Graphs in Machine Learning Michal Valko

DeepMind Paris and Inria Lille

TA: Omar Darwiche Domingues with the help of Pierre Perrault

Partially based on material by: Mikhail Belkin, Branislav Kveton Rob Fergus, Nikhil Srivastava, Yiannis Koutis, Joshua Batson, Daniel Spielman

November 5, 2019

MVA 2019/2020

Previous Lecture

- Regularization of harmonic solution
- Soft-harmonic solution
- Inductive and transductive semi-supervised learning
- Manifold regularization
- Max-Margin Graph Cuts
- Theory of Laplacian-based manifold methods
- Transductive learning stability based bounds
- Theory of Laplacian-based manifold methods
- Transductive learning stability based bounds

This Lecture

- Online Semi-Supervised Learning
- Online incremental k-centers
- Examples of applications of online SSL
- Analysis of online SSL
- SSL learnability
- When does graph-based SSL provably help?
- Scaling harmonic functions to millions of samples

Next Lab Session

- 12. 11. 2019 by Omar (and Pierre)
- Content
 - Semi-supervised learning
 - Graph quantization
 - Offline face recognizer
- Short written report
- Questions to piazza
- Deadline: 26.11.2019

Final class projects

- detailed description on the class website
- preferred option: you come up with the topic
- theory/implementation/review or a combination
- one or two people per project (exceptionally three)
- grade 60%: report + short presentation of the team
- deadlines
 - 19.11.2019 strongly recommended DL for taking projects
 - 26. 11. 2019 hard DL for taking projects
 - 07.01.2020 submission of the project report
 - 13. 01. 2020 or later project presentation
- list of suggested topics on piazza

OnlineSSL(\mathcal{G}) when we can't access future x ...and we want the results in real time

Offline learning setup

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_i}$, with $n_l \ll n$, find $\{y_i\}_{i=n_l+1}^N$ (transductive) or find f predicting y well beyond that (inductive).

Online learning setup

At the beginning: $\{\mathbf{x}_i, y_i\}_{i=1}^{n_i}$ from \mathbb{R}^d At time *t*: receive \mathbf{x}_t predict y_t

Online HFS: Straightforward solution

- 1: while new unlabeled example \mathbf{x}_t comes do
- 2: Add \mathbf{x}_t to graph $G(\mathbf{W})$
- 3: Update L_t
- 4: Infer labels

$$\mathbf{f}_{u}=\left(\mathbf{L}_{uu}+\gamma_{m{g}}\mathbf{I}
ight)^{-1}\left(\mathbf{W}_{ul}\mathbf{f}_{l}
ight)$$

- 5: Predict $\hat{y}_t = \operatorname{sgn}(\mathbf{f}_u(t))$
- 6: end while

What is wrong with this solution?

The cost and memory of the operations.

Let's keep only k vertices!

Limit memory to k centroids with \mathbf{W}^{q} weights.

Each centroid represents several others.

Diagonal $\mathbf{V} \equiv \mathbf{multiplicity}$. We have \mathbf{V}_{ii} copies of centroid *i*.

Can we compute it compactly? Compact harmonic solution.

$$\ell^{\mathrm{q}} = (\mathbf{L}_{uu}^{\mathrm{q}} + \gamma_{g} V)^{-1} \mathbf{W}_{ul}^{\mathrm{q}} \ell_{l} \text{ where } \mathbf{W}^{\mathrm{q}} = V \widetilde{\mathbf{W}}^{\mathrm{q}} V$$

Proof? Using electric circuits.

Why do we keep the multiplicities?

