Graphs in Machine Learning Michal Valko

DeepMind Paris and Inria Lille

TA: Omar Darwiche Domingues with the help of Pierre Perrault

Partially based on material by: Gary Miller, Mikhail Belkin, Branislav Kveton, Doyle & Schnell, Daniel Spielman

October 22nd, 2019

MVA 2019/2020

Graph nets lecture

invited lecture by Marc Lelarge

- including 2019 material
- TD 3 the following week on graph nets
- questions from Marc
 - basic of deep learning?
 - deep learning course at MVA or elsewhere?
 - RNN?
 - ► VAE?

Previous Lecture

spectral graph theory

Laplacians and their properties

- symmetric and asymmetric normalization
- random walks
- geometry of the data and the connectivity

spectral clustering

This Lecture

- manifold learning with Laplacians eigenmaps
- recommendation on a bipartite graph
- resistive networks
 - recommendation score as a resistance?
 - Laplacian and resistive networks
 - resistance distance and random walks
- Gaussian random fields and harmonic solution
- graph-based semi-supervised learning and manifold regularization
- transductive learning
- inductive and transductive semi-supervised learning

$\mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ manifold learning ...discworld

Manifold Learning: Recap

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the dimensionality reduction
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$
 - feature extraction
 - linear vs. nonlinear dimensionality reduction
- What do we know about linear vs. nonlinear methods?
 - linear: ICA, PCA, SVD, ...
 - nonlinear often preserve only local distances

Manifold Learning: Linear vs. Non-linear

Manifold Learning: Preserving (just) local distances

 $d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j)$ only if $d(\mathbf{x}_i, \mathbf{x}_j)$ is small

$$\min\sum_{ij}w_{ij}\|\mathbf{y}_i-\mathbf{y}_j\|^2$$

Looks familiar?

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

 $\mathbf{L}\mathbf{f} = \lambda \mathbf{D}\mathbf{f}$

Step 2: Assign *m* new coordinates:

$$\mathbf{x}_{i}\mapsto\left(f_{2}\left(i\right),\ldots,f_{m+1}\left(i\right)\right)$$

Note₁: we need to get m + 1 smallest eigenvectors **Note**₂: **f**₁ is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

 $\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{1} = \mathbf{0}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{f} = \mathbf{1}$

The meaning of the constraints is similar as for spectral clustering:

 $\mathbf{f}^{\scriptscriptstyle\mathsf{T}} \mathbf{D} \mathbf{f} = \mathbf{1} \text{ is for scaling}$

 $\mathbf{f}^{\scriptscriptstyle\mathsf{T}}\mathbf{D}\mathbf{1}=\mathbf{0}$ is to not get \mathbf{v}_1

What is the solution?

Manifold Learning: Example

http://www.mathworks.com/matlabcentral/fileexchange/ 36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning

SCOTE(V, m)recommendation on a bipartite graph ...with the graph Laplacian!

Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

Question: Do we recommend Capitaine Superslip to Adam?

Let's compute some score(v, m)!

Use of Laplacians: Movie recommendation

How to compute the score(v, m)? Using some graph distance!

Idea₁: maximally weighted path

 $\operatorname{score}(v, m) = \max_{v P m} \operatorname{weight}(P) = \max_{v P m} \sum_{e \in P} \operatorname{ranking}(e)$

Idea₂: change the path weight

 $\operatorname{score}_2(v, m) = \max_{v \in m} \operatorname{weight}_2(P) = \max_{v \in m} \min_{e \in P} \operatorname{ranking}(e)$

Idea₃: consider everything

 $score_3(v, m) = max$ flow from m to v

Laplacians and Resistive Networks

How to compute the score(v, m)?

Idea₄: view edges as conductors

 $score_4(v, m) = effective resistance between m and v$

Resistive Networks: Some high-school physics

Resistive Networks

resistors in series

$$R = R_1 + \dots + R_n$$
 $C = \frac{1}{\frac{1}{C_1} + \dots + \frac{1}{C_N}}$ $i = \frac{V}{R}$

conductors in parallel

$$C = C_1 + \cdots + C_N$$
 $i = VC$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let V_{ab} be the voltage between them and i_{ab} the current between them. Define $R_{ab} = \frac{V_{ab}}{i_{ab}}$ and $C_{ab} = \frac{1}{R_{ab}}$.

