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Previous lecture
I where do the graphs come from?

I social, information, utility, and biological networks
I we create them from the flat data
I random graph models

I specific applications and concepts
I maximizing influence on a graph gossip propagation,

submodularity, proof of the approximation guarantee
I Google pagerank random surfer process, steady state

vector, sparsity
I online semi-supervised learning label propagation, backbone

graph, online learning, combinatorial sparsification,
stability analysis

I Erdős number project, real-world graphs, heavy tails, small
world – when did this happen?

I similarity graphs
I different types
I construction
I practical considerations
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This lecture

I Laplacians and their properties

I spectral graph theory

I random walks

I recommendation on a bipartite graph

I resistive networks
I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks

I PS: some students have started working on their projects already
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Similarity Graphs: ε or k-NN?

DEMO IN CLASS

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm

http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_

tutorial.pdf
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Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

sij = exp

(
−‖xi − xj‖2

2σ2

)
Cosine similarity function:

sij = cos(θ) =

(
xT

i xj
‖xi‖‖xj‖

)
Typical Kernels
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Similarity Graphs

G = (V, E) - with a set of nodes V and a set of edges E
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Sources of Real Networks

I http://snap.stanford.edu/data/
I http://www-personal.umich.edu/~mejn/netdata/
I http://proj.ise.bgu.ac.il/sns/datasets.html
I http://www.cise.ufl.edu/research/sparse/matrices/
I http://vlado.fmf.uni-lj.si/pub/networks/data/

default.htm
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L = D−W
graph Laplacian
…the only matrix that matters



Graph Laplacian

G = (V, E) - with a set of nodes V and a set of edges E

A adjacency matrix
W weight matrix
D (diagonal) degree matrix

L = D−W graph Laplacian matrix

L =


4 −1 0 −1 −2

−1 8 −3 −4 0
0 −3 5 −2 0

−1 −4 −2 12 −5
−2 0 0 −5 7



L is SDD!
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Properties of Graph Laplacian

Graph function: a vector f ∈ RN assigning values to nodes:

f : V(G)→ R.

fTLf = 1
2
∑

i,j≤N
wi,j(fi − fj)2 = SG(f)

Proof:

fTLf = fTDf − fTWf =
N∑

i=1

di f 2
i −

∑
i,j≤N

wi,j fi fj

=
1
2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +
N∑

j=1

di f 2
j

 =
1
2

∑
i,j≤N

wi,j(fi − fj)
2

Michal Valko – Graphs in Machine Learning SequeL - 10/43



Recap: Eigenwerte und Eigenvektoren

A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

If (λ1, v1) are (λ2, v2) eigenpairs for symmetric M with λ1 6= λ2
then v1 ⊥ v2, i.e., vT

1v2 = 0.

Proof: λ1vT
1v2 = vT

1Mv2 = vT
1λ2v2 = λ2vT

1v2 =⇒ vT
1v2 = 0

If (λ, v1), (λ, v2) are eigenpairs for M then (λ, v1 + v2) is as well.

For symmetric M, the multiplicity of λ is the dimension of the
space of eigenvectors corresponding to λ.

N × N symmetric matrix has N eigenvalues (w/ multiplicities).

Michal Valko – Graphs in Machine Learning SequeL - 11/43



Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

Vectors {vi}i form an orthonormal basis with λ1 ≤ λ2 ≤ . . . λN .

∀i Mvi = λivi ≡ MQ = QΛ

Q has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying MQ = QΛ by QT we get the
eigendecomposition of M:

M = MQQT = QΛQT =
∑

i λivivT
i
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: wij ≥ 0.

L is symmetric

L positive semi-definite ← fTLf = 1
2
∑

i,j≤N wi,j(fi − fj)2

Recall: If Lf = λf then λ is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1N .

All eigenvalues are non-negative reals 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

Self-edges do not change the value of L.
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Properties of Graph Laplacian
The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0, f) is an eigenpair then 0 = 1
2
∑

i,j≤N wi,j(fi − fj)2.
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:

L =


L1

L2
. . .

Lk


For block-diagonal matrices: the spectrum is the union of the
spectra of Li (eigenvectors of Li padded with zeros elsewhere).

