqZo)−1C−1(Qo −Qq)y

‖`q − `o‖2 ≤
λM(C−1)‖(Qq −Qo)y‖2

λm(Zq)λm(Zo)

|| · ||F and || · ||2 are compatible and yi is zero when unlabeled:

‖(Qq −Qo)y‖2 ≤ ‖Qq −Qo‖F · ‖y‖2 ≤
√

nl‖Qq −Qo‖F

Furthermore, λm(Zo) ≥ λm(Qo)

λM(C)
+1 ≥ γg and λM

(
C−1) ≤ c−1

u

We get ‖`q − `o‖2 ≤
√nl
cuγ2

g
‖Qq −Qo‖F
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Online SSL with Graphs: Analysis

Bounding quantization error
(
`q

t [t]−`o
t [t]

)2

The quantization error depends on ‖Qq −Qo‖F = ‖Lq − Lo‖F .
When can we keep ‖Lq − Lo‖F under control?
Charikar guarantees distortion error of at most Rm/(m − 1)
For what kind of data {xi}i=1,...,n is the distortion small?
Assume manifold M
I all {xi}i≥1 lie on a smooth s-dimensional compact M
I with boundary of bounded geometry Def. 11 of Hein [HAL07]

I should not intersect itself
I should not fold back onto itself
I has finite volume V
I has finite surface area A
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Online SSL with Graphs: Analysis
Bounding quantization error

(
`q

t [t]−`o
t [t]

)2

Bounding ‖Lq − Lo‖F when xi ∈M

Consider k-sphere packing? of radius r with centers contained
in M. ?only the centers are packed, not necessarily the entire ball

What is the maximum volume of this packing??
kcsr s ≤ V + AcMr with cs , cM depending on dimension and M.

If k is large → r < injectivity radius of M [HAL07] and r < 1:

r < ((V + AcM) / (kcs))
1/s = O

(
k−1/s

)
r -packing is a 2r -covering:

max
i=1,...,N

‖xi−c‖2 ≤ Rm/(m−1) ≤ 2(1+ε)O
(

k−1/s
)
= O

(
k−1/s

)
But what about ‖Lq − Lo‖F ?
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Online SSL with Graphs: Analysis
Bounding quantization error

(
`q

t [t]−`o
t [t]

)2

If similarity is M-Lipschitz, L is normalized, co
ij =

√
Do

iiDo
jj > cminN

|Wq
ij −Wo

ij | < 2MRm/(m − 1) and |cq
ij − co

ij | < 2nMRm/(m − 1) :

Lq
ij − Lo

ij =
Wq

ij
cq

ij
−

Wo
ij

co
ij

≤
Wq

ij −Wo
ij

cq
ij

+
Wo

ij(co
ij − cq

ij )

co
ijc

q
ij

≤ 4MRm
(m − 1)cminN +

4M(NMRm)

((m − 1)cminN)2

= O
(

R
N

)
Finally, ‖Lq − Lo‖2F ≤ N2O(R2/N2) = O(k−2/s).

Are the assumptions reasonable?
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Online SSL with Graphs: Analysis
Bounding quantization error

(
`q

t [t]−`o
t [t]

)2

We showed ‖Lq − Lo‖2F ≤ N2O(R2/N2) = O(k−2/s) = O(1).

1
N

N∑
t=1

(`q
t [t]− `o

t [t])2 ≤ nl
c2

uγ
4
g
‖Lq − Lo‖2F ≤

nl
c2

uγ
4
g

This converges to zero at the rate O(N−1/2) with γg = Ω(N1/8).

With properly setting γg , e.g., γg = Ω(N1/8), we can have

1
N

N∑
t=1

(
`q

t [t]−yt
)2

= O
(

N−1/2
)
.

What does that mean?

Michal Valko – Graphs in Machine Learning DeepMind - 28/50



SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:
I SL: does not know about M and only knows (xi , yi)

I SSL: perfect knowledge of M ≡ humongous amounts of xi

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf
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SSL with Graphs: What is behind it?
Set of learning problems - collections P of probability distributions:

P = ∪MPM = ∪M{p ∈ P|pX is uniform on M}
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SSL with Graphs: What is behind it?
Set of problems P = ∪MPM = {p ∈ P|pX is uniform on M}
Regression function mp = E [y |x ] when x ∈M
Algorithm A and labeled examples z = {zi}nl

i=1 = {(xi , yi)}nl
i=1

Minimax rate

R(nl ,P) = inf
A

sup
p∈P

Ez
[
‖A(z)−mp‖L2(pX)

]
Since P = ∪MPM

R(nl ,P) = inf
A

sup
M

sup
p∈PM

Ez
[
‖A(z)−mp‖L2(pX)

]
(SSL) When A is allowed to know M

Q(nl ,P) = sup
M

inf
A

sup
p∈PM

Ez
[
‖A(z)−mp‖L2(pX)

]
In which cases there is a gap between Q(nl ,P) and R(nl ,P)?
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SSL with Graphs: What is behind it?
Hypothesis space H: half of the circle as +1 and the rest as −1

Case 1: M is known to the learner (HM)

What is a VC dimension of HM?