Online HFS with Graph Quantization

- 1: Input
- 2: *k* number of representative nodes
- 3: Initialization
- 4: **V** matrix of multiplicities with 1 on diagonal
- 5: while new unlabeled example \mathbf{x}_t comes do
- 6: Add \mathbf{x}_t to graph G
- 7: **if** # nodes > k **then**
- 8: quantize G
- 9: end if
- 10: Update L_t of G(VWV)
- 11: Infer labels
- 12: Predict $\hat{y}_t = \operatorname{sgn}(\mathbf{f}_u(t))$

13: end while

An idea: incremental k-centers

Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to k centers $C_t = {\mathbf{c}_1, \mathbf{c}_2, \dots}$ with

- Distance $\mathbf{c}_i, \mathbf{c}_i \in C_t$ is at least $\geq R$
- For each new \mathbf{x}_t , distance to some $\mathbf{c}_i \in C_t$ is less than R.

$$|C_t| \leq k$$

if not possible, R is doubled

Doubling algorithm [Cha+97]

To reduce growth of *R*, we use $R \leftarrow m \times R$, with $m \ge 1$

 C_t is changing. How far can **x** be from some **c**?

$$R + \frac{R}{m} + \frac{R}{m^2} + \dots = R\left(1 + \frac{1}{m} + \frac{1}{m^2} + \dots\right) = \frac{Rm}{m-1}$$

Guarantees: $(1 + \varepsilon)$ -approximation algorithm.

Why not incremental *k*-means?

Online k-centers

1: an unlabeled \mathbf{x}_t , a set of centroids C_{t-1} , multiplicities \mathbf{v}_{t-1}

2: if
$$(|C_{t-1}| = k + 1)$$
 then

3:
$$R \leftarrow mR$$

- 4: greedily repartition C_{t-1} into C_t such that:
- 5: no two vertices in C_t are closer than R

6: for any
$$\mathbf{c}_i \in C_{t-1}$$
 exists $\mathbf{c}_j \in C_t$ such that $d(\mathbf{c}_i, \mathbf{c}_j) < R$

7: update \mathbf{v}_t to reflect the new partitioning

8: **else**

9:
$$C_t \leftarrow C_{t-1}$$

10:
$$\mathbf{v}_t \leftarrow \mathbf{v}_{t-1}$$

11: end if

12: if \mathbf{x}_t is closer than R to any $\mathbf{c}_i \in C_t$ then

13:
$$\mathbf{v}_t(i) \leftarrow \mathbf{v}_t(i) + 1$$

14: else

15:
$$\mathbf{v}_t(|C_t|+1) \leftarrow 1$$

16: end if

Video examples

http://www.bkveton.com/videos/Coffee.mp4

http://www.bkveton.com/videos/Ad.mp4

 $\label{eq:http://researchers.lille.inria.fr/~valko/hp/serve.php?what=publications/kveton2009nipsdemo.adaptation.mov$

 $\label{eq:http://researchers.lille.inria.fr/~valko/hp/serve.php?what=publications/kveton2009nipsdemo.officespace.mov$

http://researchers.lille.inria.fr/~valko/hp/publications/press-intel-2015-mac.mp4

- One person moves among various indoor locations
- 4 labeled examples of a person in the cubicle

Online HFS yields better results than a commercial solution at 20% of the computational cost

Online HFS outperforms OSSB (even when the weak learners are chosen using future data)

Michal Valko - Graphs in Machine Learning

- Logging in with faces instead of password
- Able to learn and improve

16 people log twice into a tablet PC at 10 locations

1 labeled example

4 labeled examples

Online HFS yields better results than a commercial solution at 20% of the computational cost

What can we guarantee?

