Graphs in Machine Learning

Michal Valko
Inria Lille - Nord Europe, France
TA: Pierre Perrault
Partially based on material by: Mikhail Belkin,
Jerry Zhu, Olivier Chapelle, Branislav Kveton

Previous Lecture

- geometry of the data and the connectivity
- spectral clustering
- connectivity vs. compactness
- MinCut, RatioCut, NCut
- spectral relaxations
- manifold learning with Laplacian eigenmaps
- semi-supervised learning
- inductive and transductive semi-supervised learning
- SSL with self-training
- SVMs and semi-supervised SVMs = TSVMs

Previous Lab Session

- 24. 10. 2018 by Pierre Perrault
- Content
- graph construction
- test sensitivity to parameters: σ, k, ε
- spectral clustering
- spectral clustering vs. k-means
- image segmentation
- Short written report (graded, all reports around 40\% of grade)
- Check the course website for the policies
- Questions to piazza
- Deadline: 7. 11. 2018, 23:59

This Lecture

- harmonic solution on graphs
- graph-based semi-supervised learning
- transductive learning
- manifold regularization
- max-margin graph cuts
- theory of Laplacian-based manifold methods
- transductive learning stability based bounds
- online semi-supervised Learning
- online incremental k-centers

SSL(G)

semi-supervised learning with graphs and harmonic functions
...our running example for learning with graphs

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf
*following some insights from vision research in 1980s

SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering Where is the link?
What is the formal statement? We look for $f(\mathbf{x}) \in\{ \pm 1\}$

$$
\text { cut }=\sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}=\Omega(f)
$$

Why $\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}$ and not $\left|f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right|$?

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in\{ \pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$
\Omega(\mathbf{f})=\sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

Clustering was unsupervised, here we have supervised data.
Recall the general objective-function framework:

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{l}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(\mathbf{f})
$$

It would be nice if we match the prediction on labeled data:

$$
V(\mathbf{x}, y, f(\mathbf{x}))=\infty \sum_{i=1}^{n_{l}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

SSL with Graphs: MinCut

Final objective function:

$$
\min _{\mathbf{f} \in\{ \pm 1\}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{1}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(\mathrm{x}_{i}\right)-f\left(\mathrm{x}_{j}\right)\right)^{2}
$$

This is an integer program :(
Can we solve it?
Are we happy?

We need a better way to reflect the confidence.

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions (ICML 2013)
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf
*a seminal paper that convinced people to use graphs for SSL
Idea 1: Look for a unique solution.
Idea 2: Find a smooth one. (harmonic solution)
Harmonic SSL
1): As before, we constrain f to match the supervised data:

$$
f\left(\mathbf{x}_{i}\right)=y_{i} \quad \forall i \in\left\{1, \ldots, n_{l}\right\}
$$

2): We enforce the solution f to be harmonic:

$$
f\left(\mathbf{x}_{i}\right)=\frac{\sum_{i \sim j} f\left(\mathbf{x}_{j}\right) w_{i j}}{\sum_{i \sim j} w_{i j}} \quad \forall i \in\left\{n_{l}+1, \ldots, n_{u}+n_{l}\right\}
$$

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$
\min _{f \in\{ \pm 1\}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{l}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(\mathrm{x}_{i}\right)-f\left(\mathrm{x}_{j}\right)\right)^{2}
$$

...if we just relax the integer constraints to be real ...

$$
\min _{f \in \mathbb{R}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{l}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}
$$

...or equivalently (note that $f\left(\mathbf{x}_{i}\right)=f_{i}$) ...

$$
\begin{aligned}
& \min _{\mathbf{f} \in \mathbb{R}_{l}{ }^{+_{u}+n_{u}}} \sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2} \\
& \text { s.t. } \quad y_{i}=f\left(\mathbf{x}_{i}\right) \quad \forall i=1, \ldots, n_{l}
\end{aligned}
$$

