INVENTEURS DU MONDE NUMÉRIQUE

Graphs in Machine Learning

Michal Valko
Inria Lille - Nord Europe, France
TA: Pierre Perrault
Partially based on material by: Mikhail Belkin, Branislav Kveton

Previous Lecture

- Graph-based semi-supervised learning
- SSL with MinCuts
- Gaussian random fields and harmonic solution
- Regularization of harmonic solution
- Soft-harmonic solution
- Inductive and transductive semi-supervised learning
- Manifold regularization
- Max-Margin Graph Cuts
- Theory of Laplacian-based manifold methods
- Transductive learning stability based bounds

This Lecture

- Theory of Laplacian-based manifold methods
- Transductive learning stability based bounds
- Online Semi-Supervised Learning
- Online incremental k-centers
- Examples of applications of online SSL
- Analysis of online SSL
- SSL learnability
- When does graph-based SSL provably help?
- Scaling harmonic functions to millions of samples

Previous Lab Session

- 24.10. 2018 by Pierre Perrault
- Content
- Graph Construction
- Test sensitivity to parameters: σ, k, ε
- Spectral Clustering
- Spectral Clustering vs. k-means
- Image Segmentation
- Short written report
- Questions to piazza (without giving away solutions)
- Deadline: 7. 11. 2018 Today!

Next Lab Session

- 14.11. 2018 by Pierre Perrault
- Content
- Semi-supervised learning
- Graph quantization
- Online face recognizer
- AR: record a video with faces
- Install VM (in case you have not done it yet for TD1)
- Short written report
- Questions to piazza
- Deadline: 28.11. 2018

Final Class projects

- detailed description on the class website
- preferred option: you come up with the topic
- theory/implementation/review or a combination
- one or two people per project (exceptionally three)
- grade 60\%: report + short presentation of the team
- deadlines
- 21.11.2018 - strongly recommended DL for taking projects
- 28.11. 2018 - hard DL for taking projects
- 07.01.2019-submission of the project report
- 11.01. 2019 or later - project presentation
- list of suggested topics on piazza

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{\infty} \leq \beta \leq \frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{2}\right)}+1\right)\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1\right)}
$$

Now, let us plug in the values for our problem.
Take $c_{l}=1$ and $c_{l}>c_{u}$. We have $\left|y_{i}\right| \leq 1$ and $\left|\ell_{i}^{\star}\right| \leq 1$.

$$
\beta \leq 2\left[\frac{\sqrt{2}}{\lambda_{m}(\mathbf{Q})+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{Q})}{\left(\lambda_{m}(\mathbf{Q})+1\right)^{2}}\right]
$$

\mathbf{Q} is reg. $\mathbf{L}: \lambda_{m}(\mathbf{Q})=\lambda_{m}(\mathbf{L})+\gamma_{g}$ and $\lambda_{M}(\mathbf{Q})=\lambda_{M}(\mathbf{L})+\gamma_{g}$

$$
\beta \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf
By the generalization bound of Belkin [BMN04]

$$
\begin{aligned}
R_{P}\left(\ell^{\star}\right) & \leq \widehat{R}_{P}\left(\ell^{\star}\right)+\underbrace{\beta+\sqrt{\frac{2 \ln (2 / \delta)}{n_{l}}}\left(n_{l} \beta+4\right)}_{\text {transductive error } \Delta_{T}\left(\beta, n_{l}, \delta\right)} \\
\beta & \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
\end{aligned}
$$

holds with probability $1-\delta$, where

$$
\begin{aligned}
& R_{P}\left(\ell^{\star}\right)=\frac{1}{N} \sum_{i}\left(\ell_{i}^{\star}-y_{i}\right)^{2} \\
& \widehat{R}_{P}\left(\ell^{\star}\right)=\frac{1}{n_{l}} \sum_{i \in I}\left(\ell_{i}^{\star}-y_{i}\right)^{2}
\end{aligned}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\begin{aligned}
R_{P}\left(\ell^{\star}\right) & \leq \widehat{R}_{P}\left(\ell^{\star}\right)+\underbrace{\beta+\sqrt{\frac{2 \ln (2 / \delta)}{n_{l}}}\left(n_{l} \beta+4\right)}_{\text {transductive error } \Delta_{T}\left(\beta, n_{l}, \delta\right)} \\
\beta & \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
\end{aligned}
$$

Does the bound say anything useful?