We treat the entire graph as a resistor!

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1.
$$R_{ab} \ge 0$$

2. $R_{ab} = 0$ iff $a = b$
3. $R_{ab} = R_{ba}$
4. $R_{ac} \le R_{ab} + R_{bc}$

The effective resistance is a distance!

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out

 $V = \frac{C_1}{C}V_1 + \frac{C_2}{C}V_2 + \frac{C_3}{C}V_3 \text{ (convex combination)}$ residual current = $CV - C_1V_1 - C_2V_2 - C_3V_3$ Kirchhoff says: This is zero! **There is no residual current!**

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij} = \text{sum of conductances}$

$$\mathbf{L}_{ij} = egin{cases} d_i & ext{if } i=j, \ -c_{ij} & ext{if } (i,j) \in E, \ 0 & ext{otherwise}. \end{cases}$$

 $\mathbf{v} = \mathbf{voltage \ setting}$ of the nodes on graph.

 $(\mathbf{Lv})_i$ = residual current at \mathbf{v}_i — as we derived

Use: setting voltages and getting the current

Inverting \equiv injecting current and getting the voltages

The net injected has to be zero \equiv Kirchhoff's Law.

Resistors and the Laplacian: Finding *R*_{ab}

Let's calculate R_{1N} to get the **movie recommendation score**!

$$\mathbf{L}\begin{pmatrix} 0\\ v_2\\ \vdots\\ v_{n-1}\\ 1 \end{pmatrix} = \begin{pmatrix} i\\ 0\\ \vdots\\ 0\\ -i \end{pmatrix}$$
$$i = \frac{V}{R} \qquad V = 1 \qquad R = \frac{1}{i}$$
Return $R_{1N} = \frac{1}{i}$

Doyle and Snell: Random Walks and Electric Networks https://math.dartmouth.edu/~doyle/docs/walks.pdf

Resistors and the Laplacian: Finding R_{1N}

$$\mathbf{Lv} = (i, 0, \dots, -i)^{\mathsf{T}} \equiv \mathbf{boundary valued problem}$$

For R_{1N}

 V_1 and V_N are the **boundary** (v_1, v_2, \dots, v_N) is **harmonic**: $V_i \in$ **interior** (not boundary)

 V_i is a convex combination of its neighbors

Resistors and the Laplacian: Finding R_{1n}

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $\mathbf{f} = \mathbf{v}$ is harmonic then min and max are on the boundary.

Uniqueness Principle

If f and ${\bf g}$ are harmonic with the same boundary then $f={\bf g}$

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{L}\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = \mathbf{v}_1 - \mathbf{v}_N \qquad \text{Why?}$$

Question: Does v exist? L does not have an inverse :(. Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = LvMoore-Penrose pseudo-inverse solves LS Solution: Instead of $v = L^{-1}i_{ext}$ we take $v = L^{+}i_{ext}$ We get: $R_{1N} = v_1 - v_N = i_{ext}^{T}v = i_{ext}^{T}L^{+}i_{ext}$. Notice: We can reuse L^{+} to get resistances for any pair of nodes!

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} = \sum_{i=1}^{N} \lambda_i \mathbf{q}_i \mathbf{q}_i^{\mathsf{T}} = \sum_{i=2}^{N} \lambda_i \mathbf{q}_i \mathbf{q}_i^{\mathsf{T}}$$

Pseudo-inverse of the Laplacian:

$$\mathbf{L}^+ = \mathbf{Q} \mathbf{\Lambda}^+ \mathbf{Q}^{\mathsf{T}} = \sum_{i=2}^N \frac{1}{\lambda_i} \mathbf{q}_i \mathbf{q}_i^{\mathsf{T}}$$

Moore-Penrose pseudo-inverse solves a least squares problem:

$$\mathbf{v} = \underset{\mathbf{x}}{\arg\min} \left\| \mathbf{L}\mathbf{x} - \mathbf{i}_{\text{ext}} \right\|_2 = \mathbf{L}^+ \mathbf{i}_{\text{ext}}$$

SSL semi-supervised learning ...our running example for learning with graphs

Semi-supervised learning: How is it possible?

This is how children learn! hypothesis

Semi-supervised learning (SSL)

SSL problem: definition

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_i}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^n$ (transductive) or find f predicting y well beyond that (inductive).

