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Previous lecture
I where do the graphs come from?

I social, information, utility, and biological networks
I we create them from the flat data
I random graph models

I specific applications and concepts
I maximizing influence on a graph gossip propagation,

submodularity, proof of the approximation guarantee
I Google pagerank random surfer process, steady state

vector, sparsity
I online semi-supervised learning label propagation, backbone

graph, online learning, combinatorial sparsification,
stability analysis

I Erdős number project, real-world graphs, heavy tails, small
world – when did this happen?

I similarity graphs
I different types
I construction
I practical considerations
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This Lecture
I spectral graph theory
I Laplacians and their properties

I symmetric and asymmetric normalization
I random walks

I geometry of the data and the connectivity
I spectral clustering
I manifold learning with Laplacians eigenmaps
I recommendation on a bipartite graph
I resistive networks

I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks

I PS: some students have started working on their projects already
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Next Class: Lab Session

I 15. 10. 2019 by Omar (and Pierre)
I Short written report (graded)
I All homeworks together account for 40% of the final grade
I Content

I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation
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Similarity Graphs: ε or k-NN?

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm

http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_

tutorial.pdf
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Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

sij = exp

(
−‖xi − xj‖2

2σ2

)
Cosine similarity function:

sij = cos(θ) =

(
xT

i xj
‖xi‖‖xj‖

)
Typical Kernels
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Similarity Graphs

G = (V, E) - with a set of nodes V and a set of edges E
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Sources of Real Networks

I http://snap.stanford.edu/data/
I http://www-personal.umich.edu/~mejn/netdata/
I http://proj.ise.bgu.ac.il/sns/datasets.html
I http://www.cise.ufl.edu/research/sparse/matrices/
I http://vlado.fmf.uni-lj.si/pub/networks/data/

default.htm
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L = D−W
graph Laplacian
…the only matrix that matters



Graph Laplacian
G = (V, E) - with a set of nodes V and a set of edges E

A adjacency matrix
W weight matrix
D (diagonal) degree matrix

L = D−W graph Laplacian matrix

L =


4 −1 0 −1 −2

−1 8 −3 −4 0
0 −3 5 −2 0

−1 −4 −2 12 −5
−2 0 0 −5 7



L is SDD!
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demo: https://dominikschmidt.xyz/spectral-clustering-exp/
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Properties of Graph Laplacian

Graph function: a vector f ∈ RN assigning values to nodes:

f : V(G)→ R.

fTLf = 1
2
∑

i,j≤N
wi,j(fi − fj)2 = SG(f)

Proof:

fTLf = fTDf − fTWf =
N∑

i=1

di f 2
i −

∑
i,j≤N

wi,j fi fj

=
1
2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +
N∑

j=1

di f 2
j

 =
1
2

∑
i,j≤N

wi,j(fi − fj)
2
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Recap: Eigenwerte und Eigenvektoren

A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

If (λ1, v1) are (λ2, v2) eigenpairs for symmetric M with λ1 6= λ2
then v1 ⊥ v2, i.e., vT

1v2 = 0.

Proof: λ1vT
1v2 = vT

1Mv2 = vT
1λ2v2 = λ2vT

1v2 =⇒ vT
1v2 = 0

If (λ, v1), (λ, v2) are eigenpairs for M then (λ, v1 + v2) is as well.

For symmetric M, the multiplicity of λ is the dimension of the
space of eigenvectors corresponding to λ.

N × N symmetric matrix has N eigenvalues (w/ multiplicities).
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Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

Vectors {vi}i form an orthonormal basis with λ1 ≤ λ2 ≤ . . . λN .

∀i Mvi = λivi ≡ MQ = QΛ

Q has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying MQ = QΛ by QT we get the
eigendecomposition of M:

M = MQQT = QΛQT =
∑

i λivivT
i
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: wij ≥ 0.

L is symmetric

L positive semi-definite ← fTLf = 1
2
∑

i,j≤N wi,j(fi − fj)2

Recall: If Lf = λf then λ is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1N .

All eigenvalues are non-negative reals 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

Self-edges do not change the value of L.
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Properties of Graph Laplacian
The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0, f) is an eigenpair then 0 = 1
2
∑

i,j≤N wi,j(fi − fj)2.
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:

L =


L1

L2
. . .

Lk


For block-diagonal matrices: the spectrum is the union of the
spectra of Li (eigenvectors of Li padded with zeros elsewhere).

For Li (0, 1|Vi |) is an eigenpair, hence the claim.
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Smoothness of the Function and Laplacian
I f = (f1, . . . , fN)T: graph function
I Let L = QΛQT be the eigendecomposition of the Laplacian.

I Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I α: Unique vector such that Qα = f Note: QTf = α

Smoothness of a graph function SG(f)

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2
Λ =

N∑
i=1

λiα
2
i

Smoothness and regularization: Small value of

(a) SG(f) (b) Λ norm of α? (c) α?
i for large λi
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Smoothness of the Function and Laplacian

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2Λ =
N∑

i=1
λiα

2
i

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?
Spectral coordinates of eigenvector vk : QTvk = ek

SG(vk)=vT
kLvk =vT

kQΛQTvk = eT
kΛek = ‖ek‖2Λ =

N∑
i=1

λi(ek)
2
i = λk

The smoothness of k-th eigenvector is the k-th eigenvalue.
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Laplacian of the Complete Graph KN
What is the eigenspectrum of LKN ?

1

2

3 4

5
LKN =


N − 1 −1 −1 −1 −1
−1 N − 1 −1 −1 −1
−1 −1 N − 1 −1 −1
−1 −1 −1 N − 1 −1
−1 −1 −1 −1 N − 1



From before: we know that (0, 1N) is an eigenpair.

If v 6= 0N and v ⊥ 1N =⇒
∑

i vi = 0. To get the other
eigenvalues, we compute (LKN v)1 and divide by v1 (wlog v1 6= 0).

(LKN v)1 = (N − 1)v1 −
N∑

i=2
vi = Nv1.

What are the remaining eigenvalues/vectors?

Answer: N − 1 eigenvectors ⊥ 1N for eigenvalue N with multiplicity N − 1.
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Normalized Laplacians

Lun = D−W
Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw = D−1L = I−D−1W

fTLsymf = 1
2
∑

i,j≤N
wi,j

(
fi√
di
−

fj√
dj

)2

(λ,u) is an eigenpair for Lrw iff (λ,D1/2u) is an eigenpair for Lsym

Michal Valko – Graphs in Machine Learning DeepMind - 19/48



Normalized Laplacians
Lsym and Lrw are PSD with non-negative real eigenvalues

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN

.
(λ,u) is an eigenpair for Lrw iff (λ,u) solve the generalized
eigenproblem Lu = λDu.

(0, 1N) is an eigenpair for Lrw .

(0,D1/21N) is an eigenpair for Lsym.

Multiplicity of eigenvalue 0 of Lrw or Lsym equals to the number of
connected components.

Proof: As for L.
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Laplacian and Random Walks on Undirected Graphs
I stochastic process: vertex-to-vertex jumping
I transition probability vi → vj is pij = wij/di

I di
def=
∑

j wij

I transition matrix P = (pij)ij = D−1W (notice Lrw = I− P)
I if G is connected and non-bipartite → unique stationary

distribution π = (π1, π2, π3, . . . , πN) where πi = di/vol(V )

I vol(G) = vol(V ) = vol(W)
def=
∑

i di =
∑

i,j wij

I π = 1TW
vol(W) verifies πP = π as:

πP =
1TWP
vol(W)

=
1TDP

vol(W)
=

1TDD−1W
vol(W)

=
1TW

vol(W)
= π

What’s the difference from the PageRankTM?
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cut(A,B) = 1
2fTLf

spectral clustering
…with connectivity beyond compactness



How to rule the world?

Let’s make France great again!
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How to rule the world?
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How to rule the world: “AI” is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/
1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U
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Application of Graphs for ML: Clustering
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Application: Clustering - Recap

I What do we know about the clustering in general?
I ill defined problem (different tasks → different paradigms)
I “I know it when I see it”
I inconsistent (wrt. Kleinberg’s axioms)

I scale-invariance, richness, consistency

I number of clusters k need often be known
I difficult to evaluate

I What do we know about k-means?
I “hard” version of EM clustering
I sensitive to initialization
I optimizes for compactness
I yet: algorithm-to-go
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

MinCut: cut(A,B) =
∑

i∈A,j∈B wij Are we done?
Can be solved efficiently, but maybe not what we want . . . .
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Spectral Clustering: Balanced Cuts
Let’s balance the cuts!

MinCut

cut(A,B) =
∑

i∈A,j∈B
wij

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
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Spectral Clustering: Balanced Cuts

RatioCut(A,B) = cut(A,B)

(
1
|A| +

1
|B|

)
NCut(A,B) = cut(A,B)

(
1

vol(A) +
1

vol(B)

)
Easily generalizable to k ≥ 2

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

min
A,B

cut(A,B) s.t. |A| = |B|

Graph function f for cluster membership: fi =
{

1 if Vi ∈ A,
−1 if Vi ∈ B.