1) The error is controlled.
2) Practical when error $\Delta_{T}\left(\beta, n_{l}, \delta\right)$ decreases at rate $O\left(n_{l}^{-\frac{1}{2}}\right)$.

Achieved when $\beta=O\left(1 / n_{l}\right)$. That is, $\gamma_{g}=\Omega\left(n_{l}^{\frac{3}{2}}\right)$.
We have an idea how to set γ_{g} !

SSL with Graphs: Generalization Bounds

Combining inductive + transductive error

With probability $1-(\eta+\delta)$.

$$
\begin{aligned}
R_{P}(f) \leq & \frac{1}{n} \sum_{i} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+ \\
& \widehat{R}_{P}\left(\ell^{\star}\right)+\Delta_{T}\left(\beta, n_{l}, \delta\right)+\Delta_{l}(h, N, \eta)
\end{aligned}
$$

We need to account for ε. With probability $1-(\eta+\delta)$.

$$
\begin{aligned}
R_{P}(f) \leq & \frac{1}{n_{i:}\left|\ell_{i}^{\star}\right| \geq \varepsilon} \\
& \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+\frac{2 \varepsilon n_{\varepsilon}}{N}+ \\
& \widehat{R}_{P}\left(\ell^{\star}\right)+\Delta_{T}\left(\beta, n_{l}, \delta\right)+\Delta_{l}(h, N, \eta)
\end{aligned}
$$

We should have $\varepsilon \leq n_{l}^{-1 / 2}$!

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and linear \mathcal{K} only changes the slope

MMGC for 2D data and linear \mathcal{K} works as we want

$$
\gamma_{\mathrm{g}}=25.000
$$

$$
\gamma_{\mathrm{g}}=5.000
$$

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{\mathrm{g}}=0.200
$$

$$
\gamma_{\mathrm{g}}=0.040
$$

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic \mathcal{K} is also not so good

SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF \mathcal{K}

SSL with Graphs

Graph-based SSL is obviously sensitive to graph construction!

OnlineSSL(G)

 when we can't access future \mathbf{x} ...and we want the results in real time
Online SSL with Graphs

Offline learning setup
Given $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ from \mathbb{R}^{d} and $\left\{y_{i}\right\}_{i=1}^{n_{l}}$, with $n_{l} \ll n$, find $\left\{y_{i}\right\}_{i=n_{l}+1}^{N}$ (transductive) or find f predicting y well beyond that (inductive).

Online learning setup
At the beginning: $\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n_{I}}$ from \mathbb{R}^{d}
At time t :
receive \mathbf{x}_{t} predict y_{t}

Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example \mathbf{x}_{t} comes do
2: \quad Add \mathbf{x}_{t} to graph $G(\mathbf{W})$
3: Update \mathbf{L}_{t}
4: Infer labels

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mid \mathbf{f}_{l}\right)
$$

5: \quad Predict $\widehat{y}_{t}=\operatorname{sgn}\left(\mathbf{f}_{u}(t)\right)$
6: end while

What is wrong with this solution?
The cost and memory of the operations.

> What can we do?

Online SSL with Graphs

Let's keep only k vertices!
Limit memory to k centroids with $\widetilde{\mathbf{W}}^{\mathrm{q}}$ weights.
Each centroid represents several others.
Diagonal $\mathbf{V} \equiv$ multiplicity. We have $\mathbf{V}_{i j}$ copies of centroid i.
Can we compute it compactly? Compact harmonic solution.

$$
\boldsymbol{\ell}^{\mathrm{q}}=\left(\mathbf{L}_{u u}^{\mathrm{q}}+\gamma_{g} V\right)^{-1} \mathbf{W}_{u l}^{\mathrm{q}} \boldsymbol{\ell}_{l} \quad \text { where } \quad \mathbf{W}^{\mathrm{q}}=V \widetilde{\mathbf{W}}^{\mathrm{q}} V
$$

Proof? Using electric circuits.
Why do we keep the multiplicities?