Some facts about **SSL**

- assumes that the unlabeled data is useful
- works with data geometry assumptions
 - cluster assumption low-density separation
 - manifold assumption
 - smoothness assumptions, generative models, ...
- now it helps now, now it does not (sic)
 - provable cases when it helps
- inductive or transductive/out-of-sample extension

http://olivier.chapelle.cc/ssl-book/discussion.pdf

SSL: Self-Training

SSL: Overview: Self-Training

SSL: Self-Training

Input:
$$\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$$
 and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^{N}$
Repeat:

▶ train f using \mathcal{L}

• apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- its a wrapper method
- heavily depends on the the internal classifier
- some theory exist for specific classifiers
- nobody uses it anymore
- errors propagate (unless the clusters are well separated)

SSL: Self-Training: Bad Case

SSL: Transductive SVM: S3VM

SSL: Transductive SVM: Classical SVM

Linear case: $f = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b \quad \rightarrow \quad \text{we look for } (\mathbf{w}, b)$

max-margin classification

$$\begin{array}{ll} \max_{\mathbf{w},b} & \frac{1}{\|\mathbf{w}\|} \\ s.t. & y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \geq 1 \quad \forall i = 1, \dots, n_i \end{array}$$

note the difference between functional and geometric margin

max-margin classification

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2$$
s.t. $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 \quad \forall i = 1, \dots, n_l$

SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2$$
s.t. $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 \quad \forall i = 1, \dots, n_l$

max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \quad \frac{\lambda}{\|\mathbf{w}\|^2} + \sum_i \xi_i$$
s.t. $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1, \dots, n_i$
 $\xi_i \ge 0 \quad \forall i = 1, \dots, n_i$

SSL: Transductive SVM: Classical SVM

max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \quad \lambda \|\mathbf{w}\|^2 + \sum_i \xi_i$$
s.t. $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1, \dots, n_i$
 $\xi_i \ge 0 \quad \forall i = 1, \dots, n_i$

Unconstrained formulation using hinge loss:

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} \max\left(1 - y_{i}\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|$$

In general?

$$\min_{\mathbf{w},b}\sum_{i}V(\mathbf{x}_{i},y_{i},f(\mathbf{x}_{i}))+\lambda\Omega(f)$$

SSL: Transductive SVM: Classical SVM: Hinge loss

$$V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) = \max\left(1 - y_{i}\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b\right), 0\right)$$

SSL: Transductive SVM: Unlabeled Examples

$$\min_{\mathbf{w}, b} \sum_{i}^{n_{i}} \max\left(1 - y_{i}\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|^{2}$$

How to incorporate unlabeled examples?

No y's for unlabeled \mathbf{x} .

Prediction of f for (any) x?
$$\hat{y} = \operatorname{sgn}(f(\mathbf{x})) = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

Pretending that sgn $(f(\mathbf{x}))$ is the true label ...

$$V(\mathbf{x}, \hat{y}, f(\mathbf{x})) = \max (1 - \hat{y} (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b), 0)$$

= max (1 - sgn ($\mathbf{w}^{\mathsf{T}} \mathbf{x} + b$) ($\mathbf{w}^{\mathsf{T}} \mathbf{x} + b$), 0)
= max (1 - | $\mathbf{w}^{\mathsf{T}} \mathbf{x} + b$ |, 0)

SSL: Transductive SVM: Hinge and Hat Loss

SSL: Transductive SVM: S3VM

This is what we wanted!

SSL: Transductive SVM: Formulation

Main SVM idea stays the same: penalize the margin

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max \left(1 - y_i \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b\right), 0\right) + \lambda_1 \|\mathbf{w}\|^2 + \lambda_2 \sum_{i=n_l+1}^{n_l+n_u} \max \left(1 - |\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b|, 0\right)$$

What is the loss and what is the regularizer? $\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max\left(1 - y_i \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b\right), 0\right) + \lambda_1 \|\mathbf{w}\|^2 + \lambda_2 \sum_{i=n_l+1}^{n_l+n_u} \max\left(1 - |\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b|, 0\right)$

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.

What it the main issue of TSVM?

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf

 $SSL(\mathcal{G})$ semi-supervised learning with graphs and harmonic functions ...our running example for learning with graphs

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

*following some insights from vision research in 1980s

SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering Where is the link?