SSL with Graphs: Harmonic Functions

Properties of the relaxation from ± 1 to \mathbb{R}

- there is a closed form solution for \mathbf{f}
- this solution is unique
- globally optimal
- it is either constant or has a maximum/minimum on a boundary
- $f\left(\mathbf{x}_{i}\right)$ may not be discrete
- but we can threshold it
- electric-network interpretation
- random-walk interpretation

SSL with Graphs: Harmonic Functions

Random walk interpretation:

1) start from the vertex you want to label and randomly walk
2) $P(j \mid i)=\frac{w_{i j}}{\sum_{k} w_{i k}} \equiv \mathbf{P}=\mathbf{D}^{-1} \mathbf{W}$
3) finish when a labeled vertex is hit
absorbing random walk
$f_{i}=$ probability of reaching a positive labeled vertex

SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation
Step 1: Set $f\left(\mathbf{x}_{i}\right)=y_{i}$ for $i=1, \ldots, n_{l}$
Step 2: Propagate iteratively (only for unlabeled)

$$
f\left(\mathbf{x}_{i}\right) \leftarrow \frac{\sum_{i \sim j} f\left(\mathbf{x}_{j}\right) w_{i j}}{\sum_{i \sim j} w_{i j}} \quad \forall i \in\left\{n_{l}+1, \ldots, n_{u}+n_{l}\right\}
$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution
Define $\mathbf{f}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n_{l}+n_{u}}\right)\right)=\left(f_{1}, \ldots, f_{n_{l}+n_{u}}\right)$

$$
\Omega(\mathbf{f})=\sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}=\mathbf{f}^{\top} \mathbf{L} \mathbf{f}
$$

\mathbf{L} is a $\left(n_{l}+n_{u}\right) \times\left(n_{l}+n_{u}\right)$ matrix:

$$
\mathbf{L}=\left[\begin{array}{ll}
\mathbf{L}_{/ /} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u 1} & \mathbf{L}_{u u}
\end{array}\right]
$$

How to compute this constrained minimization problem?

SSL with Graphs: Harmonic Functions

Let us compute harmonic solution using harmonic property!
How did we formalize the harmonic property of a circuit?

$$
(\mathbf{L f})_{u}=\mathbf{0}_{u}
$$

In matrix notation

$$
\left[\begin{array}{ll}
\mathbf{L}_{/ /} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u l} & \mathbf{L}_{u u}
\end{array}\right]\left[\begin{array}{l}
\mathbf{f}_{/} \\
\mathbf{f}_{u}
\end{array}\right]=\left[\begin{array}{l}
\ldots \\
\mathbf{0}_{u}
\end{array}\right]
$$

$f_{/}$is constrained to be $y_{/}$and for $f_{u} \ldots \ldots$

$$
\mathbf{L}_{u \mid} \mathbf{f}_{/}+\mathbf{L}_{u u} \mathbf{f}_{u}=\mathbf{0}_{u}
$$

...from which we get

$$
\mathbf{f}_{u}=\mathbf{L}_{u u}^{-1}\left(-\mathbf{L}_{u \mid} \mathbf{f}_{l}\right)=\mathbf{L}_{u u}^{-1}\left(\mathbf{W}_{u \mid} \mathbf{f}_{l}\right) .
$$

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$
\mathbf{f}_{u}=\mathbf{L}_{u u}^{-1}\left(-\mathbf{L}_{u \mid} \mathbf{f}_{l}\right)=\mathbf{L}_{u u}^{-1}\left(\mathbf{W}_{u \mid} \mathbf{f}_{l}\right)
$$

Note that $\mathbf{P}=\mathbf{D}^{-1} \mathbf{W}$. Then equivalently

$$
\mathbf{f}_{u}=\left(\mathbf{I}-\mathbf{P}_{u u}\right)^{-1} \mathbf{P}_{u \mid} \mathbf{f}_{/} .
$$

