Graphs in Machine Learning

Michal Valko

DeepMind Paris and Inria Lille
TA: Omar Darwiche Domingues with the help of Pierre Perrault
Partially based on material by: Gary Miller,
Mikhail Belkin, Branislav Kveton,
Doyle \& Schnell, Daniel Spielman

Graph nets lecture

- invited lecture by Marc Lelarge
- including 2019 material
- TD 3 the following week on graph nets
- questions from Marc
- basic of deep learning?
- deep learning course at MVA or elsewhere?
- RNN?
- VAE?

Previous Lecture

- spectral graph theory
- Laplacians and their properties
- symmetric and asymmetric normalization
- random walks
- geometry of the data and the connectivity
- spectral clustering

This Lecture

- manifold learning with Laplacians eigenmaps
- recommendation on a bipartite graph
- resistive networks
- recommendation score as a resistance?
- Laplacian and resistive networks
- resistance distance and random walks
- Gaussian random fields and harmonic solution
- graph-based semi-supervised learning and manifold regularization
- transductive learning
- inductive and transductive semi-supervised learning

$\mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ manifold learning

...discworld

Manifold Learning: Recap

problem: definition reduction/manifold learning

Given $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ from \mathbb{R}^{d} find $\left\{\mathbf{y}_{i}\right\}_{i=1}^{N}$ in \mathbb{R}^{m}, where $m \ll d$.

- What do we know about the dimensionality reduction
- representation/visualization (2D or 3D)
- an old example: globe to a map
- often assuming $\mathcal{M} \subset \mathbb{R}^{d}$
- feature extraction
- linear vs. nonlinear dimensionality reduction
- What do we know about linear vs. nonlinear methods?
- linear: ICA, PCA, SVD, ...
- nonlinear often preserve only local distances

Manifold Learning: Linear vs. Non-linear

Manifold Learning: Preserving (just) local distances

$$
d\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)=d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \quad \text { only if } \quad d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \quad \text { is small }
$$

$$
\min \sum_{i j} w_{i j}\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|^{2}
$$

Looks familiar?

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$
\mathbf{L f}=\lambda \mathbf{D} \mathbf{f}
$$

Step 2: Assign m new coordinates:

$$
\mathbf{x}_{i} \mapsto\left(f_{2}(i), \ldots, f_{m+1}(i)\right)
$$

Note $_{1}$: we need to get $m+1$ smallest eigenvectors
Note $_{2}$: \mathbf{f}_{1} is useless
http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective
 $$
\min _{\boldsymbol{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f}^{\top} \mathbf{D} \mathbf{1}=0, \quad \mathbf{f}^{\top} \mathbf{D f}=\mathbf{1}
$$

The meaning of the constraints is similar as for spectral clustering:
$\mathbf{f}^{\top} \mathbf{D f}=\mathbf{1}$ is for scaling
$\mathbf{f}^{\mathbf{T}} \mathbf{D} \mathbf{1}=0$ is to not get \mathbf{v}_{1}
What is the solution?

Manifold Learning: Example

http://www.mathworks.com/matlabcentral/fileexchange/ 36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning

$\operatorname{score}(v, m)$

recommendation on a bipartite graph
...with the graph Laplacian!

Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

Question: Do we recommend Capitaine Superslip to Adam?
Let's compute some score (v, m) !

Use of Laplacians: Movie recommendation

How to compute the score (v, m) ? Using some graph distance!
Idea ${ }_{1}$: maximally weighted path
$\operatorname{score}(v, m)=\max _{v P m}$ weight $(P)=\max _{v P m} \sum_{e \in P} \operatorname{ranking}(e)$

Idea 2 : change the path weight
$\operatorname{score}_{2}(v, m)=\max _{v P m}$ weight $_{2}(P)=\max _{v P m} \min _{e \in P} \operatorname{ranking}(e)$

Idea3: consider everything
score $_{3}(v, m)=$ max flow from m to v

Laplacians and Resistive Networks

How to compute the $\operatorname{score}(v, m)$?

