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Previous Lecture

I spectral graph theory

I Laplacians and their properties
I symmetric and asymmetric normalization

I random walks

I recommendation on a bipartite graph

I resistive networks
I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks
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This Lecture

I geometry of the data and the connectivity

I spectral clustering

I manifold learning with Laplacians eigenmaps

I Gaussian random fields and harmonic solution

I graph-based semi-supervised learning and manifold
regularization

I transductive learning

I inductive and transductive semi-supervised learning
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Next Class: Lab Session

I 24. 10. 2018 by Pierre Perrault
I cca. 13h30-14h00 optional help with setup, 14h00-16h00: TD
I Bât. d’Alembert Amphi Curie
I The VM image will be available a day before the class
I Matlab/Octave or Python
I Short written report (graded)
I All homeworks together account for 40% of the final grade
I Content

I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

Michal Valko – Graphs in Machine Learning SequeL - 5/47



Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs
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MinCut: cut(A,B) =
∑

i∈A,j∈B wij Are we done?
Can be solved efficiently, but maybe not what we want . . . .
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Spectral Clustering: Balanced Cuts
Let’s balance the cuts!

MinCut

cut(A,B) =
∑

i∈A,j∈B
wij

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
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Spectral Clustering: Balanced Cuts

RatioCut(A,B) = cut(A,B)

(
1
|A| +

1
|B|

)
NCut(A,B) = cut(A,B)

(
1

vol(A) +
1

vol(B)

)
Easily generalizable to k ≥ 2

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

min
A,B

cut(A,B) s.t. |A| = |B|

Graph function f for cluster membership: fi =
{

1 if Vi ∈ A,
−1 if Vi ∈ B.

What it is the cut value with this definition?

cut(A,B) =
∑

i∈A,j∈B
wi,j =

1
4

∑
i,j

wi,j(fi − fj)2 = 1
2 fTLf

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) =
∑

i∈A,j∈B
wi,j =

1
4

∑
i,j

wi,j(fi − fj)2 = 1
2 fTLf

|A| = |B| =⇒
∑

i fi = 0 =⇒ f ⊥ 1N

‖f‖ =
√

N

objective function of spectral clustering

min
f

fTLf s.t. fi = ±1, f ⊥ 1N , ‖f‖ =
√

N

Still NP hard :( → Relax even further!

fi = ±1 → fi ∈ R
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Rayleigh-Ritz theorem
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L then

λ1 = min
x6=0

xTLx
xTx = min

xTx=1
xTLx

λN = max
x6=0

xTLx
xTx = max

xTx=1
xTLx

xTLx
xTx ≡ Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L and
v1, . . . , vN the corresponding orthogonal eigenvalues, then for
k = 1 : N − 1

λk+1 = min
x6=0,x⊥v1,...vk

xTLx
xTx = min

xTx=1,x⊥v1,...vk
xTLx

λN−k = max
x6=0,x⊥vn,...vN−k+1

xTLx
xTx = max

xTx=1,x⊥vN ,...vN−k+1
xTLx

Michal Valko – Graphs in Machine Learning SequeL - 10/47



Rayleigh-Ritz theorem: Quick and dirty proof

When we reach the extreme points?

∂

∂x

(
xTLx
xTx

)
=

∂

∂x

(
f (x)
g(x)

)
= 0 ⇐⇒ f ′(x)g(x) = f (x)g ′(x)

By matrix calculus (or just calculus):

∂xTLx
∂x = 2Lx and ∂xTx

∂x = 2x

When f ′(x)g(x) = f (x)g ′(x)?

Lx (xTx) = (xTLx) x ⇐⇒ Lx =
xTLx
xTx x ⇐⇒ Lx = λx

Conclusion: Extremes are the eigenvectors with their eigenvalues
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Solution: second eigenvector How do we get the clustering?
The solution may not be integral. What to do?

clusteri =

{
1 if fi ≥ 0,
−1 if fi < 0.

Works but this heuristics is often too simple. In practice, cluster f
using k-means to get {Ci}i and assign:

clusteri =

{
1 if i ∈ C1,

−1 if i ∈ C−1.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

fTLf = 1
2

∑
i,j

wi,j(fi − fj)2 = (|A|+ |B|)RatioCut(A,B)
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Spectral Clustering: Approximating RatioCut
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

∑
i

fi = 0

∑
i

f 2
i = N

objective function of spectral clustering (same - it’s magic!)

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N
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Spectral Clustering: Approximating NCut

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
Define graph function f for cluster membership of NCut:

fi =


√

vol(A)
vol(B) if Vi ∈ A,

−
√

vol(B)
vol(A) if Vi ∈ B.

(Df)T1n = 0 fTDf = vol(V) fTLf = vol(V)NCut(A,B)

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)

Can we apply Rayleigh-Ritz now? Define w = D1/2f

objective function of spectral clustering (NCut)

min
w

wTD−1/2LD−1/2w s.t. wi ∈ R,w ⊥ D1/21N , ‖w‖2 = vol(V)

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖2 = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V)

Solution by Rayleigh-Ritz? w = v2,Lsym f = D−1/2w

f is a the second eigenvector of Lrw !

tl;dr: Get the second eigenvector of L/Lrw for RatioCut/NCut.
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Pretty bad.

Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.
https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95.pdf
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters
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Spectral Clustering: Understanding:

Compactness vs. Connectivity

For which kind of data we can use one vs. the other?
Any disadvantages of spectral clustering?
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Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf
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Spectral Clustering: 1D Example - Eigenvectors
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Spectral Clustering: Bibliography

I M. Meila et al. “A random walks view of spectral
segmentation”. In: International Conference on Artificial
Intelligence and Statistics (2001)

I Lsym Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On
spectral clustering: Analysis and an algorithm”. In: Neural
Information Processing Systems. 2001

I Lrm J Shi and J Malik. “Normalized Cuts and Image
Segmentation”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 22 (2000), pp. 888–905

I Things can go wrong with the relaxation: Daniel A. Spielman
and Shang H. Teng. “Spectral partitioning works: Planar
graphs and finite element meshes”. In: Linear Algebra and Its
Applications 421 (2007), pp. 284–305
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Rd → Rm
manifold learning
…discworld



Manifold Learning: Recap

problem: definition reduction/manifold learning
Given {xi}N

i=1 from Rd find {yi}N
i=1 in Rm, where m � d .

I What do we know about the dimensionality reduction
I representation/visualization (2D or 3D)
I an old example: globe to a map
I often assuming M ⊂ Rd

I feature extraction
I linear vs. nonlinear dimensionality reduction

I What do we know about linear vs. nonlinear methods?
I linear: ICA, PCA, SVD, ...
I nonlinear often preserve only local distances
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Manifold Learning: Linear vs. Non-linear

Michal Valko – Graphs in Machine Learning SequeL - 26/47



Manifold Learning: Preserving (just) local distances

d(yi , yj) = d(xi , xj) only if d(xi , xj) is small

min
∑

ij
wij‖yi − yj‖2

Looks familiar?
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Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = λDf

Step 2: Assign m new coordinates:

xi 7→ (f2 (i) , . . . , fm+1 (i))

Note1: we need to get m + 1 smallest eigenvectors
Note2: f1 is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
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Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

min
f

fTLf s.t. fi ∈ R, fTD1 = 0, fTDf = 1

The meaning of the constraints is similar as for spectral clustering:

fTDf = 1 is for scaling

fTD1 = 0 is to not get v1

What is the solution?
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Manifold Learning: Example

http://www.mathworks.com/matlabcentral/fileexchange/

36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning
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SSL
semi-supervised learning
…our running example for learning
with graphs



Semi-supervised learning: How is it possible?

This is how children learn! hypothesis
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Semi-supervised learning (SSL)

SSL problem: definition
Given {xi}N

i=1 from Rd and {yi}nl
i=1, with nl � N, find {yi}n

i=nl+1
(transductive) or find f predicting y well beyond that (inductive).

Some facts about SSL
I assumes that the unlabeled data is useful
I works with data geometry assumptions

I cluster assumption — low-density separation
I manifold assumption
I smoothness assumptions, generative models, …

I now it helps now, now it does not (sic)
I provable cases when it helps

I inductive or transductive/out-of-sample extension
http://olivier.chapelle.cc/ssl-book/discussion.pdf
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SSL: Self-Training
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SSL: Overview: Self-Training

SSL: Self-Training
Input: L = {xi , yi}nl

i=1 and U = {xi}N
i=nl+1

Repeat:
I train f using L
I apply f to (some) U and add them to L

What are the properties of self-training?
I its a wrapper method
I heavily depends on the the internal classifier
I some theory exist for specific classifiers
I nobody uses it anymore
I errors propagate (unless the clusters are well separated)
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SSL: Self-Training: Bad Case
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SSL: Transductive SVM: S3VM
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SSL: Transductive SVM: Classical SVM
Linear case: f = wTx + b → we look for (w, b)

max-margin classification

max
w,b

1
‖w‖

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

note the difference between functional and geometric margin

max-margin classification

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1 − ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM
max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1 − ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl

Unconstrained formulation using hinge loss:

min
w,b

nl∑
i

max (1 − yi (wTxi + b) , 0) + λ‖w‖2

In general?

min
w,b

nl∑
i

V (xi , yi , f (xi)) + λΩ(f )
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SSL: Transductive SVM: Classical SVM: Hinge loss

V (xi , yi , f (xi)) = max (1 − yi (wTxi + b) , 0)
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SSL: Transductive SVM: Unlabeled Examples

min
w,b

nl∑
i

max (1 − yi (wTxi + b) , 0) + λ‖w‖2

How to incorporate unlabeled examples?

No y ’s for unlabeled x.

Prediction of f for (any) x? ŷ = sgn (f (x)) = sgn (wTx + b)

Pretending that sgn (f (x)) is the true label …

V (x, ŷ , f (x)) = max (1 − ŷ (wTx + b) , 0)
= max (1 − sgn (wTx + b) (wTx + b) , 0)
= max (1 − |wTx + b| , 0)

Michal Valko – Graphs in Machine Learning SequeL - 42/47



SSL: Transductive SVM: Hinge and Hat Loss

What is the difference in the objectives?
Hinge loss penalizes?

the margin of being on the wrong side

Hat loss penalizes?

predicting in the margin
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SSL: Transductive SVM: S3VM

This is what we wanted!
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SSL: Transductive SVM: Formulation
Main SVM idea stays the same: penalize the margin

min
w,b

nl∑
i=1

max (1 − yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=nl+1

max (1 − |wTxi + b| , 0)

What is the loss and what is the regularizer?

min
w,b

nl∑
i=1

max (1 − yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=nl+1

max (1 − |wTxi + b| , 0)

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.

What it the main issue of TSVM?

hat loss is not convex

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf
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Next class: TD, Wednesday October 24th at 14:00!

Amphi Marie Curie

Amphi e-media

Amphi 109

Amphi 121

Amphi Tocqueville
Bretécher

S. des Conférences

S. Visio DSI

S. Renaudeau

Uderzo

Condorcet

S. des Comm.

C518

FCD

Fonteneau
131 bis

131
132

133
135
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