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Last Lecture

I Inductive and transductive semi-supervised learning
I Manifold regularization
I Theory of Laplacian-based manifold methods
I Transductive learning stability based bounds
I Online semi-supervised learning
I Online incremental k-centers
I Examples of applications of online SSL
I Analysis of online SSL
I SSL Learnability
I When does graph-based SSL provably help?
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This Lecture

I Scaling harmonic functions to millions of samples
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Previous Lab Session

I 14. 11. 2018 by Pierre Perrault
I Content

I Semi-supervised learning
I Graph quantization
I Offline face recognizer

I AR: record a video with faces
I Install VM (in case you have not done it yet for TD1)
I Short written report
I Questions to piazza
I Deadline: 27. 11. 2017
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Next Lab Session/Lecture

I DL for TD2: today
I No class or lab (TD) next week
I 12. 12. 2018 by Pierre Perrault
I Content: Online and scalable algorithms

I Online face recognizer
I Iterative label propagation
I Online k-centers

I AR: record a video with faces
I Short written report
I Questions to piazza
I Deadline: 26. 12. 2018
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Final Class projects

I detailed description on the class website
I preferred option: you come up with the topic
I theory/implementation/review or a combination
I one or two people per project (exceptionally three)
I grade 60%: report + short presentation of the team
I deadlines

I 21. 11. 2018 - strongly recommended DL for taking projects
I 28. 11. 2018 - hard DL for taking projects
I 07. 01. 2019 - submission of the project report
I 11. 01. 2019 or later - project presentation

I list of suggested topics on piazza
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Huge G
when G does not fit to memory
…or when we can’t invert L



Scaling SSL with Graphs to Millions

Semi-supervised learning with graphs

f? = min
f∈RN

(f− y)TC(f− y) + fTLf

Let us see the same in eigenbasis of L = UΛUT, i.e., f = Uα

α? = min
α∈RN

(Uα− y)TC(Uα− y) +αTΛα

What is the problem with scalability?

Diagonalization of N × N matrix

What can we do? Let’s take only first k eigenvectors f = Uα!
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Scaling SSL with Graphs to Millions
U is now a n × k matrix

α? = min
α∈RN

(Uα− y)TC(Uα− y) +αTΛα

Closed form solution is (Λ+ UTCU)α = UTCy

What is the size of this system of equation now?

k × k!

Cool! Any problem with this approach?

Getting L = UΛUT means solving a N × N system :(

Are there any reasonable assumptions when this is feasible?

Let’s see what happens when N →∞!
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Scaling SSL with Graphs to Millions

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

Michal Valko – Graphs in Machine Learning SequeL - 10/78

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf


Scaling SSL with Graphs to Millions
What happens to L when N →∞?

We have data xi ∈ R sampled from p (x).

When n→∞, instead of vectors f, we consider functions F (x).

Instead of L, we define Lp - weighted smoothness operator

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2)dx1x2

with W (x1, x2) =
exp

(
−‖x1−x2‖2)

2σ2

L defined the eigenvectors of increasing smoothness.

What defines Lp? Eigenfunctions!
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Scaling SSL with Graphs to Millions

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2)dx1x2

First eigenfunction

Φ1 = argmin
F :

∫
F 2(x)p(x)D(x) dx=1

Lp (F )

where D (x) =
∫

x2
W (x, x2) p (x2)dx2

What is the solution? Φ1 (x) = 1 because Lp (1) = 0
How to define Φ2? same, constraining to be orthogonal to Φ1∫

F (x)Φ1 (x) p (x)D(x)dx = 0
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Scaling SSL with Graphs to Millions
Eigenfunctions of Lp

Φ3 as before, orthogonal to Φ1 and Φ2 etc.

How to define eigenvalues? λk = Lp (Φk)

Relationship to the discrete Laplacian
1

N2 fTLf = 1
2N2

∑
ij

Wij(fi − fj)2 −−−−→
N→∞

Lp (F )

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/

Luxburg04_diss.pdf
http://arxiv.org/pdf/1510.08110v1.pdf

Isn’t estimating eigenfunctions p (x) more difficult?

Yes it is.

Are there some “easy” distributions?

Can we compute it numerically?
Michal Valko – Graphs in Machine Learning SequeL - 13/78

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg04_diss.pdf
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg04_diss.pdf
http://arxiv.org/pdf/1510.08110v1.pdf


Scaling SSL with Graphs to Millions
Eigenvectors

Eigenfunctions
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Scaling SSL with Graphs to Millions
Factorized data distribution What if

p (s) = p (s1) p (s2) . . . p (sd)

In general, this is not true. But we can rotate data with s = Rx.