Idea 4 : view edges as conductors

$\operatorname{score}_{4}(v, m)=$ effective resistance between m and v

$C \equiv$ conductance
$R \equiv$ resistance
$i \equiv$ current
$V \equiv$ voltage

$$
C=\frac{1}{R} \quad i=C V=\frac{V}{R}
$$

Resistive Networks: Some high-school physics

Resistive Networks

resistors in series

$$
R=R_{1}+\cdots+R_{n} \quad C=\frac{1}{\frac{1}{C_{1}}+\cdots+\frac{1}{C_{N}}} \quad i=\frac{V}{R}
$$

conductors in parallel

$$
C=C_{1}+\cdots+C_{N} \quad i=V C
$$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let $V_{a b}$ be the voltage between them and $i_{a b}$ the current between them. Define $R_{a b}=\frac{V_{a b}}{i_{a b}}$ and $C_{a b}=\frac{1}{R_{a b}}$.

We treat the entire graph as a resistor!

Resistive Networks: Optional Homework (ungraded)

Show that $R_{a b}$ is a metric space.

1. $R_{a b} \geq 0$
2. $R_{a b}=0$ iff $a=b$
3. $R_{a b}=R_{b a}$
4. $R_{a c} \leq R_{a b}+R_{b c}$

The effective resistance is a distance!

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out

$V=\frac{C_{1}}{C} V_{1}+\frac{C_{2}}{C} V_{2}+\frac{C_{3}}{C} V_{3}$ (convex combination)
residual current $=C V-C_{1} V_{1}-C_{2} V_{2}-C_{3} V_{3}$
Kirchhoff says: This is zero! There is no residual current!

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_{i}=\sum_{j} c_{i j}=$ sum of conductances

$$
\mathbf{L}_{i j}= \begin{cases}d_{i} & \text { if } i=j \\ -c_{i j} & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbf{v}=$ voltage setting of the nodes on graph.
$(\mathbf{L v})_{i}=$ residual current at \mathbf{v}_{i} - as we derived
Use: setting voltages and getting the current Inverting \equiv injecting current and getting the voltages

The net injected has to be zero \equiv Kirchhoff's Law.

Resistors and the Laplacian: Finding $R_{a b}$

Let's calculate $R_{1 N}$ to get the movie recommendation score!
$\mathbf{L}\left(\begin{array}{c}0 \\ v_{2} \\ \vdots \\ v_{n-1} \\ 1\end{array}\right)=\left(\begin{array}{c}i \\ 0 \\ \vdots \\ 0 \\ -i\end{array}\right)$

$$
i=\frac{V}{R} \quad V=1 \quad R=\frac{1}{i}
$$

Return $R_{1 N}=\frac{1}{i}$
Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

Resistors and the Laplacian: Finding $R_{1 N}$

$$
\mathbf{L v}=(i, 0, \ldots,-i)^{\top} \equiv \text { boundary valued problem }
$$

For $R_{1 N}$
V_{1} and V_{N} are the boundary
$\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ is harmonic:
$V_{i} \in$ interior (not boundary)
V_{i} is a convex combination of its neighbors

Resistors and the Laplacian: Finding $R_{1 n}$

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $\mathbf{f}=\mathbf{v}$ is harmonic then min and max are on the boundary.

Uniqueness Principle

If \mathbf{f} and \mathbf{g} are harmonic with the same boundary then $\mathbf{f}=\mathbf{g}$