Three sources of error

- generalization error if all data: $(\ell_t^{\star} y_t)^2$
- online error data only incrementally: $(\ell_t^{o}[t] \ell_t^{\star})^2$
- quantization error memory limitation: $(\ell_t^{q}[t] \ell_t^{o}[t])^2$

All together:

$$\frac{1}{N} \sum_{t=1}^{N} (\ell_t^{q}[t] - y_t)^2 \le \frac{9}{2N} \sum_{t=1}^{N} (\ell_t^{\star} - y_t)^2 + \frac{9}{2N} \sum_{t=1}^{N} (\ell_t^{o}[t] - \ell_t^{\star})^2 + \frac{9}{2N} \sum_{t=1}^{N} (\ell_t^{q}[t] - \ell_t^{o}[t])$$

Since for any *a*, *b*, *c*, *d* \in [-1, 1]:
 $(a - b)^2 \le \frac{9}{2} \left[(a - c)^2 + (c - d)^2 + (d - b)^2 \right]$

Online SSL with Graphs: Analysis Bounding transduction error $(\ell_t^* - y_t)^2$

If all labeled examples / are i.i.d., $c_l = 1$ and $c_l \gg c_u$, then

$$R(\ell^{\star}) \leq \widehat{R}(\ell^{\star}) + \underbrace{\beta + \sqrt{\frac{2\ln(2/\delta)}{n_{l}}}(n_{l}\beta + 4)}_{\text{transductive error } \Delta_{T}(\beta, n_{l}, \delta)}$$
$$\beta \leq 2\left[\frac{\sqrt{2}}{\gamma_{g} + 1} + \sqrt{2n_{l}}\frac{1 - c_{u}}{c_{u}}\frac{\lambda_{M}(\mathbf{L}) + \gamma_{g}}{\gamma_{g}^{2} + 1}\right]$$

holds with the probability of $1 - \delta$, where

$$R(\ell^{\star}) = \frac{1}{N} \sum_{t} (\ell_t^{\star} - y_t)^2 \quad \text{and} \quad \widehat{R}(\ell^{\star}) = \frac{1}{n_l} \sum_{t \in I} (\ell_t^{\star} - y_t)^2$$

How should we set γ_g ?

Bounding online error $(\ell_t^{o}[t] - \ell_t^{\star})^2$

Idea: If L and L^o are regularized, then HFSs get closer together.

since they get closer to zero

Recall $\boldsymbol{\ell} = (\mathbf{C}^{-1}\mathbf{Q} + \mathbf{I})^{-1}\mathbf{y}$, where $\mathbf{Q} = \mathbf{L} + \gamma_{g}\mathbf{I}$

and also $\mathbf{v} \in \mathbb{R}^{n \times 1}$, $\lambda_m(A) \|\mathbf{v}\|_2 \le \|A\mathbf{v}\|_2 \le \lambda_M(A) \|\mathbf{v}\|_2$

$$\|\boldsymbol{\ell}\|_2 \leq \frac{\|\boldsymbol{\mathsf{y}}\|_2}{\lambda_m(\boldsymbol{\mathsf{C}}^{-1}\boldsymbol{\mathsf{Q}}+\boldsymbol{\mathsf{I}})} = \frac{\|\boldsymbol{\mathsf{y}}\|_2}{\frac{\lambda_m(\boldsymbol{\mathsf{Q}})}{\lambda_M(\boldsymbol{\mathsf{C}})}+1} \leq \frac{\sqrt{n_l}}{\gamma_g+1}$$

Difference between offline and online solutions:

$$(\boldsymbol{\ell}^{\mathrm{o}}_t[t] - \boldsymbol{\ell}^{\star}_t)^2 \leq \|\boldsymbol{\ell}^{\mathrm{o}}[t] - \boldsymbol{\ell}^{\star}\|_\infty^2 \leq \|\boldsymbol{\ell}^{\mathrm{o}}[t] - \boldsymbol{\ell}^{\star}\|_2^2 \leq \left(rac{2\sqrt{n_l}}{\gamma_g + 1}
ight)^2$$

Again, how should we set γ_g ?