For Li (0, 1|Vi |) is an eigenpair, hence the claim.
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Smoothness of the Function and Laplacian
I f = (f1, . . . , fN)T: graph function
I Let L = QΛQT be the eigendecomposition of the Laplacian.

I Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I α: Unique vector such that Qα = f Note: QTf = α

Smoothness of a graph function SG(f)

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2
Λ =

N∑
i=1

λiα
2
i

Smoothness and regularization: Small value of

(a) SG(f) (b) Λ norm of α? (c) α?
i for large λi
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Smoothness of the Function and Laplacian

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2Λ =
N∑

i=1
λiα

2
i

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?
Spectral coordinates of eigenvector vk : QTvk = ek

SG(vk)=vT
kLvk =vT

kQΛQTvk = eT
kΛek = ‖ek‖2Λ =

N∑
i=1

λi(ek)
2
i = λk

The smoothness of k-th eigenvector is the k-th eigenvalue.
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Laplacian of the Complete Graph KN
What is the eigenspectrum of LKN ?

1

2

3 4

5
LKN =


N − 1 −1 −1 −1 −1
−1 N − 1 −1 −1 −1
−1 −1 N − 1 −1 −1
−1 −1 −1 N − 1 −1
−1 −1 −1 −1 N − 1



From before: we know that (0, 1N) is an eigenpair.

If v 6= 0N and v ⊥ 1N =⇒
∑

i vi = 0. To get the other
eigenvalues, we compute (LKN v)1 and divide by v1 (wlog v1 6= 0).

(LKN v)1 = (N − 1)v1 −
N∑

i=2
vi = Nv1.

What are the remaining eigenvalues/vectors?

Answer: N − 1 eigenvectors ⊥ 1N for eigenvalue N with multiplicity N − 1.
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Normalized Laplacians

Lun = D−W
Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw = D−1L = I−D−1W

fTLsymf = 1
2
∑

i,j≤N
wi,j

(
fi√
di
−

fj√
dj

)2

(λ,u) is an eigenpair for Lrw iff (λ,D1/2u) is an eigenpair for Lsym
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Normalized Laplacians
Lsym and Lrw are PSD with non-negative real eigenvalues

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN

.
(λ,u) is an eigenpair for Lrw iff (λ,u) solve the generalized
eigenproblem Lu = λDu.

(0, 1N) is an eigenpair for Lrw .

(0,D1/21N) is an eigenpair for Lsym.

Multiplicity of eigenvalue 0 of Lrw or Lsym equals to the number of
connected components.

Proof: As for L.
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Laplacian and Random Walks on Undirected Graphs
I stochastic process: vertex-to-vertex jumping
I transition probability vi → vj is pij = wij/di

I di
def=
∑

j wij

I transition matrix P = (pij)ij = D−1W (notice Lrw = I− P)
I if G is connected and non-bipartite → unique stationary

distribution π = (π1, π2, π3, . . . , πN) where πi = di/vol(V )

I vol(G) = vol(V ) = vol(W)
def=
∑

i di =
∑

i,j wij

I π = 1TW
vol(W) verifies πP = π as:

πP =
1TWP
vol(W)

=
1TDP

vol(W)
=

1TDD−1W
vol(W)

=
1TW

vol(W)
= π

What’s the difference from the PageRankTM?
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score(v ,m)
recommendation on a bipartite graph
…with the graph Laplacian!



Use of Laplacians: Movie recommendation
How to do movie recommendation on a bipartite graph?

ranking

ranking

ranking

ranking

viewer1

Adam

movieA

Blade Runner 2049

movieB

Cars 3

viewer2

Barbara

movieC

Capitaine Superslip

viewer3

Céline

Question: Do we recommend Capitaine Superslip to Adam?

Let’s compute some score(v ,m)!
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Use of Laplacians: Movie recommendation

How to compute the score(v ,m)? Using some graph distance!

Idea1: maximally weighted path
score(v ,m) = maxvPm weight(P) = maxvPm

∑
e∈P ranking(e)

Problem: If there is a weak edge, the path should not be good.

Idea2: change the path weight
score2(v ,m) = maxvPm weight2(P) = maxvPm mine∈P ranking(e)

Problem of 1&2: Additional paths does not improve the score.