Resistors and the Laplacian: Finding $R_{1 N}$

Alternative method to calculate $R_{1 N}$:
$\mathbf{L v}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0 \\ -1\end{array}\right) \stackrel{\text { def }}{=} \mathbf{i}_{\text {ext }} \quad$ Return $\quad R_{1 N}=v_{1}-v_{N} \quad$ Why?
Question: Does v exist? L does not have an inverse :(.
Not unique: $\mathbf{1}$ in the nullspace of $\mathbf{L}: \mathbf{L}(\mathbf{v}+c \mathbf{1})=\mathbf{L v}+c \mathbf{L} \mathbf{1}=\mathbf{L v}$
Moore-Penrose pseudo-inverse solves LS
Solution: Instead of $\mathbf{v}=\mathbf{L}^{-1} \mathbf{i}_{\text {ext }}$ we take $\mathbf{v}=\mathbf{L}^{+} \mathbf{i}_{\text {ext }}$
We get: $R_{1 N}=v_{1}-v_{N}=\mathbf{i}_{\text {ext }}^{\top} \mathbf{v}=\mathbf{i}_{\text {ext }}^{\top} \mathbf{L}^{+} \mathbf{i}_{\text {ext }}$.
Notice: We can reuse \mathbf{L}^{+}to get resistances for any pair of nodes!

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$
\mathbf{L}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}=\sum_{i=1}^{N} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\top}=\sum_{i=2}^{N} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\top}
$$

Pseudo-inverse of the Laplacian:

$$
\mathbf{L}^{+}=\mathbf{Q} \boldsymbol{\Lambda}^{+} \mathbf{Q}^{\top}=\sum_{i=2}^{N} \frac{1}{\lambda_{i}} \mathbf{q}_{i} \mathbf{q}_{i}^{\top}
$$

Moore-Penrose pseudo-inverse solves a least squares problem:

$$
\mathbf{v}=\underset{\mathbf{x}}{\arg \min }\left\|\mathbf{L x}-\mathbf{i}_{\mathrm{ext}}\right\|_{2}=\mathbf{L}^{+} \mathbf{i}_{\mathrm{ext}}
$$

SSLsemi-supervised learning
...our running example for learning with graphs

Semi-supervised learning: How is it possible?

This is how children learn! hypothesis

Semi-supervised learning (SSL)

SSL problem: definition

Given $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ from \mathbb{R}^{d} and $\left\{y_{i}\right\}_{i=1}^{n_{I}}$, with $n_{l} \ll N$, find $\left\{y_{i}\right\}_{i=n_{l}+1}^{n}$ (transductive) or find f predicting y well beyond that (inductive).

Some facts about SSL

- assumes that the unlabeled data is useful
- works with data geometry assumptions
- cluster assumption - low-density separation
- manifold assumption
- smoothness assumptions, generative models, ...
- now it helps now, now it does not (sic)
- provable cases when it helps
- inductive or transductive/out-of-sample extension
http://olivier.chapelle.cc/ssl-book/discussion.pdf

SSL: Self-Training

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L}=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n_{l}}$ and $\mathcal{U}=\left\{\mathbf{x}_{i}\right\}_{i=n_{l}+1}^{N}$
Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- its a wrapper method
- heavily depends on the the internal classifier
- some theory exist for specific classifiers
- nobody uses it anymore
- errors propagate (unless the clusters are well separated)

SSL: Self-Training: Bad Case

SSL: Transductive SVM: S3VM

SSL: Transductive SVM: Classical SVM

Linear case: $f=\mathbf{w}^{\top} \mathbf{x}+b \quad \rightarrow \quad$ we look for (\mathbf{w}, b)

max-margin classification

$$
\begin{aligned}
\max _{\mathbf{w}, b} & \frac{1}{\|\mathbf{w}\|} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \ldots, n_{l}
\end{aligned}
$$

note the difference between functional and geometric margin
max-margin classification

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \|\mathbf{w}\|^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \|\mathbf{w}\|^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

max-margin classification: non-separable case

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \lambda\|\mathbf{w}\|^{2}+\sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall i=1, \ldots, n_{l} \\
& \xi_{i} \geq 0 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

SSL: Transductive SVM: Classical SVM

max-margin classification: non-separable case

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \lambda\|\mathbf{w}\|^{2}+\sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall i=1, \ldots, n_{l} \\
& \xi_{i} \geq 0 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

Unconstrained formulation using hinge loss:

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{l}} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)+\lambda\|\mathbf{w}\|^{2}
$$

In general?