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

How are the quantized and full solution different?

$$\boldsymbol{\ell}^{\star} = \min_{\boldsymbol{\ell} \in \mathbb{R}^{N}} \ (\boldsymbol{\ell} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\boldsymbol{\ell} - \mathbf{y}) + \boldsymbol{\ell}^{\mathsf{T}} \mathbf{Q} \boldsymbol{\ell}$$

In \mathbf{Q} ! \mathbf{Q}^{o} (online) vs. \mathbf{Q}^{q} (quantized)

We have: $\boldsymbol{\ell}^{\mathrm{o}} = (\mathbf{C}^{-1}\mathbf{Q}^{\mathrm{o}} + \mathbf{I})^{-1}\mathbf{y}$ vs. $\boldsymbol{\ell}^{\mathrm{q}} = (\mathbf{C}^{-1}\mathbf{Q}^{\mathrm{q}} + \mathbf{I})^{-1}\mathbf{y}$

Let $\mathbf{Z}^{q} = \mathbf{C}^{-1}\mathbf{Q}^{q} + \mathbf{I}$ and $\mathbf{Z}^{o} = \mathbf{C}^{-1}\mathbf{Q}^{o} + \mathbf{I}$.

$$egin{aligned} \ell^{
m q} &- \ell^{
m o} = ({\sf Z}^{
m q})^{-1} {\sf y} - ({\sf Z}^{
m o})^{-1} {\sf y} = ({\sf Z}^{
m q} {\sf Z}^{
m o})^{-1} ({\sf Z}^{
m o} - {\sf Z}^{
m q}) {\sf y} \ &= ({\sf Z}^{
m q} {\sf Z}^{
m o})^{-1} {\sf C}^{-1} ({\sf Q}^{
m o} - {\sf Q}^{
m q}) {\sf y} \end{aligned}$$

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

$$\ell^{\mathrm{q}} - \ell^{\mathrm{o}} = (\mathsf{Z}^{\mathrm{q}})^{-1}\mathsf{y} - (\mathsf{Z}^{\mathrm{o}})^{-1}\mathsf{y} = (\mathsf{Z}^{\mathrm{q}}\mathsf{Z}^{\mathrm{o}})^{-1}(\mathsf{Z}^{\mathrm{o}} - \mathsf{Z}^{\mathrm{q}})\mathsf{y}$$

= $(\mathsf{Z}^{\mathrm{q}}\mathsf{Z}^{\mathrm{o}})^{-1}\mathsf{C}^{-1}(\mathsf{Q}^{\mathrm{o}} - \mathsf{Q}^{\mathrm{q}})\mathsf{y}$

$$\|\boldsymbol{\ell}^{\mathrm{q}} - \boldsymbol{\ell}^{\mathrm{o}}\|_{2} \leq rac{\lambda_{M}(\mathbf{C}^{-1})\|(\mathbf{Q}^{\mathrm{q}} - \mathbf{Q}^{\mathrm{o}})\mathbf{y}\|_{2}}{\lambda_{m}(\mathbf{Z}^{\mathrm{q}})\lambda_{m}(\mathbf{Z}^{\mathrm{o}})}$$

 $|| \cdot ||_F$ and $|| \cdot ||_2$ are compatible and y_i is zero when unlabeled:

$$\|(\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}})\mathbf{y}\|_{2} \leq \|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\|_{F}\cdot\|\mathbf{y}\|_{2} \leq \sqrt{n_{l}}\|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\|_{F}$$

Furthermore,
$$\lambda_m(\mathbf{Z}^{\circ}) \geq \frac{\lambda_m(\mathbf{Q}^{\circ})}{\lambda_M(\mathbf{C})} + 1 \geq \gamma_g$$
 and $\lambda_M(\mathbf{C}^{-1}) \leq c_u^{-1}$

We get
$$\|\boldsymbol{\ell}^{\mathrm{q}} - \boldsymbol{\ell}^{\mathrm{o}}\|_{2} \leq \frac{\sqrt{n_{l}}}{c_{u}\gamma_{g}^{2}}\|\boldsymbol{\mathsf{Q}}^{\mathrm{q}} - \boldsymbol{\mathsf{Q}}^{\mathrm{o}}\|_{F}$$