2

Optimal rate Q(n,P) ≤ 2

√
3 log nl

nl
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SSL with Graphs: What is behind it?
Case 2: M is unknown to the learner

R(nl ,P) = inf
A

sup
p∈P

Ez
[
‖A(z)−mp‖L2(pX)

]
= Ω(1)

We consider 2d manifolds of the form

M = Loops ∪ Links ∪ C where C = ∪d
i=1Ci

Main idea: d segments in C , d − l with no data, 2l possible
choices for labels, which helps us to lower bound ‖A(z)−mp‖L2(pX)
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SSL with Graphs: What is behind it?

Knowing the manifold helps
I C1 and C4 are close
I C1 and C3 are far
I we also need: target function varies smoothly
I altogether: closeness on manifold → similarity in labels
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SSL with Graphs: What is behind it?

What does it mean to know M?

Different degrees of knowing M

I set membership oracle: x
?
∈M

I approximate oracle
I knowing the harmonic functions on M
I knowing the Laplacian LM
I knowing eigenvalues and eigenfunctions
I topological invariants, e.g., dimension
I metric information: geodesic distance
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Huge G
when G does not fit to memory
…or when we can’t invert L



Scaling SSL with Graphs to Millions

Semi-supervised learning with graphs

f? = min
f∈RN

(f− y)TC(f− y) + fTLf

Let us see the same in eigenbasis of L = UΛUT, i.e., f = Uα

α? = min
α∈RN

(Uα− y)TC(Uα− y) +αTΛα

What is the problem with scalability?

Diagonalization of N × N matrix

What can we do? Let’s take only first k eigenvectors f = Uα!
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Scaling SSL with Graphs to Millions
U is now a n × k matrix

α? = min
α∈RN

(Uα− y)TC(Uα− y) +αTΛα

Closed form solution is (Λ+ UTCU)α = UTCy

What is the size of this system of equation now?

k × k!

Cool! Any problem with this approach?

Getting L = UΛUT means solving a N × N system :(

Are there any reasonable assumptions when this is feasible?

Let’s see what happens when N →∞!
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Scaling SSL with Graphs to Millions

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions
What happens to L when N →∞?

We have data xi ∈ R sampled from p (x).

When n→∞, instead of vectors f, we consider functions F (x).

Instead of L, we define Lp - weighted smoothness operator

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2)dx1x2

with W (x1, x2) =
exp

(
−‖x1−x2‖2)

2σ2

L defined the eigenvectors of increasing smoothness.

What defines Lp? Eigenfunctions!
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Scaling SSL with Graphs to Millions

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2)dx1x2

First eigenfunction

Φ1 = argmin
F :

∫
F 2(x)p(x)D(x) dx=1

Lp (F )

where D (x) =
∫

x2
W (x, x2) p (x2)dx2

What is the solution? Φ1 (x) = 1 because Lp (1) = 0
How to define Φ2? same, constraining to be orthogonal to Φ1∫

F (x)Φ1 (x) p (x)D(x)dx = 0
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Scaling SSL with Graphs to Millions
Eigenfunctions of Lp

Φ3 as before, orthogonal to Φ1 and Φ2 etc.

How to define eigenvalues? λk = Lp (Φk)

Relationship to the discrete Laplacian
1

N2 fTLf = 1
2N2

∑
ij

Wij(fi − fj)2 −−−−→
N→∞

Lp (F )

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/

Luxburg04_diss.pdf
http://arxiv.org/pdf/1510.08110v1.pdf

Isn’t estimating eigenfunctions p (x) more difficult?

Yes it is.

Are there some “easy” distributions?

Can we compute it numerically?
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Scaling SSL with Graphs to Millions
Eigenvectors

Eigenfunctions
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Scaling SSL with Graphs to Millions
Factorized data distribution What if

p (s) = p (s1) p (s2) . . . p (sd)

In general, this is not true. But we can rotate data with s = Rx.

Treating each factor individually
pk

def= marginal distribution of sk

Φi (sk)
def= eigenfunction of Lpk with eigenvalue λi

Then: Φi (s) = Φi (sk) is eigenfunction of Lp with λi

We only considered single-coordinate eigenfunctions.
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Scaling SSL with Graphs to Millions
How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [fergus2009semi-supervised] for
eigenfunctions
I Find R such that s = Rx
I For each “independent” sk approximate p(sk)
I Given p(sk) numerically solve for eigensystem of Lpk(

D̃− PW̃P
)

g = λPD̂g (generalized eigensystem)

g - vector of length B ≡ number of bins
P - density at discrete points
D̃ - diagonal sum of the columns of PW̃P
D̂ - diagonal sum of the columns of PW̃

I Order eigenfunctions by increasing eigenvalues

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions

Numerical 1D Eigenfunctions

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions
Computational complexity for N × d dataset

Typical harmonic approach
one diagonalization of N × N system

Numerical eigenfunctions with B bins and k eigenvectors
d eigenvector problems of B × B(

D̃− PW̃P
)

g = λPD̂g

one k × k least squares problem

(Λ+ UTCU)α = UTCy

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors, …

When d is not too big then N can be in millions!
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Scaling SSL with Graphs to Millions

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Next lecture: Tuesday, November 19th at 13:30!

Amphi Marie Curie

Amphi e-media

Amphi 109

Amphi 121

Amphi Tocqueville
Bretécher

S. des Conférences

S. Visio DSI

S. Renaudeau

Uderzo

Condorcet

S. des Comm.

C518

FCD

Fonteneau
131 bis

131
132

133
135
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Michal Valko
contact via Piazza