Treating each factor individually
pk

def= marginal distribution of sk

Φi (sk)
def= eigenfunction of Lpk with eigenvalue λi

Then: Φi (s) = Φi (sk) is eigenfunction of Lp with λi

We only considered single-coordinate eigenfunctions.
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Scaling SSL with Graphs to Millions
How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [FWT09] for eigenfunctions
I Find R such that s = Rx
I For each “independent” sk approximate p(sk)

I Given p(sk) numerically solve for eigensystem of Lpk(
D̃− PW̃P

)
g = λPD̂g (generalized eigensystem)

g - vector of length B ≡ number of bins
P - density at discrete points
D̃ - diagonal sum of the columns of PW̃P
D̂ - diagonal sum of the columns of PW̃

I Order eigenfunctions by increasing eigenvalues

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions

Numerical 1D Eigenfunctions

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions
Computational complexity for N × d dataset

Typical harmonic approach
one diagonalization of N × N system

Numerical eigenfunctions with B bins and k eigenvectors
d eigenvector problems of B × B(

D̃− PW̃P
)

g = λPD̂g

one k × k least squares problem

(Λ+ UTCU)α = UTCy

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors, …

When d is not too big then N can be in millions!
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Scaling SSL with Graphs to Millions

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

Michal Valko – Graphs in Machine Learning SequeL - 19/78

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf


Sparsify G
with no assumptions
…and we need to process is anyway



Large scale Machine Learning on Graphs

http://blog.carsten-eickhoff.com Botstein et al.
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Are we large yet?

”One trillion edges: graph processing at Facebook-scale.”
Ching et al., VLDB 2015
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Computational bottlenecks

In theory:
Space Time

[O(m),O(n2)] to store O(n2) to construct
O(n3) to run algorithms

In practice:
I 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB)
128 Billion edges (331 GB)

I Pagerank on Facebook Graph:
3 minutes per iteration, hundreds of iterations, tens of hours
on 200 machines, run once per day
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Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph
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Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?
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Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation
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Storing graph in memory

Main bottleneck: space.
As a Fermi (back-of-the-envelope) problem
I Storing a graph with m edges require to store m tuples

(i , j,wi,j) of 64 bit (8 bytes) doubles or int.
I For standard cloud providers, the largest compute-optimized

instances has 36 cores, but only 60 GB of memory.
I We can store 60 ∗ 10243/(3 ∗ 8) ∼ 2.6× 109 (2.6 billion)

edges in a single machine memory.
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Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines
Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later
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Graph Sparsification

Goal: Get graph G and find sparse H
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Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not
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Graph Sparsification: What is good sparse?
Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/~nikhil/
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Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges
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Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)
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Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈

n
d

Could be large :( What to do?
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Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈ 1

Benczúr & Karger: Can find such H quickly for any G!
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Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLHf ≤ fTLG f ≤ (1 + ε)fTLHf

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 36/78



Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLHf ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖
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Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides
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Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

Decomposition of identity: ∀u (unit vector):
∑

e∈E (uTve)
2 = 1

moment ellipse is a sphere
https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

We take a subset of these ees and scale them!

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!
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Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ

(∑
e

sevevT
e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pis!
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:
use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large
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Spectral Graph Sparsification

Chicken and egg problem
We need Reff to compute a sparsifier H

We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with very poor approximation R̃eff and poor sparsifier.
Use R̃eff to compute an improved approximate sparsifier H

Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.
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What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods
I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods
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Distributed graph processing

Large graphs do not fit in memory
Get more memory

Either slower but larger memory
Or fast memory but divided among many machines

Many challenges
Needs to be scalable

minimimize pass over data / communication costs
Needs to be consistent

updates should propagate properly
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Distributed graph processing

Different choices have different impacts: for example splitting the
graph according to nodes or according to edges.

Many computation models (academic and commercial) each with
its pros and cons

MapReduce
MPI
Pregel
Graphlab
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The GraphLab abstraction
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The GraphLab abstraction
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The GraphLab abstraction

Under the hood: tabular representation
Columns:

__id int
f float

Rows: 9

Data:
+------+------+
| __id | f |
+------+------+
| 5 | 0.51 |
| 7 | 0.82 |
| 10 | 0.08 |
| 2 | 0.82 |
| 6 | 0.85 |
| 9 | 0.83 |
| 3 | 0.18 |
| 1 | 0.35 |
| 4 | 0.36 |
+------+------+
[9 rows x 2 columns]