Split the equation into + ve $\&-v e$ part:

$$
\begin{aligned}
f_{i} & =\left(\mathbf{I}-\mathbf{P}_{u u}\right)_{i u}^{-1} \mathbf{P}_{u l} \mathbf{f}_{l} \\
& =\underbrace{\sum_{j: y_{j}=1}\left(\mathbf{I}-\mathbf{P}_{u u}\right)_{i u}^{-1} \mathbf{P}_{u j}}_{p_{i}^{(+1)}}-\underbrace{\sum_{j: y_{j}=-1}\left(\mathbf{I}-\mathbf{P}_{u u}\right)_{i u}^{-1} \mathbf{P}_{u j}}_{p_{i}^{(-1)}} \\
& =p_{i}^{(+1)}-p_{i}^{(-1)}
\end{aligned}
$$

SSL with Graphs: Regularized Harmonic Functions

$$
f_{i}=p_{i}^{(+1)}-p_{i}^{(-1)} \quad \Longrightarrow f_{i}=\underbrace{\left|f_{i}\right|}_{\text {confidence }} \times \underbrace{\operatorname{sgn}\left(f_{i}\right)}_{\text {label }}
$$

What if a nasty outlier sneaks in?
The prediction for the outlier can be hyperconfident :(
How to control the confidence of the inference?
Allow the random walk to die!
We add a sink to the graph.
sink $=$ artificial label node with value 0
We connect it to every other vertex.
What will this do to our predictions?

SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mathbf{f}_{l}\right)
$$

How does γ_{g} influence HS?

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{\mathrm{g}}=0.200
$$

$$
\gamma_{\mathrm{g}}=0.040
$$

What happens to sneaky outliers?

SSL with Graphs: Harmonic Functions

Why don't we represent the sink in \mathbf{L} explicitly?

Formally, to get the harmonic solution on the graph with sink ...

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathbf{L}_{/ I}+\gamma_{G} \mathbf{I}_{n_{l}} & \mathbf{L}_{/ u} & -\gamma_{G} \\
\mathbf{L}_{u l} & \mathbf{L}_{u u}+\gamma_{G} \mathbf{I}_{n_{u}} & -\gamma_{G} \\
-\gamma_{G} \mathbf{1}_{n_{l} \times 1} & -\gamma_{G} \mathbf{1}_{n_{u} \times 1} & n \gamma_{G}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{/} \\
\mathbf{f}_{u} \\
0
\end{array}\right]=\left[\begin{array}{c}
\ldots \\
\mathbf{0}_{u} \\
\ldots
\end{array}\right]} \\
\mathbf{L}_{u \mid l} \mathbf{f}_{l}+\left(\mathbf{L}_{u u}+\gamma_{G} \mathbf{I}_{n_{u}}\right) \mathbf{f}_{u}=\mathbf{0}_{u}
\end{gathered}
$$

... which is the same if we disregard the last column and row ...

$$
\left[\begin{array}{cc}
\mathbf{L}_{\| /}+\gamma_{G} \mathbf{I}_{n_{/}} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u l} & \mathbf{L}_{u u}+\gamma_{G} \mathbf{I}_{n_{u}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{/} \\
\mathbf{f}_{u}
\end{array}\right]=\left[\begin{array}{l}
\ldots \\
\mathbf{0}_{u}
\end{array}\right]
$$

... and therefore we simply add γ_{G} to the diagonal of \mathbf{L} !

SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with $\mathbf{Q}=\mathbf{L}+\gamma_{g} \mathbf{I}$:

$$
\min _{\mathbf{f} \in \mathbb{R}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{1}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \mathbf{f}^{\mathrm{T}} \mathbf{Q f}
$$

What if we do not really believe that $f\left(\mathbf{x}_{i}\right)=y_{i}, \forall i$?

$$
\mathbf{f}^{\star}=\min _{\mathbf{f} \in \mathbb{R}^{N}}(\mathbf{f}-\mathbf{y})^{\top} \mathbf{C}(\mathbf{f}-\mathbf{y})+\mathbf{f}^{\top} \mathbf{Q} f
$$

\mathbf{C} is diagonal with $C_{i i}= \begin{cases}c_{l} & \text { for labeled examples } \\ c_{u} & \text { otherwise. }\end{cases}$
$\mathbf{y} \equiv$ pseudo-targets with $y_{i}= \begin{cases}\text { true label } & \text { for labeled examples } \\ 0 & \text { otherwise }\end{cases}$

SSL with Graphs: Soft Harmonic Functions

$$
\mathbf{f}^{\star}=\min _{\mathbf{f} \in \mathbb{R}^{n}}(\mathbf{f}-\mathbf{y})^{\mathrm{T}} \mathbf{C}(\mathbf{f}-\mathbf{y})+\mathbf{f}^{\mathrm{T}} \mathbf{Q f}
$$

Closed form soft harmonic solution:

$$
\mathbf{f}^{\star}=\left(\mathbf{C}^{-1} \mathbf{Q}+\mathbf{I}\right)^{-1} \mathbf{y}
$$

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{g}=0.200
$$

$$
\gamma_{g}=0.040
$$

What are the differences between hard and soft?
Not much different in practice.
Provable generalization guarantees for the soft one.

SSL with Graphs: Regularized Harmonic Functions

Larger implications of random walks

random walk relates to commute distance which should satisfy
(\star) Vertices in the same cluster of the graph have a small commute distance, whereas two vertices in different clusters of the graph have a large commute distance.

Do we have this property for HS? What if $N \rightarrow \infty$?
Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the commute distance http://www.informatik.uni-hamburg.de/ML/contents/ people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf Solutions? 1) γ_{g} 2) amplified commute distance 3) $\left.\mathbf{L}^{p} 4\right) \mathbf{L}^{\star} \ldots$ The goal of these solutions: make them remember!

SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.
They are transductive.
What if a new point $\mathbf{x}_{n_{l}+n_{u}+1}$ arrives?
Option 1) Add it to the graph and recompute HFS.
Option 2) Make the algorithms inductive!
Allow to be defined everywhere: $f: \mathcal{X} \mapsto \mathbb{R}$
Allow $f\left(\mathbf{x}_{i}\right) \neq y_{i}$. Why? To deal with noise.
Solution: Manifold Regularization

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$
\min _{f} \sum_{i}^{n_{l}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(f)
$$

Want to control f, also for the out-of-sample data, i.e., everywhere.

$$
\Omega(f)=\lambda_{2} \mathbf{f}^{\mathbf{\top}} \mathbf{L f}+\lambda_{1} \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^{2} \mathrm{~d} \mathbf{x}
$$

For general kernels:

$$
\min _{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda_{1}\|f\|_{\mathcal{K}}^{2}+\lambda_{2} \mathrm{f}^{\mathrm{\top}} \operatorname{Lf}
$$

SSL with Graphs: Manifold Regularization

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} V\left(x_{i}, y_{i}, f\right)+\lambda_{1}\|f\|_{\mathcal{K}}^{2}+\lambda_{2} f^{\top} L f
$$

Representer theorem for manifold regularization

The minimizer f^{\star} has a finite expansion of the form

$$
f^{\star}(\mathbf{x})=\sum_{i=1}^{n_{I}+n_{u}} \alpha_{i} \mathcal{K}\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

$V(\mathbf{x}, y, f)=(y-f(\mathbf{x}))^{2}$
LapRLS Laplacian Regularized Least Squares
$V(\mathbf{x}, y, f)=\max (0,1-y f(\mathbf{x}))$
LapSVM Laplacian Support Vector Machines

SSL with Graphs: Laplacian SVMs

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{I}} \max (0,1-y f(\mathbf{x}))+\gamma_{\boldsymbol{A}}\|f\|_{\mathcal{K}}^{2}+\gamma_{I} \mathbf{f}^{\top} L f
$$

Allows us to learn a function in RKHS, i.e., RBF kernels.