Online SSL with Graphs

Online HFS with Graph Quantization

1: Input

2: $\quad k$ number of representative nodes
3: Initialization
4: $\quad \mathrm{V}$ matrix of multiplicities with 1 on diagonal
5: while new unlabeled example \mathbf{x}_{t} comes do
6: \quad Add \mathbf{x}_{t} to graph G
7: if \# nodes $>k$ then
8: quantize G
9: end if
10: Update \mathbf{L}_{t} of $G(\mathbf{V W V})$
11: Infer labels
12: \quad Predict $\widehat{y}_{t}=\operatorname{sgn}\left(\mathbf{f}_{u}(t)\right)$
13: end while

Online SSL with Graphs: Graph Quantization

An idea: incremental k-centers
Doubling algorithm of Charikar et al. [Cha+97]
Keeps up to k centers $C_{t}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots\right\}$ with

- Distance $\mathbf{c}_{i}, \mathbf{c}_{j} \in C_{t}$ is at least $\geq R$
- For each new \mathbf{x}_{t}, distance to some $\mathbf{c}_{i} \in C_{t}$ is less than R.
- $\left|C_{t}\right| \leq k$
- if not possible, R is doubled

Online SSL with Graphs: Graph Quantization

Online SSL with Graphs: Graph Quantization

Doubling algorithm [Cha+97]
To reduce growth of R, we use $R \leftarrow m \times R$, with $m \geq 1$
C_{t} is changing. How far can \mathbf{x} be from some \mathbf{c} ?

$$
R+\frac{R}{m}+\frac{R}{m^{2}}+\cdots=R\left(1+\frac{1}{m}+\frac{1}{m^{2}}+\cdots\right)=\frac{R m}{m-1}
$$

Guarantees: $(1+\varepsilon)$-approximation algorithm.
Why not incremental k-means?

Online SSL with Graphs: Graph Quantization

Online k-centers
1: an unlabeled \mathbf{x}_{t}, a set of centroids C_{t-1}, multiplicities \mathbf{v}_{t-1}
2: if $\left(\left|C_{t-1}\right|=k+1\right)$ then
3: $\quad R \leftarrow m R$
4: greedily repartition C_{t-1} into C_{t} such that:
5: \quad no two vertices in C_{t} are closer than R
6: \quad for any $\mathbf{c}_{i} \in C_{t-1}$ exists $\mathbf{c}_{j} \in C_{t}$ such that $d\left(\mathbf{c}_{i}, \mathbf{c}_{j}\right)<R$
7: update \mathbf{v}_{t} to reflect the new partitioning
8: else
9: $\quad C_{t} \leftarrow C_{t-1}$
10: $\quad \mathbf{v}_{t} \leftarrow \mathbf{v}_{t-1}$
11: end if
12: if \mathbf{x}_{t} is closer than R to any $\mathbf{c}_{i} \in C_{t}$ then
13: $\quad \mathbf{v}_{t}(i) \leftarrow \mathbf{v}_{t}(i)+1$
14: else
15: $\quad \mathbf{v}_{t}\left(\left|C_{t}\right|+1\right) \leftarrow 1$
16: end if

Online SSL with Graphs

Video examples

http://www.bkveton.com/videos/Coffee.mp4
http://www.bkveton.com/videos/Ad.mp4
http://researchers.lille.inria.fr/~valko/hp/serve.php? what=publications/kveton2009nipsdemo.adaptation.mov
http://researchers.lille.inria.fr/~valko/hp/serve.php? what=publications/kveton2009nipsdemo.officespace.mov
http://researchers.lille.inria.fr/~valko/hp/publications/press-intel-2015.mp4

SSL with Graphs: Some experimental results

- 8 people classification
- Making funny faces
- 4 faces/person are labeled

Nearest Neighbor

SSL with Graphs: Some experimental results

- One person moves among various indoor locations
- 4 labeled examples of a person in the cubicle

Unlabeled

Online HFS outperforms OSSB (even when the weak learners are chosen using future data)

> Online HFS yields better results than a commercial solution at 20% of the computational cost

SSL with Graphs: Some experimental results

- Logging in with faces instead of password
- Able to learn and improve

SSL with Graphs: Some experimental results

- 16 people log twice into a tablet PC at 10 locations

Online HFS yields better results than a commercial solution at 20\% of the computational cost

Online SSL with Graphs: Analysis

What can we guarantee?