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\operatorname{cut} = \sum_{i,j=1}^{n_l+n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 = \Omega(f)$$
$$(\mathbf{x}_i) - f(\mathbf{x}_j))^2 \text{ and not } |f(\mathbf{x}_i) - f(\mathbf{x}_j)|?$$

Why (f

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_i+n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j)\right)^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

$$\min_{\mathbf{w},b}\sum_{i}^{n_{l}}V(\mathbf{x}_{i},y_{i},f(\mathbf{x}_{i}))+\lambda\Omega(\mathbf{f})$$

It would be nice if we match the prediction on labeled data:

$$V(\mathbf{x}, y, f(\mathbf{x})) = \infty \sum_{i=1}^{n_i} (f(\mathbf{x}_i) - y_i)^2$$

SSL with Graphs: MinCut

Final objective function:

We need a better way to reflect the confidence.

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution. Idea 2: Find a smooth one. (harmonic solution) Harmonic SSL

1): As before, we constrain *f* to match the supervised data:

$$f(\mathbf{x}_i) = y_i \qquad \forall i \in \{1, \ldots, n_l\}$$

2): We enforce the solution f to be harmonic:

$$f(\mathbf{x}_i) = \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \qquad \forall i \in \{n_i + 1, \dots, n_u + n_l\}$$

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

... if we just relax the integer constraints to be real ...

$$\begin{split} \min_{\mathbf{f} \in \mathbb{R}^{n_l+n_u}} & \infty \sum_{i=1}^{n_l} \left(f(\mathbf{x}_i) - y_i \right)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 \\ \text{equivalently (note that } f(\mathbf{x}_i) = f_i) \dots \end{split}$$

$$\min_{\mathbf{f}\in\mathbb{R}^{n_l+n_u}}\sum_{i,j=1}^{n_l+n_u}w_{ij}\left(f(\mathbf{x}_i)-f(\mathbf{x}_j)\right)^2$$

s.t. $y_i = f(\mathbf{x}_i) \quad \forall i = 1,\ldots,n_l$

...or

Properties of the relaxation from ± 1 to $\mathbb R$

- there is a closed form solution for f
- this solution is unique
- globally optimal
- it is either constant or has a maximum/minimum on a boundary
- f(x_i) may not be discrete
 - but we can threshold it
- electric-network interpretation
- random-walk interpretation

(a) The electric network interpretation

(b) The random walk interpretation

Random walk interpretation:

1) start from the vertex you want to label and randomly walk 2) $P(j|i) = \frac{w_{ij}}{\sum_k w_{ik}} \equiv \mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ 3) finish when a labeled vertex is hit absorbing random walk $f_i =$ probability of reaching a positive labeled vertex

How to compute HS? **Option A:** iteration/propagation

Step 1: Set $f(\mathbf{x}_i) = y_i$ for $i = 1, ..., n_i$ **Step 2:** Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \qquad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

How to compute HS? Option B: Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), ..., f(\mathbf{x}_{n_l+n_u})) = (f_1, ..., f_{n_l+n_u})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j)\right)^2 = \mathbf{f}^{\mathsf{T}} \mathsf{L} \mathbf{f}$$

L is a $(n_l + n_u) \times (n_l + n_u)$ matrix:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{u1} & \mathbf{L}_{uu} \end{bmatrix}$$

How to compute this **constrained** minimization problem?

Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

$$(\mathbf{Lf})_u = \mathbf{0}_u$$

In matrix notation

$$\left[\begin{array}{cc} \mathbf{L}_{II} & \mathbf{L}_{Iu} \\ \mathbf{L}_{uI} & \mathbf{L}_{uu} \end{array}\right] \left[\begin{array}{c} \mathbf{f}_{I} \\ \mathbf{f}_{u} \end{array}\right] = \left[\begin{array}{c} \cdots \\ \mathbf{0}_{u} \end{array}\right]$$

 \mathbf{f}_{l} is constrained to be \mathbf{y}_{l} and for \mathbf{f}_{u}

$$\mathbf{L}_{ul}\mathbf{f}_l + \mathbf{L}_{uu}\mathbf{f}_u = \mathbf{0}_u$$

... from which we get

$$\mathbf{f}_{u} = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_{l}) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_{l}).$$

Note that this does not depend on L_{\parallel} .

Next class: Tuesday, October 29th at 13:30!

Michal Valko contact via Piazza