SSL with Graphs: Laplacian SVMs

Checkpoint 1

Semi-supervised learning with graphs:

$$
\min _{\mathbf{f} \in\{ \pm 1\}^{n^{\prime}+n_{u}}}(\infty) \sum_{i=1}^{n_{1}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

Regularized harmonic Solution:

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mathbf{f}_{l}\right)
$$

Checkpoint 2

Unconstrained regularization in general:

$$
\mathbf{f}^{\star}=\min _{\mathbf{f} \in \mathbb{R}^{N}}(\mathbf{f}-\mathbf{y})^{\top} \mathbf{C}(\mathbf{f}-\mathbf{y})+f^{\top} \mathbf{Q}
$$

Out of sample extension: Laplacian SVMs

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} \max (0,1-y f(\mathbf{x}))+\lambda_{1}\|f\|_{\mathcal{K}}^{2}+\lambda_{2} \mathrm{f}^{\mathrm{\top}} \operatorname{Lf}
$$

SSL with Graphs: Laplacian SVMs

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} \max (0,1-y f(\mathbf{x}))+\lambda_{1}\|f\|_{\mathcal{K}}^{2}+\lambda_{2} f^{\top} \operatorname{Lf}
$$

$\mathcal{H}_{\mathcal{K}}$ is nice and expressive.

Can there be a problem with certain $\mathcal{H}_{\mathcal{K}}$?

We look for f only in $\mathcal{H}_{\mathcal{K}}$.
If it is simple (e.g., linear) minimization of \mathbf{f}^{\top} Lf can perform badly.
Consider again this 2D data and linear \mathcal{K}.

Invía

SSL with Graphs: Laplacian SVMs

Linear $\mathcal{K} \equiv$ functions with slope α_{1} and intercept α_{2}.

$$
\min _{\alpha_{1}, \alpha_{2}} \sum_{i}^{n_{1}} V\left(f, \mathbf{x}_{i}, y_{i}\right)+\lambda_{1}\left[\alpha_{1}^{2}+\alpha_{2}^{2}\right]+\lambda_{2} f^{\top} L f
$$

For this simple case we can write down $\mathbf{f}^{\top} \mathbf{L f}$ explicitly.

$$
\begin{aligned}
\mathbf{f}^{\top} \mathrm{Lf} & =\frac{1}{2} \sum_{i, j} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2} \\
& =\frac{1}{2} \sum_{i, j} w_{i j}\left(\alpha_{1}\left(\mathbf{x}_{i 1}-\mathbf{x}_{j 1}\right)+\alpha_{2}\left(\mathbf{x}_{i 2}-\mathbf{x}_{j 2}\right)\right)^{2} \\
& =\frac{\alpha_{1}^{2}}{2} \underbrace{\sum_{i, j} w_{i j}\left(\mathbf{x}_{i 1}-\mathbf{x}_{j 1}\right)^{2}}_{\Delta=218.351}+\frac{\alpha_{2}^{2}}{2} \underbrace{\sum_{i, j} w_{i j}\left(\mathbf{x}_{i 2}-\mathbf{x}_{j 2}\right)^{2}}_{\Delta=218.351}
\end{aligned}
$$

SSL with Graphs: Laplacian SVMs

2D data and linear \mathcal{K} objective

$$
\min _{\alpha_{1}, \alpha_{2}} \sum_{i}^{n_{I}} V\left(f, \mathbf{x}_{i}, y_{i}\right)+\left(\lambda_{1}+\frac{\lambda_{2} \Delta}{2}\right)\left[\alpha_{1}^{2}+\alpha_{2}^{2}\right]
$$

Setting $\lambda^{\star}=\left(\lambda_{1}+\frac{\gamma_{2} \Delta}{2}\right)$:

$$
\min _{\alpha_{1}, \alpha_{2}} \sum_{i}^{n_{1}} V\left(f, \mathbf{x}_{i}, y_{i}\right)+\lambda^{\star}\left[\alpha_{1}^{2}+\alpha_{2}^{2}\right]
$$

What does this objective function correspond to?
The only influence of unlabeled data is through λ^{\star}.
The same value of the objective as for supervised learning for some λ without the unlabeled data! This is not good.