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

The quantization error depends on $\|\mathbf{Q}^{q} - \mathbf{Q}^{o}\|_{F} = \|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}$. When can we keep $\|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}$ under control? Charikar guarantees **distortion** error of at most Rm/(m-1)For what kind of data $\{\mathbf{x}_{i}\}_{i=1,...,n}$ is the distortion small? Assume manifold \mathcal{M}

- ▶ all $\{\mathbf{x}_i\}_{i \ge 1}$ lie on a smooth *s*-dimensional compact \mathcal{M}
- with boundary of bounded geometry Def. 11 of Hein [HAL07]
 - should not intersect itself
 - should not fold back onto itself
 - has finite volume V
 - has finite surface area A

Online SSL with Graphs: Analysis Bounding quantization error $(\ell_t^q[t] - \ell_t^o[t])^2$

Bounding $\|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}$ when $\mathbf{x}_{i} \in \mathcal{M}$

Consider k-sphere packing* of radius r with centers contained in \mathcal{M} . *only the centers are packed, not necessarily the entire ball

What is the maximum volume of this packing*? $kc_s r^s \leq V + Ac_M r$ with c_s, c_M depending on dimension and \mathcal{M} . If k is large $\rightarrow r <$ injectivity radius of \mathcal{M} [HAL07] and r < 1: $r < ((V + Ac_M) / (kc_s))^{1/s} = \mathcal{O}(k^{-1/s})$

r-packing is a 2*r*-covering:

$$\max_{i=1,...,N} \|\mathbf{x}_i - \mathbf{c}\|_2 \leq Rm/(m-1) \leq 2(1+\varepsilon)\mathcal{O}\left(k^{-1/s}\right) = \mathcal{O}\left(k^{-1/s}\right)$$

But what about $\|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}$?

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

If similarity is *M*-Lipschitz, **L** is normalized, $c_{ij}^{o} = \sqrt{\mathbf{D}_{ii}^{o}\mathbf{D}_{jj}^{o}} > c_{min}N$ $|\mathbf{W}_{ij}^{q} - \mathbf{W}_{ij}^{o}| < 2MRm/(m-1)$ and $|c_{ij}^{q} - c_{ij}^{o}| < 2nMRm/(m-1)$:

$$\begin{split} \mathbf{L}_{ij}^{\mathrm{q}} - \mathbf{L}_{ij}^{\mathrm{o}} &= \frac{\mathbf{W}_{ij}^{\mathrm{q}}}{c_{ij}^{\mathrm{q}}} - \frac{\mathbf{W}_{ij}^{\mathrm{o}}}{c_{ij}^{\mathrm{o}}} \\ &\leq \frac{\mathbf{W}_{ij}^{\mathrm{q}} - \mathbf{W}_{ij}^{\mathrm{o}}}{c_{ij}^{\mathrm{q}}} + \frac{\mathbf{W}_{ij}^{\mathrm{o}}(c_{ij}^{\mathrm{o}} - c_{ij}^{\mathrm{q}})}{c_{ij}^{\mathrm{o}}c_{ij}^{\mathrm{q}}} \\ &\leq \frac{4MRm}{(m-1)c_{min}N} + \frac{4M(NMRm)}{((m-1)c_{min}N)^2} \\ &= O\left(\frac{R}{N}\right) \end{split}$$

Finally, $\|\mathbf{L}^{\mathbf{q}} - \mathbf{L}^{\mathbf{o}}\|_{F}^{2} \leq N^{2}\mathcal{O}(R^{2}/N^{2}) = \mathcal{O}(k^{-2/s}).$

Are the assumptions reasonable?