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{l}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(f)
$$

SSL: Transductive SVM: Classical SVM: Hinge loss

(a) the hinge loss

$$
V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)
$$

SSL: Transductive SVM: Unlabeled Examples

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{I}} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)+\lambda\|\mathbf{w}\|^{2}
$$

How to incorporate unlabeled examples?
No y 's for unlabeled \mathbf{x}.
Prediction of f for (any) $\mathbf{x} ? \widehat{y}=\operatorname{sgn}(f(\mathbf{x}))=\operatorname{sgn}\left(\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+b\right)$
Pretending that $\operatorname{sgn}(f(\mathbf{x}))$ is the true label

$$
\begin{aligned}
V(\mathbf{x}, \widehat{y}, f(\mathbf{x})) & =\max \left(1-\widehat{y}\left(\mathbf{w}^{\top} \mathbf{x}+b\right), 0\right) \\
& =\max \left(1-\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\left(\mathbf{w}^{\top} \mathbf{x}+b\right), 0\right) \\
& =\max \left(1-\left|\mathbf{w}^{\top} \mathbf{x}+b\right|, 0\right)
\end{aligned}
$$

SSL: Transductive SVM: Hinge and Hat Loss

(a) the hinge loss

(b) the hat loss

What is the difference in the objectives?
Hinge loss penalizes?
Hat loss penalizes?

SSL: Transductive SVM: S3VM

This is what we wanted!

SSL: Transductive SVM: Formulation

Main SVM idea stays the same: penalize the margin

What is the loss and what is the regularizer?
$\min _{\mathbf{w}, b} \sum_{i=1}^{n_{1}} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)+\lambda_{1}\|\mathbf{w}\|^{2}+\lambda_{2} \sum_{i=n_{i}+1}^{n_{1}+n_{u}} \max \left(1-\left|\mathbf{w}^{\top} \mathbf{x}_{i}+b\right|, 0\right)$
Think of unlabeled data as the regularizers for your classifiers!
Practical hint: Additionally enforce the class balance.
What it the main issue of TSVM?
recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf

SSL(G)

semi-supervised learning with graphs and harmonic functions
...our running example for learning with graphs

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf
*following some insights from vision research in 1980s

SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering Where is the link?
What is the formal statement? We look for $f(\mathbf{x}) \in\{ \pm 1\}$

$$
\text { cut }=\sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}=\Omega(f)
$$

Why $\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}$ and not $\left|f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right|$?

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in\{ \pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$
\Omega(\mathbf{f})=\sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

Clustering was unsupervised, here we have supervised data.
Recall the general objective-function framework:

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(\mathrm{f})
$$

It would be nice if we match the prediction on labeled data:

$$
V(\mathbf{x}, y, f(\mathbf{x}))=\infty \sum_{i=1}^{n_{l}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

SSL with Graphs: MinCut

Final objective function:

$$
\min _{\mathbf{f} \in\{ \pm 1\}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{l}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

This is an integer program :(
Can we solve it?
Are we happy?

We need a better way to reflect the confidence.

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions (ICML 2013)
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf
*a seminal paper that convinced people to use graphs for SSL
Idea 1: Look for a unique solution.
Idea 2: Find a smooth one. (harmonic solution)
Harmonic SSL
1): As before, we constrain f to match the supervised data:

$$
f\left(\mathbf{x}_{i}\right)=y_{i} \quad \forall i \in\left\{1, \ldots, n_{l}\right\}
$$

2): We enforce the solution f to be harmonic:

$$
f\left(\mathbf{x}_{i}\right)=\frac{\sum_{i \sim j} f\left(\mathbf{x}_{j}\right) w_{i j}}{\sum_{i \sim j} w_{i j}} \quad \forall i \in\left\{n_{l}+1, \ldots, n_{u}+n_{l}\right\}
$$

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$
\min _{\mathbf{f} \in\{ \pm 1\}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{1}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(\mathrm{x}_{i}\right)-f\left(\mathrm{x}_{j}\right)\right)^{2}
$$