SSL with Graphs: Laplacian SVMs

MR for 2D data and linear \mathcal{K} only changes the slope

What would we like to see?

$$
\gamma_{\mathrm{g}}=25.000
$$

$$
\gamma_{\mathrm{g}}=5.000
$$

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{g}=0.200
$$

$$
\gamma_{g}=0.040
$$

One solution: We use the unlabeled data before optimizing over $\mathcal{H}_{\mathcal{K}}$!

SSL with Graphs: Max-Margin Graph Cuts

Let's take the confident data and use them as true!

$$
\begin{aligned}
f^{\star}=\min _{f \in \mathcal{H}_{\mathcal{K}}} & \sum_{i:\left|\ell_{\star}^{\star}\right| \geq \varepsilon} V\left(f, \mathbf{x}_{i}, \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+\gamma\|f\|_{\mathcal{K}}^{2} \\
\text { s.t. } & \ell^{\star}=\arg \min _{\ell \in \mathbb{R}^{N}} \ell^{\top}\left(\mathbf{L}+\gamma_{g} \mathbf{l}\right) \ell \\
& \text { s.t. } \ell_{i}=y_{i} \text { for all } i=1, \ldots, n_{l}
\end{aligned}
$$

Wait, but this is what we did not like in self-training!
Will we get into the same trouble?
Representer theorem is still cool:

$$
f^{\star}(\mathbf{x})=\sum_{i:\left|f_{i}^{\star}\right| \geq \varepsilon} \alpha_{i}^{\star} \mathcal{K}\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

SSL with Graphs: Generalization Bounds

Why is this not a witchcraft? We take GC as an example. MR or HFS are similar.

What kind of guarantees we want?
We may want to bound the risk

$$
R_{P}(f)=\mathbb{E}_{P(\mathbf{x})}[\mathcal{L}(f(\mathbf{x}), y(\mathbf{x}))]
$$

for some loss, e.g., $0 / 1$ loss

$$
\mathcal{L}\left(y^{\prime}, y\right)=\mathbb{1}\left\{\operatorname{sgn}\left(y^{\prime}\right) \neq y\right\}
$$

What makes sense to bound $R_{P}(f)$ with?

empirical risk + error terms

SSL with Graphs: Generalization Bounds

True risk vs.empirical risk

$$
\begin{aligned}
& R_{P}(f)=\frac{1}{N} \sum_{i}\left(f_{i}-y_{i}\right)^{2} \\
& \widehat{R}_{P}(f)=\frac{1}{n_{l}} \sum_{i \in I}\left(f_{i}-y_{i}\right)^{2}
\end{aligned}
$$

We look for the bound in the form

$$
R_{P}(f) \leq \widehat{R}_{P}(f)+\text { errors }
$$

$$
\text { errors }=\text { transductive }+ \text { inductive }
$$

SSL with Graphs: Generalization Bounds

Bounding inductive error (using classical SLT tools)
With probability $1-\eta$, using Equations 3.15 and 3.24 [Vap95]

$$
R_{P}(f) \leq \frac{1}{n} \sum_{i} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)+\Delta_{l}(h, n, \eta)
$$

$n \equiv$ number of samples, $h \equiv$ VC dimension of the class

$$
\Delta_{l}(h, n, \eta)=\sqrt{\frac{h(\ln (2 n / h)+1)-\ln (\eta / 4)}{n}}
$$

How to bound $\mathcal{L}\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)$? For any $y_{i} \in\{-1,1\}$ and ℓ_{i}^{\star}

$$
\mathcal{L}\left(f\left(\mathbf{x}_{i}\right), y_{i}\right) \leq \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+\left(\ell_{i}^{\star}-y_{i}\right)^{2} .
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error (using stability analysis)