Three sources of error

- generalization error - if all data: $\left(\ell_{t}^{\star}-y_{t}\right)^{2}$
- online error - data only incrementally: $\left(\ell_{t}^{0}[t]-\ell_{t}^{\star}\right)^{2}$
- quantization error - memory limitation: $\left(\ell_{t}^{\mathrm{q}}[t]-\ell_{t}^{0}[t]\right)^{2}$

All together:
$\frac{1}{N} \sum_{t=1}^{N}\left(\ell_{t}^{\mathrm{q}}[t]-y_{t}\right)^{2} \leq \frac{9}{2 N} \sum_{t=1}^{N}\left(\ell_{t}^{\star}-y_{t}\right)^{2}+\frac{9}{2 N} \sum_{t=1}^{N}\left(\ell_{t}^{\mathrm{o}}[t]-\ell_{t}^{\star}\right)^{2}+\frac{9}{2 N} \sum_{t=1}^{N}\left(\ell_{t}^{\mathrm{q}}[t]-\ell_{t}^{0}[t]\right)$
Since for any $a, b, c, d \in[-1,1]$:

$$
(a-b)^{2} \leq \frac{9}{2}\left[(a-c)^{2}+(c-d)^{2}+(d-b)^{2}\right]
$$

Online SSL with Graphs: Analysis

Bounding transduction error $\left(\ell_{t}^{\star}-y_{t}\right)^{2}$
If all labeled examples $/$ are i.i.d., $c_{I}=1$ and $c_{l} \gg c_{u}$, then

$$
\begin{aligned}
R\left(\ell^{\star}\right) & \leq \widehat{R}\left(\ell^{\star}\right)+\underbrace{\beta+\sqrt{\frac{2 \ln (2 / \delta)}{n_{l}}}\left(n_{l} \beta+4\right)}_{\text {transductive error } \Delta_{T}\left(\beta, n_{l}, \delta\right)} \\
\beta & \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
\end{aligned}
$$

holds with the probability of $1-\delta$, where

$$
R\left(\ell^{\star}\right)=\frac{1}{N} \sum_{t}\left(\ell_{t}^{\star}-y_{t}\right)^{2} \quad \text { and } \quad \widehat{R}\left(\ell^{\star}\right)=\frac{1}{n_{l}} \sum_{t \in I}\left(\ell_{t}^{\star}-y_{t}\right)^{2}
$$

How should we set γ_{g} ?

Online SSL with Graphs: Analysis

Bounding online error $\left(\ell_{t}^{\circ}[t]-\ell_{t}^{\star}\right)^{2}$
Idea: If \mathbf{L} and \mathbf{L}° are regularized, then HFSs get closer together.
since they get closer to zero
Recall $\boldsymbol{\ell}=\left(\mathbf{C}^{-1} \mathbf{Q}+\mathbf{I}\right)^{-1} \mathbf{y}$, where $\mathbf{Q}=\mathbf{L}+\gamma_{g} \mathbf{I}$
and also $\mathbf{v} \in \mathbb{R}^{n \times 1}, \lambda_{m}(A)\|\mathbf{v}\|_{2} \leq\|A \mathbf{v}\|_{2} \leq \lambda_{M}(A)\|\mathbf{v}\|_{2}$

$$
\|\boldsymbol{\ell}\|_{2} \leq \frac{\|\mathbf{y}\|_{2}}{\lambda_{m}\left(\mathbf{C}^{-1} \mathbf{Q}+\mathbf{I}\right)}=\frac{\|\mathbf{y}\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C})}+1} \leq \frac{\sqrt{n_{l}}}{\gamma_{g}+1}
$$