...if we just relax the integer constraints to be real ...

$$
\min _{f \in \mathbb{R}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{1}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

...or equivalently (note that $f\left(\mathbf{x}_{i}\right)=f_{i}$) ...

$$
\begin{aligned}
\min _{f \in \mathbb{R}^{n_{l}+n_{u}}} & \sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathrm{x}_{i}\right)-f\left(\mathrm{x}_{j}\right)\right)^{2} \\
\text { s.t. } & y_{i}=f\left(\mathbf{x}_{i}\right) \quad \forall i=1, \ldots, n_{l}
\end{aligned}
$$

SSL with Graphs: Harmonic Functions

Properties of the relaxation from ± 1 to \mathbb{R}

- there is a closed form solution for \mathbf{f}
- this solution is unique
- globally optimal
- it is either constant or has a maximum/minimum on a boundary
- $f\left(\mathbf{x}_{i}\right)$ may not be discrete
- but we can threshold it
- electric-network interpretation
- random-walk interpretation

SSL with Graphs: Harmonic Functions

Random walk interpretation:

1) start from the vertex you want to label and randomly walk
2) $P(j \mid i)=\frac{w_{i j}}{\sum_{k} w_{i k}} \equiv$
$\mathbf{P}=\mathbf{D}^{-1} \mathbf{W}$
3) finish when a labeled vertex is hit absorbing random walk
$f_{i}=$ probability of reaching a positive labeled vertex

SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation
Step 1: Set $f\left(\mathbf{x}_{i}\right)=y_{i}$ for $i=1, \ldots, n_{l}$
Step 2: Propagate iteratively (only for unlabeled)

$$
f\left(\mathbf{x}_{i}\right) \leftarrow \frac{\sum_{i \sim j} f\left(\mathbf{x}_{j}\right) w_{i j}}{\sum_{i \sim j} w_{i j}} \quad \forall i \in\left\{n_{l}+1, \ldots, n_{u}+n_{l}\right\}
$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution
Define $\mathbf{f}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n_{l}+n_{u}}\right)\right)=\left(f_{1}, \ldots, f_{n_{l}+n_{u}}\right)$

$$
\Omega(\mathbf{f})=\sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}=\mathbf{f}^{\top} \mathbf{L} \mathbf{f}
$$

\mathbf{L} is a $\left(n_{l}+n_{u}\right) \times\left(n_{l}+n_{u}\right)$ matrix:

$$
\mathbf{L}=\left[\begin{array}{ll}
\mathbf{L}_{/ /} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u 1} & \mathbf{L}_{u u}
\end{array}\right]
$$

How to compute this constrained minimization problem?

SSL with Graphs: Harmonic Functions

Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

$$
(\mathbf{L f})_{u}=\mathbf{0}_{u}
$$

In matrix notation

$$
\left[\begin{array}{ll}
\mathbf{L}_{\| /} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u l} & \mathbf{L}_{u u}
\end{array}\right]\left[\begin{array}{l}
\mathbf{f}_{l} \\
\mathbf{f}_{u}
\end{array}\right]=\left[\begin{array}{c}
\ldots \\
\mathbf{0}_{u}
\end{array}\right]
$$

$f_{/}$is constrained to be $y_{/}$and for $f_{u} \ldots \ldots$

$$
\mathbf{L}_{u l} \mathbf{f}_{l}+\mathbf{L}_{u u} \mathbf{f}_{u}=\mathbf{0}_{u}
$$

...from which we get

$$
\mathbf{f}_{u}=\mathbf{L}_{u u}^{-1}\left(-\mathbf{L}_{u} \mid \mathbf{f}_{l}\right)=\mathbf{L}_{u u}^{-1}\left(\mathbf{W}_{u \mid} \mathbf{f}_{l}\right) .
$$

Note that this does not depend on $\mathbf{L}_{\|}$.

Next class: Tuesday, October 29th at 13:30!

Michal Valko contact via Piazza