How to bound $\left(\ell_{i}^{\star}-y_{i}\right)^{2}$?
Bounding $\left(\ell_{i}^{\star}-y_{i}\right)^{2}$ for hard case is difficult \rightarrow we bound soft HFS:

$$
\ell^{\star}=\min _{\ell \in \mathbb{R}^{N}}(\ell-\mathbf{y})^{\top} \mathbf{C}(\ell-\mathbf{y})+\ell^{\top} \mathbf{Q} \boldsymbol{\ell}
$$

Closed form solution

$$
\ell^{\star}=\left(\mathbf{C}^{-1} \mathbf{Q}+\mathbf{I}\right)^{-1} \mathbf{y}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\ell^{\star}=\min _{\ell \in \mathbb{R}^{N}}(\ell-\mathbf{y})^{\top} \mathbf{C}(\ell-\mathbf{y})+\ell^{\top} \mathbf{Q} \ell
$$

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point.

$$
\mathcal{C}_{1}=\mathbf{C}_{1}^{-1} \mathbf{Q}+\mathbf{I} \text { and } \mathcal{C}_{2}=\mathbf{C}_{2}^{-1} \mathbf{Q}+\mathbf{I}
$$

What is the maximal difference in the solutions?

$$
\begin{aligned}
\ell_{2}^{\star}-\ell_{1}^{\star} & =\mathcal{C}_{2}^{-1} \mathbf{y}_{2}-\mathcal{C}_{1}^{-1} \mathbf{y}_{1} \\
& =\mathcal{C}_{2}^{-1}\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)-\left(\mathcal{C}_{1}^{-1}-\mathcal{C}_{2}^{-1}\right) \mathbf{y}_{1} \\
& =\mathcal{C}_{2}^{-1}\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)-\left(\mathcal{C}_{1}^{-1}\left[\left(\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right) \mathbf{Q}\right] \mathcal{C}_{2}^{-1}\right) \mathbf{y}_{1}
\end{aligned}
$$

Note that $\mathbf{v} \in \mathbb{R}^{N \times 1}, \lambda_{m}(A)\|\mathbf{v}\|_{2} \leq\|A \mathbf{v}\|_{2} \leq \lambda_{M}(A)\|\mathbf{v}\|_{2}$

$$
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{2} \leq \frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right)}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right) \lambda_{m}\left(\mathcal{C}_{1}\right)}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\begin{gathered}
\ell^{\star}=\min _{\ell \in \mathbb{R}^{N}}(\ell-\mathbf{y})^{\top} \mathbf{C}(\ell-\mathbf{y})+\ell^{\top} \mathbf{Q} \ell \\
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{2} \leq \frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right)}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right) \lambda_{m}\left(\mathcal{C}_{1}\right)}
\end{gathered}
$$

Using $\lambda_{m}(\mathcal{C}) \geq \frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C})}+1$

$$
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{2} \leq \frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{2}\right)}+1\right)\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1\right)}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{\infty} \leq \beta \leq \frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{2}\right)}+1\right)\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1\right)}
$$

Now, let us plug in the values for our problem.
Take $c_{l}=1$ and $c_{l}>c_{u}$. We have $\left|y_{i}\right| \leq 1$ and $\left|\ell_{i}^{\star}\right| \leq 1$.

$$
\beta \leq 2\left[\frac{\sqrt{2}}{\lambda_{m}(\mathbf{Q})+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{Q})}{\left(\lambda_{m}(\mathbf{Q})+1\right)^{2}}\right]
$$