Difference between offline and online solutions:

$$
\left(\ell_{t}^{0}[t]-\ell_{t}^{\star}\right)^{2} \leq\left\|\ell^{\circ}[t]-\ell^{\star}\right\|_{\infty}^{2} \leq\left\|\ell^{0}[t]-\ell^{\star}\right\|_{2}^{2} \leq\left(\frac{2 \sqrt{n_{l}}}{\gamma_{g}+1}\right)^{2}
$$

Online SSL with Graphs: Analysis

Bounding quantization error $\left(\ell_{t}^{q}[t]-\ell_{t}^{0}[t]\right)^{2}$
How are the quantized and full solution different?

$$
\ell^{\star}=\min _{\ell \in \mathbb{R}^{N}}(\ell-\mathbf{y})^{\top} \mathbf{C}(\ell-\mathbf{y})+\ell^{\top} \mathbf{Q} \ell
$$

$\operatorname{In} \mathbf{Q}!\mathbf{Q}^{\circ}$ (online) vs. \mathbf{Q}^{q} (quantized)
We have: $\ell^{\circ}=\left(\mathbf{C}^{-1} \mathbf{Q}^{\circ}+\mathbf{I}\right)^{-1} \mathbf{y}$ vs. $\ell^{\mathrm{q}}=\left(\mathbf{C}^{-1} \mathbf{Q}^{\mathrm{q}}+\mathbf{I}\right)^{-1} \mathbf{y}$

$$
\text { Let } \mathbf{Z}^{\mathrm{q}}=\mathbf{C}^{-1} \mathbf{Q}^{\mathrm{q}}+\mathbf{I} \text { and } \mathbf{Z}^{\circ}=\mathbf{C}^{-1} \mathbf{Q}^{\circ}+\mathbf{I} \text {. }
$$

$$
\begin{aligned}
\ell^{\mathrm{q}}-\ell^{\mathrm{o}} & =\left(\mathbf{Z}^{\mathrm{q}}\right)^{-1} \mathbf{y}-\left(\mathbf{Z}^{\mathrm{o}}\right)^{-1} \mathbf{y}=\left(\mathbf{Z}^{\mathrm{q}} \mathbf{Z}^{\mathrm{o}}\right)^{-1}\left(\mathbf{Z}^{\mathrm{o}}-\mathbf{Z}^{\mathrm{q}}\right) \mathbf{y} \\
& =\left(\mathbf{Z}^{\mathrm{q}} \mathbf{Z}^{\mathrm{o}}\right)^{-1} \mathbf{C}^{-1}\left(\mathbf{Q}^{\mathrm{o}}-\mathbf{Q}^{\mathrm{q}}\right) \mathbf{y}
\end{aligned}
$$

Online SSL with Graphs: Analysis

Bounding quantization error $\left(\ell_{t}^{q}[t]-\ell_{t}^{\circ}[t]\right)^{2}$

$$
\begin{aligned}
\ell^{\mathrm{q}}-\ell^{\mathrm{o}} & =\left(\mathbf{Z}^{\mathrm{q}}\right)^{-1} \mathbf{y}-\left(\mathbf{Z}^{\mathrm{o}}\right)^{-1} \mathbf{y}=\left(\mathbf{Z}^{\mathrm{q}} \mathbf{Z}^{\mathrm{o}}\right)^{-1}\left(\mathbf{Z}^{\mathrm{o}}-\mathbf{Z}^{\mathrm{q}}\right) \mathbf{y} \\
& =\left(\mathbf{Z}^{\mathrm{q}} \mathbf{Z}^{\mathrm{o}}\right)^{-1} \mathbf{C}^{-1}\left(\mathbf{Q}^{\mathrm{o}}-\mathbf{Q}^{\mathrm{q}}\right) \mathbf{y} \\
& \left\|\ell^{\mathrm{q}}-\ell^{\mathrm{o}}\right\|_{2} \leq \frac{\lambda_{M}\left(\mathbf{C}^{-1}\right)\left\|\left(\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\right) \mathbf{y}\right\|_{2}}{\lambda_{m}\left(\mathbf{Z}^{\mathrm{q}}\right) \lambda_{m}\left(\mathbf{Z}^{\mathrm{o}}\right)}
\end{aligned}
$$