Columns:
__src_id int
__dst_id int
weight float

Rows: 26

Data:
+----------+----------+----------+
| __src_id | __dst_id | weight |
+----------+----------+----------+
| 7 | 5 | 0.13185 |
| 5 | 7 | 0.13185 |
| 7 | 7 | 0.026779 |
| 10 | 7 | 0.57121 |
| 7 | 10 | 0.57121 |
| 10 | 2 | 0.94047 |
| 7 | 6 | 0.64528 |
| 5 | 3 | 0.93374 |
| 10 | 3 | 0.31713 |
| 5 | 1 | 0.57796 |
+----------+----------+----------+
[26 rows x 3 columns]
Note: Only the head of the SFrame is printed.
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The GraphLab abstraction
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The GraphLab abstraction

I The graph is immutable. why?
I All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself
only access local data

I Functional programming approach
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The GraphLab abstraction

triple_apply ( triple_apply_fn , mutated_fields , input_f ie lds=None)

processes all edges asyncronously and in parallel
>>> PARALLEL FOR ( source , edge , target ) AS t r i p l e in G:
. . . LOCK ( t r i p l e . source , t r i p l e . target )
. . . ( source , edge , target ) = triple_apply_fn ( t r i p l e )
. . . UNLOCK ( t r i p l e . source , t r i p l e . target )
. . . END PARALLEL FOR

I No guarantees on order of execution
I Updating (src,edge,dst) would violate immutability
I triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src',edge',dst')
use return values to build a new graph
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The GraphLab abstraction

triple_apply_fn is a pure function

Function in the mathematical sense, same input gives same output.

1 def triple_apply_fn ( src , edge , dst ) :
2 #can only access data stored in src , edge , and dst ,
3 #three d i c t i ona r i e s containing a copy of the
4 #f i e l d s indicated in mutated_fields
5 f = dst [ ’ f ’ ]
6
7 #inputs are copies , th i s does not change o r i g i na l edge
8 edge [ ’ weight ’ ] = g( f )
9

10 return ({ ’ f ’ : dst [ ’ f ’ ] } , edge , dst )
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The GraphLab abstraction

An example, computing degree of nodes

1 def degree_count_fn ( src , edge , dst ) :
2 src [ ’ degree ’ ] += 1
3 dst [ ’ degree ’ ] += 1
4 return ( src , edge , dst )
5
6 G_count = G. triple_apply (degree_count_fn , ’ degree ’ )

Michal Valko – Graphs in Machine Learning SequeL - 59/78



The GraphLab abstraction
Slightly more complicated example, suboptimal pagerank

1 #assume each node in G has a f i e l d ’ degree ’ and ’ pagerank ’
2 #i n i t i a l i z e ’ pagerank ’ = 1/n for a l l nodes
3
4 def weight_count_fn ( src , edge , dst ) :
5 dst [ ’ degree ’ ] += edge [ ’ weight ’ ]
6 return ( src , edge , dst )
7
8 def pagerank_step_fn ( src , edge , dst ) :
9 dst [ ’ pagerank ’ ] += ( edge [ ’ weight ’ ] * src [ ’ pagerank ’ ]

10 /dst [ ’ degree ’ ] )
11 return ( src , edge , dst )
12
13 G_pagerank = G. triple_apply (weight_count_fn , ’ degree ’ )
14
15 while not converged (G_pagerank) :
16 G_pagerank = G_pagerank . triple_apply (
17 pagerank_step_fn , ’ pagerank ’ )

How many iterations to convergence?
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Graph Spectral Sparsification

Definition ([SS11])

An ε-sparsifier of G is a reweighted subgraph H whose Laplacian LH
satisfies

(1− ε)LG � LH � (1 + ε)LG (1)

Proposition ([SS11; Kyn+16])
There exists an algorithm that can construct an ε-sparsifier
I with only O(n log(n)/ε2) edges
I in O(m log2(n)) time and O(n log(n)/ε2) space
I a single pass over the data
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Graph Spectral Sparsification in Machine Learning

Laplacian smoothing (denoising): given y , f? + ξ and G compute

min
f∈Rn

(f− y)T(f− y) + λfTLGf (2)

Preproc Time Space
f̂ = (λLG + I)−1y 0 O(m log(n)) O(m)

f̃ = (λLH + I)−1y O(m log2(n)) O(n log2(n)) O(n log(n))

Large computational improvement
accuracy guarantees! [SWT16]

Need to approximate spectrum only up to regularization level λ
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Ridge Graph Spectral Sparsification

Definition
An (ε, γ)-sparsifier of G is a reweighted subgraph H whose Laplacian LH
satisfies

(1− ε)LG − εγI � LH � (1 + ε)LG + εγI (3)

Mixed multiplicative/additive error
I large (i.e. ≥ γ) directions reconstructed accurately
I small (i.e. ≤ γ) directions uniformly approximated (γI)

Adapted from Randomized Linear Algebra (RLA) community
PSD matrix low-rank approx. [AM15]

RLA → Graph: Improve over O(n log n) exploiting regularization
Graph → RLA: Exploit LG structure for fast (ε, γ)-sparsification
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How to construct an ε-sparsifier
For complete graphs, sample O(n log(n)) edges uniformly and
reweight

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/
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How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges uniformly?

