
October 22nd, 2019 MVA 2019/2020

Graphs in Machine Learning
Michal Valko
DeepMind Paris and Inria Lille

TA: Omar Darwiche Domingues with the help of Pierre Perrault

Partially based on material by: Gary Miller,
Mikhail Belkin, Branislav Kveton,
Doyle & Schnell, Daniel Spielman



Graph nets lecture

I invited lecture by Marc Lelarge

I including 2019 material

I TD 3 the following week on graph nets

I questions from Marc
I basic of deep learning?
I deep learning course at MVA or elsewhere?
I RNN?
I VAE?
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Previous Lecture

I spectral graph theory

I Laplacians and their properties
I symmetric and asymmetric normalization
I random walks

I geometry of the data and the connectivity

I spectral clustering
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This Lecture
I manifold learning with Laplacians eigenmaps

I recommendation on a bipartite graph

I resistive networks
I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks

I Gaussian random fields and harmonic solution

I graph-based semi-supervised learning and manifold
regularization

I transductive learning

I inductive and transductive semi-supervised learning
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Rd → Rm
manifold learning
…discworld



Manifold Learning: Recap

problem: definition reduction/manifold learning
Given {xi}Ni=1 from Rd find {yi}Ni=1 in Rm, where m� d .

I What do we know about the dimensionality reduction
I representation/visualization (2D or 3D)
I an old example: globe to a map
I often assuming M⊂ Rd

I feature extraction
I linear vs. nonlinear dimensionality reduction

I What do we know about linear vs. nonlinear methods?
I linear: ICA, PCA, SVD, ...
I nonlinear often preserve only local distances
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Manifold Learning: Linear vs. Non-linear
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Manifold Learning: Preserving (just) local distances

d(yi , yj) = d(xi , xj) only if d(xi , xj) is small

min
∑

ij
wij‖yi − yj‖2

Looks familiar?
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Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = λDf

Step 2: Assign m new coordinates:

xi 7→ (f2 (i) , . . . , fm+1 (i))

Note1: we need to get m + 1 smallest eigenvectors
Note2: f1 is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
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Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

min
f

fTLf s.t. fi ∈ R, fTD1 = 0, fTDf = 1

The meaning of the constraints is similar as for spectral clustering:

fTDf = 1 is for scaling

fTD1 = 0 is to not get v1

What is the solution?
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Manifold Learning: Example

http://www.mathworks.com/matlabcentral/fileexchange/

36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning
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score(v ,m)
recommendation on a bipartite graph
…with the graph Laplacian!



Use of Laplacians: Movie recommendation
How to do movie recommendation on a bipartite graph?

ranking

ranking

ranking

ranking

viewer1

Adam

movieA

Blade Runner 2049

movieB

Cars 3

viewer2

Barbara

movieC

Capitaine Superslip

viewer3

Céline

Question: Do we recommend Capitaine Superslip to Adam?

Let’s compute some score(v ,m)!
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Use of Laplacians: Movie recommendation

How to compute the score(v ,m)? Using some graph distance!

Idea1: maximally weighted path
score(v ,m) = maxvPm weight(P) = maxvPm

∑
e∈P ranking(e)

Problem: If there is a weak edge, the path should not be good.

Idea2: change the path weight
score2(v ,m) = maxvPm weight2(P) = maxvPm mine∈P ranking(e)

Problem of 1&2: Additional paths does not improve the score.

Idea3: consider everything
score3(v ,m) = max flow from m to v

Problem of 3: Shorter paths do not improve the score.
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Laplacians and Resistive Networks
How to compute the score(v ,m)?

Idea4: view edges as conductors
score4(v ,m) = effective resistance between m and v

−
+v

i
C

C ≡ conductance
R ≡ resistance
i ≡ current

V ≡ voltage

C =
1
R i = CV =

V
R
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Resistive Networks: Some high-school physics
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Resistive Networks

resistors in series

R = R1 + · · ·+ Rn C =
1

1
C1

+ · · ·+ 1
CN

i = V
R

conductors in parallel

C = C1 + · · ·+ CN i = VC

Effective Resistance on a graph
Take two nodes: a 6= b. Let Vab be the voltage between them and
iab the current between them. Define Rab = Vab

iab
and Cab = 1

Rab
.

We treat the entire graph as a resistor!
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Resistive Networks: Optional Homework (ungraded)

Show that Rab is a metric space.

1. Rab ≥ 0
2. Rab = 0 iff a = b
3. Rab = Rba

4. Rac ≤ Rab + Rbc

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’s Law ≡ flow in = flow out

C1

C2

C3

V1

V

V2
V3

V = C1
C V1 +

C2
C V2 +

C3
C V3 (convex combination)

residual current = CV − C1V1 − C2V2 − C3V3
Kirchhoff says: This is zero! There is no residual current!