$\|\cdot\|_{F}$ and $\|\cdot\|_{2}$ are compatible and y_{i} is zero when unlabeled:

$$
\left\|\left(\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\right) \mathbf{y}\right\|_{2} \leq\left\|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\right\|_{F} \cdot\|\mathbf{y}\|_{2} \leq \sqrt{n_{l}}\left\|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\right\|_{F}
$$

Furthermore, $\lambda_{m}\left(\mathbf{Z}^{\circ}\right) \geq \frac{\lambda_{m}\left(\mathbf{Q}^{\circ}\right)}{\lambda_{M}(\mathbf{C})}+1 \geq \gamma_{g} \quad$ and $\quad \lambda_{M}\left(\mathbf{C}^{-1}\right) \leq c_{u}^{-1}$

$$
\text { We get }\left\|\ell^{\mathrm{q}}-\ell^{\mathrm{o}}\right\|_{2} \leq \frac{\sqrt{n_{l}}}{c_{u} \gamma_{g}^{2}}\left\|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\right\|_{F}
$$

Online SSL with Graphs: Analysis

Bounding quantization error $\left(\ell_{t}^{\mathrm{q}}[t]-\ell_{t}^{0}[t]\right)^{2}$
The quantization error depends on $\left\|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\right\|_{F}=\left\|\mathbf{L}^{\mathrm{q}}-\mathbf{L}^{\mathrm{o}}\right\|_{F}$.
When can we keep $\left\|\mathbf{L}^{\mathrm{q}}-\mathbf{L}^{\mathrm{o}}\right\|_{F}$ under control?
Charikar guarantees distortion error of at most $\operatorname{Rm} /(m-1)$
For what kind of data $\left\{\mathbf{x}_{i}\right\}_{i=1, \ldots, n}$ is the distortion small?
Assume manifold \mathcal{M}

- all $\left\{\mathbf{x}_{i}\right\}_{i \geq 1}$ lie on a smooth s-dimensional compact \mathcal{M}
- with boundary of bounded geometry Def. 11 of Hein [HAL07]
- should not intersect itself
- should not fold back onto itself
- has finite volume V
- has finite surface area A

Online SSL with Graphs: Analysis

Bounding quantization error $\left(\ell_{t}^{q}[t]-\ell_{[}^{O}[t]\right)^{2}$
Bounding $\left\|\mathrm{L}^{\mathrm{q}}-\mathrm{L}^{\mathrm{o}}\right\|_{F}$ when $\mathbf{x}_{i} \in \mathcal{M}$
Consider k-sphere packing* of radius r with centers contained in \mathcal{M}. *only the centers are packed, not necessarily the entire ball

What is the maximum volume of this packing*? $k c_{s} r^{s} \leq V+A c_{\mathcal{M}} r$ with $c_{s}, c_{\mathcal{M}}$ depending on dimension and \mathcal{M}.

If k is large $\rightarrow r<$ injectivity radius of \mathcal{M} [HAL07] and $r<1$:

$$
r<\left(\left(V+A c_{\mathcal{M}}\right) /\left(k c_{s}\right)\right)^{1 / s}=\mathcal{O}\left(k^{-1 / s}\right)
$$

r-packing is a $2 r$-covering:

$$
\max _{i=1, \ldots, N}\left\|\mathbf{x}_{i}-\mathbf{c}\right\|_{2} \leq R m /(m-1) \leq 2(1+\varepsilon) \mathcal{O}\left(k^{-1 / s}\right)=\mathcal{O}\left(k^{-1 / s}\right)
$$