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/
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How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges using
effective resistance

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/
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How to construct an (ε, γ)-sparsifier

Definition

γ-effective resistance: re(γ) = bT
e(LG + γI)−1be

Effective dim.: deff(γ) =
∑

e re(γ) =
∑n

i=1
λi(LG)

λi(LG)+γ ≤ n

Can still be computed using fast graph solvers
interpretation as inverse of alternative paths lost

Most existing graph algorithms inapplicable [Kyn+16]
Most existing RLA algorithms too slow [CMM17]

Adapt SOA algorithm for kernel matrix approximation
SQUEAK, [CLV17]
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DisRe

arbitrarily split in subgraphs that fit in a single machine
recursively merge-and-reduce until one graph left

additive error cumulates!
merge-and-resparsify
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Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space
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Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space
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Merge

Combine sparsifiers, using 2O(deff(γ) log(n)) space

twice as large as necessary
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Merge-and-Resparsify

Compute p̃(2)
e ∝ min{r̃ (2)e (γ), p̃(1)

e } using fast graph solver
For each edge e sample with probability p̃(2)

e /p̃(1)
e

survival probability p̃(2)
e

p̃(1)
e

p̃(1)
e

survival probability p̃(2)
e

Z
Zp̃(1)

e

Z
Zp̃(1)

e
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DisRe guarantees

Theorem
Given an arbitrary graph G w.h.p. DisRe satisfies
(1) each sub-graphs is an (ε, γ)-sparsifier
(2) with at most O(deff(γ) log(n)) edges.
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DisRe guarantees

Space: independent from m O(deff(γ) log(n)) ≤ O(n log(n))

Time: O(deff(γ) log
3(n)) for fully balanced tree
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DisRe guarantees

Communication: only O(log(n)) rounds
removed edges are forgotten single pass/streaming

point-to-point, centralization only to choose tree
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Guarantees for Laplacian smoothing

f̂ = (λLG + I)−1y, f̃ = (λLH + I)−1y

Theorem ([SWT16] [CLV17])

If LH is an (ε, 0) (ε, γ)-sparsifier of LG

‖̃f− f̂‖22 ≤
ε2

1− ε
(0.25 + λγ)

(
λ̂fTLG f̂ + λγ‖̂f‖22

)
.

O(deff(γ) log(n)) space, O(deff(γ) log
3(n)) time

exploit regularization: H sub-linear in n

Recover bound for ε-sparsifier when γ → 0
freely cross-validate γ since deff(0) ≤ n

trade-off between smoothness and decay of LG
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Experiments

Dataset: Amazon co-purchase graph [YL15]
natural, artificially sparse (true graph known only to Amazon)

we compute 4-step random walk to recover removed
co-purchases [GM15]
Target: eigenvector v associated with λ2(LG) [SWT16]

n = 334, 863 nodes, m = 98, 465, 352 edges (294 avg. degree)
Alg. Parameters |E| (x106) ‖̃f− v‖2

2 (σ=10−3) ‖̃f− v‖2
2 (σ=10−2)

EX-
ACT 98.5 0.067 ± 0.0004 0.756 ± 0.006

kN k = 60 15.7 0.172 ± 0.0004 0.822 ± 0.002
DisRe γ=0 22.8 0.068 ± 0.0004 0.756 ± 0.005
DisRe γ=102 11.8 0.068 ± 0.0002 0.772 ± 0.004

Time: Loading G from disk 90sec, DisRe 120sec(k = 4 × 32
CPU), computing f̃ 120sec, computing f̂ 720sec
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Recap and open questions
Remark ([SWT16])
To the best of our knowledge, [graph sparsification] applications in
machine learning have not yet been thoroughly pursued.

I introduction of (ε, γ)-sparsifiers to Graph ML
I DisRe, new distributed algorithm to construct

(ε, γ)-sparsifiers
I new results for fast Laplacian Smoothing
I new results for fast SSL using ε-sparsifiers (at poster #76)

Open questions
I other accelerated Graph ML algorithms using (ε, γ)-sparsifiers
I more experiments on dense graphs
I Facebook: 300 average friends [Pew Research Center 2013]
I Twitter 453 average followers, 3.4x denser 2012-16 [LKF07]
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