Online SSL with Graphs: Analysis Bounding quantization error $(\ell_t^q[t] - \ell_t^o[t])^2$

We showed $\|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}^{2} \leq N^{2}\mathcal{O}(R^{2}/N^{2}) = \mathcal{O}(k^{-2/s}) = \mathcal{O}(1).$

$$\frac{1}{N}\sum_{t=1}^{N}(\boldsymbol{\ell}_{t}^{\mathrm{q}}[t]-\boldsymbol{\ell}_{t}^{\mathrm{o}}[t])^{2} \leq \frac{n_{l}}{c_{u}^{2}\gamma_{g}^{4}}\|\mathbf{L}^{\mathrm{q}}-\mathbf{L}^{\mathrm{o}}\|_{F}^{2} \leq \frac{n_{l}}{c_{u}^{2}\gamma_{g}^{4}}$$

This converges to zero at the rate $\mathcal{O}(N^{-1/2})$ with $\gamma_g = \Omega(N^{1/8})$.

With properly setting γ_g , e.g., $\gamma_g = \Omega(N^{1/8})$, we can have

$$\frac{1}{N}\sum_{t=1}^{N}\left(\boldsymbol{\ell}_{t}^{\mathrm{q}}[t]-\boldsymbol{y}_{t}\right)^{2}=\mathcal{O}\left(\boldsymbol{N}^{-1/2}\right).$$

What does that mean?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when **manifold** SSL is provably helpful?

Say \mathcal{X} is supported on manifold \mathcal{M} . Compare two cases:

- SL: does not know about \mathcal{M} and only knows (\mathbf{x}_i, y_i)
- SSL: perfect knowledge of $\mathcal{M} \equiv$ humongous amounts of \mathbf{x}_i

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf

Set of learning problems - collections \mathcal{P} of probability distributions:

 $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \cup_{\mathcal{M}} \{ p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M} \}$

Set of problems $\mathcal{P} = \bigcup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$ Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$ Algorithm A and labeled examples $\overline{z} = \{z_i\}_{i=1}^{n_i} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_i}$ Minimax rate

$$R(n_{l},\mathcal{P}) = \inf_{A} \sup_{p \in \mathcal{P}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{p}\|_{L^{2}(p_{\mathbf{X}})} \right]$$

Since $\mathcal{P} = \bigcup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$ $R(n_{l}, \mathcal{P}) = \inf_{A} \sup_{\mathcal{M}} \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{p}\|_{L^{2}(p_{\mathbf{X}})} \right]$

(SSL) When A is allowed to know \mathcal{M}

$$Q(n_{I},\mathcal{P}) = \sup_{\mathcal{M}} \inf_{A} \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{p}\|_{L^{2}(p_{\mathbf{X}})} \right]$$

In which cases there is a gap between $Q(n_l, \mathcal{P})$ and $R(n_l, \mathcal{P})$?

Hypothesis space \mathcal{H} : half of the circle as +1 and the rest as -1

Case 1: \mathcal{M} is known to the learner $(\mathcal{H}_{\mathcal{M}})$

Case 2: \mathcal{M} is unknown to the learner

$$R(n_{I},\mathcal{P}) = \inf_{A} \sup_{p \in \mathcal{P}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{p}\|_{L^{2}(p_{\mathbf{X}})} \right] = \Omega(1)$$

We consider 2^d manifolds of the form

$$\mathcal{M} = \text{Loops} \cup \text{Links} \cup C$$
 where $C = \cup_{i=1}^{d} C_i$

Main idea: *d* segments in *C*, d - l with no data, 2^l possible choices for labels, which helps us to lower bound $||A(\overline{z}) - m_p||_{L^2(p_X)}$

Knowing the manifold helps

- C₁ and C₄ are close
- C₁ and C₃ are far
- we also need: target function varies smoothly

▶ altogether: closeness on manifold → similarity in labels

What does it mean to know \mathcal{M} ?