Michal Valko – Graphs in Machine Learning DeepMind - 19/54



Resistors: Where is the link with the Laplacian?
General case of the previous! di =

∑
j cij = sum of conductances

Lij =


di if i = j,
−cij if (i , j) ∈ E ,

0 otherwise.

v = voltage setting of the nodes on graph.

(Lv)i = residual current at vi — as we derived

Use: setting voltages and getting the current

Inverting ≡ injecting current and getting the voltages

The net injected has to be zero ≡ Kirchhoff’s Law.
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Resistors and the Laplacian: Finding Rab

Let’s calculate R1N to get the movie recommendation score!

L


0
v2
...

vn−1
1

 =


i
0
...
0
−i


i = V

R V = 1 R =
1
i

Return R1N =
1
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R1N

Lv = (i , 0, . . . ,−i)T ≡ boundary valued problem

For R1N

V1 and VN are the boundary

(v1, v2, . . . , vN) is harmonic:

Vi ∈ interior (not boundary)

Vi is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R1n

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle
If f = v is harmonic then min and max are on the boundary.

Proof: k ∈ ◦ =⇒ ∃ neighbors Vi ,Vj s.t. vi ≤ vk ≤ vj

Uniqueness Principle
If f and g are harmonic with the same boundary then f = g

Proof: f− g is harmonic with zero on the boundary
=⇒ f− g ≡ 0 =⇒ f = g (using maximum principle)
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Resistors and the Laplacian: Finding R1N

Alternative method to calculate R1N :

Lv =


1
0
...
0
−1

 def= iext Return R1N = v1 − vN Why?

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = Lv
Moore-Penrose pseudo-inverse solves LS
Solution: Instead of v = L−1iext we take v = L+iext
We get: R1N = v1 − vN = iTextv = iTextL+iext.
Notice: We can reuse L+ to get resistances for any pair of nodes!
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

L = QΛQT =
N∑

i=1
λiqiqT

i =
N∑

i=2
λiqiqT

i

Pseudo-inverse of the Laplacian:

L+ = QΛ+QT =
N∑

i=2

1
λi

qiqT
i

Moore-Penrose pseudo-inverse solves a least squares problem:

v = argmin
x
‖Lx− iext‖2 = L+iext
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SSL
semi-supervised learning
…our running example for learning
with graphs



Semi-supervised learning: How is it possible?

This is how children learn! hypothesis
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Semi-supervised learning (SSL)

SSL problem: definition
Given {xi}Ni=1 from Rd and {yi}nl

i=1, with nl � N, find {yi}ni=nl+1
(transductive) or find f predicting y well beyond that (inductive).

Some facts about SSL
I assumes that the unlabeled data is useful
I works with data geometry assumptions

I cluster assumption — low-density separation
I manifold assumption
I smoothness assumptions, generative models, …

I now it helps now, now it does not (sic)
I provable cases when it helps

I inductive or transductive/out-of-sample extension
http://olivier.chapelle.cc/ssl-book/discussion.pdf
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SSL: Self-Training
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SSL: Overview: Self-Training

SSL: Self-Training
Input: L = {xi , yi}nl

i=1 and U = {xi}Ni=nl+1
Repeat:
I train f using L
I apply f to (some) U and add them to L

What are the properties of self-training?
I its a wrapper method
I heavily depends on the the internal classifier
I some theory exist for specific classifiers
I nobody uses it anymore
I errors propagate (unless the clusters are well separated)
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SSL: Self-Training: Bad Case
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SSL: Transductive SVM: S3VM
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SSL: Transductive SVM: Classical SVM
Linear case: f = wTx + b → we look for (w, b)

max-margin classification

max
w,b

1
‖w‖

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

note the difference between functional and geometric margin

max-margin classification

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1− ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM
max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1− ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl

Unconstrained formulation using hinge loss:

min
w,b

nl∑
i

max (1− yi (wTxi + b) , 0) + λ‖w‖2

In general?

min
w,b

nl∑
i

V (xi , yi , f (xi)) + λΩ(f )
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SSL: Transductive SVM: Classical SVM: Hinge loss

V (xi , yi , f (xi)) = max (1− yi (wTxi + b) , 0)
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SSL: Transductive SVM: Unlabeled Examples

min
w,b

nl∑
i

max (1− yi (wTxi + b) , 0) + λ‖w‖2

How to incorporate unlabeled examples?

No y ’s for unlabeled x.