Online SSL with Graphs: Analysis

Bounding quantization error $\left(\ell_{t}^{q}[t]-\ell_{[}^{\circ}[t]\right)^{2}$
If similarity is M-Lipschitz, \mathbf{L} is normalized, $c_{i j}^{o}=\sqrt{\mathbf{D}_{i i j}^{o} \mathbf{D}_{j j}^{o}}>c_{\text {min }} N$

$$
\left|\mathbf{W}_{i j}^{\mathrm{q}}-\mathbf{W}_{i j}^{\circ}\right|<2 \mathrm{MRm} /(m-1) \text { and }\left|c_{i j}^{\mathrm{q}}-c_{i j}^{o}\right|<2 n M R m /(m-1):
$$

$$
\begin{aligned}
\mathbf{L}_{i j}^{\mathrm{q}}-\mathbf{L}_{i j}^{\mathrm{o}} & =\frac{\mathbf{W}_{i j}^{\mathrm{q}}}{c_{i j}^{\mathrm{q}}}-\frac{\mathbf{W}_{i j}^{\mathrm{o}}}{c_{i j}} \\
& \leq \frac{\mathbf{W}_{i j}^{\mathrm{q}}-\mathbf{W}_{i j}^{\mathrm{o}}}{c_{i j}^{\mathrm{q}}}+\frac{\mathbf{W}_{i j}^{\mathrm{o}}\left(c_{i j}^{\mathrm{o}}-c_{i j}^{\mathrm{q}}\right)}{c_{i j}^{\mathrm{o}} c_{i j}^{\mathrm{q}}} \\
& \leq \frac{4 M R m}{(m-1) c_{\min } N}+\frac{4 M(N M R m)}{\left((m-1) c_{\min } N\right)^{2}} \\
& =O\left(\frac{R}{N}\right)
\end{aligned}
$$

Finally, $\left\|\mathbf{L}^{\mathrm{q}}-\mathbf{L}^{\circ}\right\|_{F}^{2} \leq N^{2} \mathcal{O}\left(R^{2} / N^{2}\right)=\mathcal{O}\left(k^{-2 / s}\right)$.

Online SSL with Graphs: Analysis

Bounding quantization error $\left(\ell_{t}^{q}[t]-\ell_{[}^{0}[t]\right)^{2}$
We showed $\left\|\mathbf{L}^{\mathrm{q}}-\mathbf{L}^{\mathrm{o}}\right\|_{F}^{2} \leq N^{2} \mathcal{O}\left(R^{2} / N^{2}\right)=\mathcal{O}\left(k^{-2 / s}\right)=\mathcal{O}(1)$.

$$
\frac{1}{N} \sum_{t=1}^{N}\left(\ell_{t}^{\mathrm{q}}[t]-\ell_{t}^{o}[t]\right)^{2} \leq \frac{n_{l}}{c_{u}^{2} \gamma_{g}^{4}}\left\|\mathbf{L}^{\mathrm{q}}-\mathbf{L}^{\mathrm{o}}\right\|_{F}^{2} \leq \frac{n_{l}}{c_{u}^{2} \gamma_{g}^{4}}
$$

This converges to zero at the rate $\mathcal{O}\left(N^{-1 / 2}\right)$ with $\gamma_{g}=\Omega\left(N^{1 / 8}\right)$.
With properly setting γ_{g}, e.g., $\gamma_{g}=\Omega\left(N^{1 / 8}\right)$, we can have

$$
\frac{1}{N} \sum_{t=1}^{N}\left(\ell_{t}^{\mathrm{q}}[t]-y_{t}\right)^{2}=\mathcal{O}\left(N^{-1 / 2}\right)
$$

SSL with Graphs: What is behind it?

Why and when it helps?
Can we guarantee benefit of SSL over SL?
Are there cases when manifold SSL is provably helpful?
Say \mathcal{X} is supported on manifold \mathcal{M}. Compare two cases:

- SL: does not know about \mathcal{M} and only knows (\mathbf{x}_{i}, y_{i})
- SSL: perfect knowledge of $\mathcal{M} \equiv$ humongous amounts of \mathbf{x}_{i}
http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf

SSL with Graphs: What is behind it?