Different degrees of knowing $\ensuremath{\mathcal{M}}$

- set membership oracle: $\mathbf{x} \stackrel{?}{\in} \mathcal{M}$
- approximate oracle
- \blacktriangleright knowing the harmonic functions on ${\cal M}$
- \blacktriangleright knowing the Laplacian $\mathcal{L}_{\mathcal{M}}$
- knowing eigenvalues and eigenfunctions
- topological invariants, e.g., dimension
- metric information: geodesic distance

Huge \mathcal{G} when \mathcal{G} does not fit to memory ...or when we can't invert L

Semi-supervised learning with graphs

$$\mathbf{f}^{\star} = \min_{\mathbf{f} \in \mathbb{R}^{N}} \ (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C}(\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

Let us see the same in eigenbasis of $\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$, i.e., $\mathbf{f} = \mathbf{U} \alpha$

$$\boldsymbol{\alpha}^{\star} = \min_{\boldsymbol{\alpha} \in \mathbb{R}^{N}} \ (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y}) + \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\alpha}$$

What is the problem with scalability?

Diagonalization of $N \times N$ matrix

What can we do? Let's take only first k eigenvectors $\mathbf{f} = \mathbf{U}\alpha$!

U is now a $n \times k$ matrix

$$\boldsymbol{\alpha}^{\star} = \min_{\boldsymbol{\alpha} \in \mathbb{R}^{N}} \ (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y}) + \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\alpha}$$

Closed form solution is $(\mathbf{\Lambda} + \mathbf{U}^{\mathsf{T}}\mathbf{C}\mathbf{U})\alpha = \mathbf{U}^{\mathsf{T}}\mathbf{C}\mathbf{y}$

What is the size of this system of equation now?

Cool! Any problem with this approach?

Are there any reasonable assumptions when this is feasible?

Let's see what happens when $N \to \infty$!

Limit as $n \rightarrow \infty$

Reduce n

Linear in number of data-points

$https://cs.nyu.edu/{\sim} fergus/papers/fwt_ssl.pdf$

Polynomial in number of landmarks

Scaling SSL with Graphs to Millions What happens to L when $N \rightarrow \infty$?

We have data $\mathbf{x}_i \in \mathbb{R}$ sampled from $p(\mathbf{x})$.

When $n \to \infty$, instead of vectors **f**, we consider functions F(x).

Instead of L, we define \mathcal{L}_p - weighted smoothness operator

$$\mathcal{L}_{\rho}(F) = \frac{1}{2} \int \left(F(\mathbf{x}_{1}) - F(\mathbf{x}_{2}) \right)^{2} W(\mathbf{x}_{1}, \mathbf{x}_{2}) \rho(\mathbf{x}_{1}) \rho(\mathbf{x}_{2}) \, \mathrm{d}\mathbf{x}_{1} \mathbf{x}_{2}$$

with
$$W(\mathbf{x}_1, \mathbf{x}_2) = \frac{\exp(-\|\mathbf{x}_1 - \mathbf{x}_2\|^2)}{2\sigma^2}$$

L defined the eigenvectors of increasing smoothness.

What defines
$$\mathcal{L}_p$$
? Eigenfunctions!

$$\mathcal{L}_{p}(F) = \frac{1}{2} \int \left(F(\mathbf{x}_{1}) - F(\mathbf{x}_{2}) \right)^{2} W(\mathbf{x}_{1}, \mathbf{x}_{2}) p(\mathbf{x}_{1}) p(\mathbf{x}_{2}) \, \mathrm{d}x_{1} x_{2}$$

First eigenfunction

$$\Phi_{1} = \operatorname*{arg min}_{F:\int F^{2}(\mathbf{x})p(\mathbf{x})D(\mathbf{x}) \, \mathrm{d}x=1} \mathcal{L}_{p}(F)$$

where $D(\mathbf{x}) = \int_{\mathbf{x}_2} W(\mathbf{x}, \mathbf{x}_2) \, p(\mathbf{x}_2) \, \mathrm{d}\mathbf{x}_2$

What is the solution? $\Phi_1(\mathbf{x}) = 1$ because $\mathcal{L}_p(1) = 0$ How to define Φ_2 ? same, constraining to be orthogonal to Φ_1

$$\int F(\mathbf{x}) \Phi_1(\mathbf{x}) p(\mathbf{x}) D(\mathbf{x}) \, \mathrm{d}x = 0$$

Eigenfunctions of \mathcal{L}_p

 Φ_3 as before, orthogonal to Φ_1 and Φ_2 etc.