Prediction of f for (any) x? ŷ = sgn (f (x)) = sgn (wTx + b)

Pretending that sgn (f (x)) is the true label …

V (x, ŷ , f (x)) = max (1− ŷ (wTx + b) , 0)
= max (1− sgn (wTx + b) (wTx + b) , 0)
= max (1− |wTx + b| , 0)
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SSL: Transductive SVM: Hinge and Hat Loss

What is the difference in the objectives?
Hinge loss penalizes?

the margin of being on the wrong side

Hat loss penalizes?

predicting in the margin
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SSL: Transductive SVM: S3VM

This is what we wanted!
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SSL: Transductive SVM: Formulation
Main SVM idea stays the same: penalize the margin

min
w,b

nl∑
i=1

max (1− yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=nl+1

max (1− |wTxi + b| , 0)

What is the loss and what is the regularizer?

min
w,b

nl∑
i=1

max (1− yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=nl+1

max (1− |wTxi + b| , 0)

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.

What it the main issue of TSVM?

hat loss is not convex

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf
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SSL(G)
semi-supervised learning with
graphs and harmonic functions
…our running example for learning with graphs



SSL with Graphs: Prehistory
Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

*following some insights from vision research in 1980s
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
Where is the link?

connected classes, not necessarily compact

What is the formal statement? We look for f (x) ∈ {±1}

cut =
nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2 = Ω(f )

Why (f (xi)− f (xj))
2 and not |f (xi)− f (xj)|?

It does not matter.
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SSL with Graphs: MinCut
We look for f (x) ∈ {±1} to minimize the cut Ω(f)

Ω(f) =
nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

min
w,b

nl∑
i

V (xi , yi , f (xi)) + λΩ(f)

It would be nice if we match the prediction on labeled data:

V (x, y , f (x)) =∞
nl∑

i=1
(f (xi)− yi)

2
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SSL with Graphs: MinCut
Final objective function:

min
f∈{±1}nl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

This is an integer program :(

Can we solve it?

It still just MinCut.

Are we happy?

There are six solutions. All equivalent.

We need a better way to reflect the confidence.
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SSL with Graphs: Harmonic Functions
Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions (ICML 2013)
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.
Idea 2: Find a smooth one. (harmonic solution)
Harmonic SSL
1): As before, we constrain f to match the supervised data:

f (xi) = yi ∀i ∈ {1, . . . , nl}

2): We enforce the solution f to be harmonic:

f (xi) =

∑
i∼j f (xj)wij∑

i∼j wij
∀i ∈ {nl + 1, . . . , nu + nl}
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SSL with Graphs: Harmonic Functions
The harmonic solution is obtained from the mincut one …

min
f∈{±1}nl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

…if we just relax the integer constraints to be real …

min
f∈Rnl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

…or equivalently (note that f (xi) = fi) …

min
f∈Rnl+nu

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

s.t. yi = f (xi) ∀i = 1, . . . , nl
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SSL with Graphs: Harmonic Functions

Properties of the relaxation from ±1 to R
I there is a closed form solution for f
I this solution is unique
I globally optimal
I it is either constant or has a maximum/minimum on a

boundary
I f (xi) may not be discrete

I but we can threshold it
I electric-network interpretation
I random-walk interpretation
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SSL with Graphs: Harmonic Functions

Random walk interpretation:
1) start from the vertex you want to label and randomly walk
2) P(j|i) = wij∑

k wik
≡ P = D−1W

3) finish when a labeled vertex is hit
absorbing random walk

fi = probability of reaching a positive labeled vertex
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SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation

Step 1: Set f (xi) = yi for i = 1, . . . , nl
Step 2: Propagate iteratively (only for unlabeled)

f (xi)←
∑

i∼j f (xj)wij∑
i∼j wij

∀i ∈ {nl + 1, . . . , nu + nl}

Properties:
I this will converge to the harmonic solution
I we can set the initial values for unlabeled nodes arbitrarily
I an interesting option for large-scale data
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f (x1), . . . , f (xnl+nu)) = (f1, . . . , fnl+nu)

Ω(f) =
nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2 = fTLf

L is a (nl + nu)× (nl + nu) matrix:

L =

[
Lll Llu
Lu1 Luu

]
How to compute this constrained minimization problem?

Yes, Lagrangian multipliers are an option, but . . .
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SSL with Graphs: Harmonic Functions
Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

(Lf)u = 0u

In matrix notation[
Lll Llu
Lul Luu

] [
fl
fu

]
=

[
. . .
0u

]
fl is constrained to be yl and for fu ……

Lul fl + Luufu = 0u

…from which we get

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl).

Note that this does not depend on Lll .
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Next class: Tuesday, October 29th at 13:30!

Amphi Marie Curie

Amphi e-media

Amphi 109

Amphi 121

Amphi Tocqueville
Bretécher

S. des Conférences

S. Visio DSI

S. Renaudeau

Uderzo

Condorcet

S. des Comm.

C518

FCD

Fonteneau
131 bis

131
132

133
135
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Michal Valko
contact via Piazza