Set of learning problems - collections \mathcal{P} of probability distributions:

$$
\mathcal{P}=\cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}=\cup_{\mathcal{M}}\left\{p \in \mathcal{P} \mid p_{\mathcal{X}} \text { is uniform on } \mathcal{M}\right\}
$$

M_{2}

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P}=\cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}=\left\{p \in \mathcal{P} \mid p_{\mathcal{X}}\right.$ is uniform on $\left.\mathcal{M}\right\}$ Regression function $m_{p}=\mathbb{E}[y \mid x]$ when $x \in \mathcal{M}$ Algorithm A and labeled examples $\bar{z}=\left\{z_{i}\right\}_{i=1}^{n_{1}}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n_{1}}$ Minimax rate

$$
R\left(n_{l}, \mathcal{P}\right)=\inf _{A} \sup _{p \in \mathcal{P}} \mathbb{E}_{\bar{z}}\left[\left\|A(\bar{z})-m_{p}\right\|_{L^{2}\left(p_{\mathrm{X}}\right)}\right]
$$

Since $\mathcal{P}=\cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$

$$
R\left(n_{l}, \mathcal{P}\right)=\inf _{A} \sup _{\mathcal{M}} \sup _{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\overline{\mathbf{z}}}\left[\left\|A(\bar{z})-m_{p}\right\|_{L^{2}\left(p_{\mathrm{X}}\right)}\right]
$$

(SSL) When A is allowed to know \mathcal{M}

$$
Q\left(n_{l}, \mathcal{P}\right)=\sup _{\mathcal{M}} \inf _{A} \sup _{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\bar{z}}\left[\left\|A(\bar{z})-m_{p}\right\|_{L^{2}\left(p_{\mathbf{x}}\right)}\right]
$$

In which cases there is a gap between $Q\left(n_{l}, \mathcal{P}\right)$ and $R\left(n_{l}, \mathcal{P}\right)$?

SSL with Graphs: What is behind it?

Hypothesis space \mathcal{H} : half of the circle as +1 and the rest as -1

M_{1}

M_{2}

Case 1: \mathcal{M} is known to the learner $\left(\mathcal{H}_{\mathcal{M}}\right)$
What is a VC dimension of $\mathcal{H}_{\mathcal{M}}$?

$$
\text { Optimal rate } Q(n, \mathcal{P}) \leq 2 \sqrt{\frac{3 \log n_{l}}{n_{l}}}
$$

SSL with Graphs: What is behind it?

Case 2: \mathcal{M} is unknown to the learner

$$
R\left(n_{l}, \mathcal{P}\right)=\inf _{A} \sup _{p \in \mathcal{P}} \mathbb{E}_{\overline{\mathbf{z}}}\left[\left\|A(\bar{z})-m_{p}\right\|_{L^{2}\left(p_{\mathrm{x}}\right)}\right]=\Omega(1)
$$

We consider 2^{d} manifolds of the form

$$
\mathcal{M}=\text { Loops } \cup \text { Links } \cup C \text { where } C=\cup_{i=1}^{d} C_{i}
$$

Main idea: d segments in $C, d-I$ with no data, 2^{\prime} possible choices for labels, which helps us to lower bound $\left\|A(\bar{z})-m_{p}\right\|_{L^{2}\left(p_{\mathrm{X}}\right)}$

SSL with Graphs: What is behind it?

Loops (A) Loops (A)

Knowing the manifold helps

- C_{1} and C_{4} are close
- C_{1} and C_{3} are far
- we also need: target function varies smoothly
- altogether: closeness on manifold \rightarrow similarity in labels

SSL with Graphs: What is behind it?

What does it mean to know \mathcal{M} ?

Different degrees of knowing \mathcal{M}

- set membership oracle: $\mathbf{x} \stackrel{?}{\in} \mathcal{M}$
- approximate oracle
- knowing the harmonic functions on \mathcal{M}
- knowing the Laplacian $\mathcal{L}_{\mathcal{M}}$
- knowing eigenvalues and eigenfunctions
- topological invariants, e.g., dimension
- metric information: geodesic distance

Next lecture: Wednesday, November 21th at 14:00!

> Michal Valko
> michal.valko@inria.fr
> ENS Paris-Saclay, MVA 2018/2019
> SequeL team, Inria Lille - Nord Europe
> https://team.inria.fr/sequel/