How to define eigenvalues? $\lambda_k = \mathcal{L}_p(\Phi_k)$

Relationship to the discrete Laplacian

$$\frac{1}{N^{2}}\mathbf{f}^{\mathsf{T}}\mathbf{L}\mathbf{f} = \frac{1}{2N^{2}}\sum_{ij}W_{ij}(f_{i}-f_{j})^{2}\xrightarrow[N\to\infty]{}\mathcal{L}_{p}\left(F\right)$$

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/

Luxburg04_diss.pdf http://arxiv.org/pdf/1510.08110v1.pdf

Isn't estimating eigenfunctions $p(\mathbf{x})$ more difficult?

Are there some "easy" distributions?

Can we compute it numerically?

Scaling SSL with Graphs to Millions Eigenvectors

Eigenfunctions

Michal Valko - Graphs in Machine Learning

Factorized data distribution What if

$$p(\mathbf{s}) = p(s_1) p(s_2) \dots p(s_d)$$

In general, this is not true. But we can rotate data with $\mathbf{s} = \mathbf{R}\mathbf{x}$.

Treating each factor individually $p_k \stackrel{\text{def}}{=} \text{marginal distribution of } s_k$ $\Phi_i(s_k) \stackrel{\text{def}}{=} \text{eigenfunction of } \mathcal{L}_{p_k} \text{ with eigenvalue } \lambda_i$ **Then:** $\Phi_i(s) = \Phi_i(s_k)$ is eigenfunction of \mathcal{L}_p with λ_i

We only considered single-coordinate eigenfunctions.

How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [fergus2009semi-supervised] for eigenfunctions

- Find R such that s = Rx
- For each "independent" s_k approximate $p(s_k)$
- Given $p(s_k)$ numerically solve for eigensystem of \mathcal{L}_{p_k}

$$\left(\widetilde{\mathbf{D}} - \mathbf{P}\widetilde{\mathbf{W}}\mathbf{P}
ight)\mathbf{g} = \lambda \mathbf{P}\widehat{\mathbf{D}}\mathbf{g}$$
 (generalized eigensystem)

- ${\bf g}$ vector of length $B\equiv$ number of bins
- ${\bf P}$ density at discrete points
- D diagonal sum of the columns of PWP
- $\widehat{\mathbf{D}}$ diagonal sum of the columns of $\widehat{\mathbf{PW}}$
- Order eigenfunctions by increasing eigenvalues

 $https://cs.nyu.edu/{\sim} fergus/papers/fwt_ssl.pdf$

Numerical 1D Eigenfunctions

 $https://cs.nyu.edu/{\sim} fergus/papers/fwt_ssl.pdf$

Computational complexity for $N \times d$ dataset

Typical harmonic approach

one diagonalization of $N \times N$ system

Numerical eigenfunctions with *B* bins and *k* eigenvectors *d* eigenvector problems of $B \times B$

$$\left(\widetilde{\mathbf{D}} - \mathbf{P}\widetilde{\mathbf{W}}\mathbf{P}
ight)\mathbf{g} = \lambda\mathbf{P}\widehat{\mathbf{D}}\mathbf{g}$$

one $k \times k$ least squares problem

 $(\mathbf{\Lambda} + \mathbf{U}^{\scriptscriptstyle \mathsf{T}}\mathbf{C}\mathbf{U})\mathbf{lpha} = \mathbf{U}^{\scriptscriptstyle \mathsf{T}}\mathbf{C}\mathbf{y}$

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors, ...

When d is not too big then N can be in millions!

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

Next lecture: Tuesday, November 19th at 13:30!

Michal Valko contact via Piazza