What it is the cut value with this definition?

cut(A,B) =
∑

i∈A,j∈B
wi,j =

1
4

∑
i,j

wi,j(fi − fj)2 = 1
2 fTLf

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) =
∑

i∈A,j∈B
wi,j =

1
4

∑
i,j

wi,j(fi − fj)2 = 1
2 fTLf

|A| = |B| =⇒
∑

i fi = 0 =⇒ f ⊥ 1N

‖f‖ =
√

N

objective function of spectral clustering

min
f

fTLf s.t. fi = ±1, f ⊥ 1N , ‖f‖ =
√

N

Still NP hard :( → Relax even further!

fi = ±1 → fi ∈ R
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Rayleigh-Ritz theorem
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L then

λ1 = min
x6=0

xTLx
xTx = min

xTx=1
xTLx

λN = max
x6=0

xTLx
xTx = max

xTx=1
xTLx

xTLx
xTx ≡ Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L and
v1, . . . , vN the corresponding orthogonal eigenvalues, then for
k = 1 : N − 1

λk+1 = min
x6=0,x⊥v1,...vk

xTLx
xTx = min

xTx=1,x⊥v1,...vk
xTLx

λN−k = max
x6=0,x⊥vn,...vN−k+1

xTLx
xTx = max

xTx=1,x⊥vN ,...vN−k+1
xTLx
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Rayleigh-Ritz theorem: Quick and dirty proof

When we reach the extreme points?

∂

∂x

(
xTLx
xTx

)
=

∂

∂x

(
f (x)
g(x)

)
= 0 ⇐⇒ f ′(x)g(x) = f (x)g ′(x)

By matrix calculus (or just calculus):

∂xTLx
∂x = 2Lx and ∂xTx

∂x = 2x

When f ′(x)g(x) = f (x)g ′(x)?

Lx (xTx) = (xTLx) x ⇐⇒ Lx =
xTLx
xTx x ⇐⇒ Lx = λx

Conclusion: Extremes are the eigenvectors with their eigenvalues
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Solution: second eigenvector How do we get the clustering?
The solution may not be integral. What to do?

clusteri =

{
1 if fi ≥ 0,
−1 if fi < 0.

Works but this heuristics is often too simple. In practice, cluster f
using k-means to get {Ci}i and assign:

clusteri =

{
1 if i ∈ C1,

−1 if i ∈ C−1.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

fTLf = 1
2

∑
i,j

wi,j(fi − fj)2 = (|A|+ |B|)RatioCut(A,B)
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Spectral Clustering: Approximating RatioCut
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

∑
i

fi = 0

∑
i

f 2
i = N

objective function of spectral clustering (same - it’s magic!)

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N
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Spectral Clustering: Approximating NCut

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
Define graph function f for cluster membership of NCut:

fi =


√

vol(A)
vol(B) if Vi ∈ A,

−
√

vol(B)
vol(A) if Vi ∈ B.

(Df)T1n = 0 fTDf = vol(V) fTLf = vol(V)NCut(A,B)

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)

Can we apply Rayleigh-Ritz now? Define w = D1/2f

objective function of spectral clustering (NCut)

min
w

wTD−1/2LD−1/2w s.t. wi ∈ R,w ⊥ D1/21N , ‖w‖2 = vol(V)

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖2 = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V)

Solution by Rayleigh-Ritz? w = v2,Lsym f = D−1/2w

f is a the second eigenvector of Lrw !

tl;dr: Get the second eigenvector of L/Lrw for RatioCut/NCut.

demo: https://dominikschmidt.xyz/spectral-clustering-exp/
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Pretty bad.

Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.
https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95.pdf
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters
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Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of data we can use one vs. the other?
Any disadvantages of spectral clustering?
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Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf
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Spectral Clustering: 1D Example - Eigenvectors
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Spectral Clustering: Bibliography

I M. Meila et al. “A random walks view of spectral
segmentation”. In: International Conference on Artificial
Intelligence and Statistics (2001)

I Lsym Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On
spectral clustering: Analysis and an algorithm”. In: Neural
Information Processing Systems. 2001

I Lrm J Shi and J Malik. “Normalized Cuts and Image
Segmentation”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 22 (2000), pp. 888–905

I Things can go wrong with the relaxation: Daniel A. Spielman
and Shang H. Teng. “Spectral partitioning works: Planar
graphs and finite element meshes”. In: Linear Algebra and Its
Applications 421 (2007), pp. 284–305
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Next class on Tuesday, October 22th at 13:30!

Amphi Marie Curie

Amphi e-media

Amphi 109

Amphi 121

Amphi Tocqueville
Bretécher

S. des Conférences

S. Visio DSI

S. Renaudeau

Uderzo

Condorcet

S. des Comm.

C518

FCD

Fonteneau
131 bis

131
132

133
135

Michal Valko – Graphs in Machine Learning DeepMind - 47/48



Michal Valko
contact via Piazza