\mathbf{Q} is reg. $\mathbf{L}: \lambda_{m}(\mathbf{Q})=\lambda_{m}(\mathbf{L})+\gamma_{g}$ and $\lambda_{M}(\mathbf{Q})=\lambda_{M}(\mathbf{L})+\gamma_{g}$

$$
\beta \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf
By the generalization bound of Belkin [BMN04]

$$
\begin{aligned}
R_{P}\left(\ell^{\star}\right) & \leq \widehat{R}_{P}\left(\ell^{\star}\right)+\underbrace{\beta+\sqrt{\frac{2 \ln (2 / \delta)}{n_{l}}}\left(n_{l} \beta+4\right)}_{\text {transductive error } \Delta_{T}\left(\beta, n_{l}, \delta\right)} \\
\beta & \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
\end{aligned}
$$

holds with probability $1-\delta$, where

$$
\begin{aligned}
& R_{P}\left(\ell^{\star}\right)=\frac{1}{N} \sum_{i}\left(\ell_{i}^{\star}-y_{i}\right)^{2} \\
& \widehat{R}_{P}\left(\ell^{\star}\right)=\frac{1}{n_{l}} \sum_{i \in I}\left(\ell_{i}^{\star}-y_{i}\right)^{2}
\end{aligned}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\begin{aligned}
R_{P}\left(\ell^{\star}\right) & \leq \widehat{R}_{P}\left(\ell^{\star}\right)+\underbrace{\beta+\sqrt{\frac{2 \ln (2 / \delta)}{n_{l}}}\left(n_{l} \beta+4\right)}_{\text {transductive error } \Delta_{T}\left(\beta, n_{l}, \delta\right)} \\
\beta & \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-c_{u}}{c_{u}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
\end{aligned}
$$

Does the bound say anything useful?

1) The error is controlled.
2) Practical when error $\Delta_{T}\left(\beta, n_{l}, \delta\right)$ decreases at rate $O\left(n_{l}^{-\frac{1}{2}}\right)$.

Achieved when $\beta=O\left(1 / n_{l}\right)$. That is, $\gamma_{g}=\Omega\left(n_{l}^{\frac{3}{2}}\right)$.
We have an idea how to set γ_{g} !

SSL with Graphs: Generalization Bounds

Combining inductive + transductive error

With probability $1-(\eta+\delta)$.

$$
\begin{aligned}
R_{P}(f) \leq & \frac{1}{n} \sum_{i} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+ \\
& \widehat{R}_{P}\left(\ell^{\star}\right)+\Delta_{T}\left(\beta, n_{l}, \delta\right)+\Delta_{l}(h, N, \eta)
\end{aligned}
$$

We need to account for ε. With probability $1-(\eta+\delta)$.

$$
\begin{aligned}
R_{P}(f) \leq & \frac{1}{n_{i:}\left|\ell_{i}^{\star}\right| \geq \varepsilon} \\
& \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+\frac{2 \varepsilon n_{\varepsilon}}{N}+ \\
& \widehat{R}_{P}\left(\ell^{\star}\right)+\Delta_{T}\left(\beta, n_{l}, \delta\right)+\Delta_{l}(h, N, \eta)
\end{aligned}
$$

We should have $\varepsilon \leq n_{l}^{-1 / 2}$!

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and linear \mathcal{K} only changes the slope

MMGC for 2D data and linear \mathcal{K} works as we want

$$
\gamma_{\mathrm{g}}=25.000
$$

$$
\gamma_{\mathrm{g}}=5.000
$$

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{\mathrm{g}}=0.200
$$

$$
\gamma_{\mathrm{g}}=0.040
$$

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic \mathcal{K} is also not so good

SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF \mathcal{K}

SSL with Graphs

Graph-based SSL is obviously sensitive to graph construction!

Next lecture: Wednesday, November 7th at 14:00!

> Michal Valko
> michal.valko@inria.fr
> ENS Paris-Saclay, MVA 2018/2019
> SequeL team, Inria Lille - Nord Europe
> https://team.inria.fr/sequel/