Idea3: consider everything
score3(v ,m) = max flow from m to v

Problem of 3: Shorter paths do not improve the score.
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Laplacians and Resistive Networks
How to compute the score(v ,m)?

Idea4: view edges as conductors
score4(v ,m) = effective resistance between m and v

−
+v

i
C

C ≡ conductance
R ≡ resistance
i ≡ current

V ≡ voltage

C =
1
R i = CV =

V
R
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Resistive Networks: Some high-school physics
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Resistive Networks

resistors in series

R = R1 + · · ·+ Rn C =
1

1
C1

+ · · ·+ 1
CN

i = V
R

conductors in parallel

C = C1 + · · ·+ CN i = VC

Effective Resistance on a graph
Take two nodes: a 6= b. Let Vab be the voltage between them and
iab the current between them. Define Rab = Vab

iab
and Cab = 1

Rab
.

We treat the entire graph as a resistor!
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Resistive Networks: Optional Homework (ungraded)

Show that Rab is a metric space.

1. Rab ≥ 0
2. Rab = 0 iff a = b
3. Rab = Rba

4. Rac ≤ Rab + Rbc

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’s Law ≡ flow in = flow out

C1

C2

C3

V1

V

V2V3

V = C1
C V1 +

C2
C V2 +

C3
C V3 (convex combination)

residual current = CV − C1V1 − C2V2 − C3V3
Kirchhoff says: This is zero! There is no residual current!
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Resistors: Where is the link with the Laplacian?
General case of the previous! di =

∑
j cij = sum of conductances

Lij =


di if i = j,
−cij if (i , j) ∈ E ,

0 otherwise.

v = voltage setting of the nodes on graph.

(Lv)i = residual current at vi — as we derived

Use: setting voltages and getting the current

Inverting ≡ injecting current and getting the voltages

The net injected has to be zero ≡ Kirchhoff’s Law.
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Resistors and the Laplacian: Finding Rab

Let’s calculate R1N to get the movie recommendation score!

L


0
v2
...

vn−1
1

 =


i
0
...
0
−i


i = V

R V = 1 R =
1
i

Return R1N =
1
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

Michal Valko – Graphs in Machine Learning SequeL - 30/43

https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf


Resistors and the Laplacian: Finding R1N

Lv = (i , 0, . . . ,−i)T ≡ boundary valued problem

For R1N

V1 and VN are the boundary

(v1, v2, . . . , vN) is harmonic:

Vi ∈ interior (not boundary)

Vi is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R1n

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle
If f = v is harmonic then min and max are on the boundary.

Proof: k ∈ ◦ =⇒ ∃ neighbors Vi ,Vj s.t. vi ≤ vk ≤ vj

Uniqueness Principle
If f and g are harmonic with the same boundary then f = g

Proof: f− g is harmonic with zero on the boundary
=⇒ f− g ≡ 0 =⇒ f = g (using maximum principle)
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Resistors and the Laplacian: Finding R1N

Alternative method to calculate R1N :

Lv =


1
0
...
0
−1

 def= iext Return R1N = v1 − vN Why?

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = Lv
Moore-Penrose pseudo-inverse solves LS
Solution: Instead of v = L−1iext we take v = L+iext
We get: R1N = v1 − vN = iTextv = iTextL+iext.
Notice: We can reuse L+ to get resistances for any pair of nodes!
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

L = QΛQT =
N∑

i=1
λiqiqT

i =
N∑

i=2
λiqiqT

i

Pseudo-inverse of the Laplacian:

L+ = QΛ+QT =
N∑

i=2

1
λi

qiqT
i

Moore-Penrose pseudo-inverse solves a least squares problem:

v = argmin
x
‖Lx− iext‖2 = L+iext
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cut(A,B) = 1
2fTLf

spectral clustering
…with connectivity beyond compactness



How to rule the world?

Let’s make France great again!
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How to rule the world?
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How to rule the world: “AI” is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/
1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U
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Application of Graphs for ML: Clustering
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Application: Clustering - Recap

I What do we know about the clustering in general?
I ill defined problem (different tasks → different paradigms)
I “I know it when I see it”
I inconsistent (wrt. Kleinberg’s axioms)

I scale-invariance, richness, consistency

I number of clusters k need often be known
I difficult to evaluate

I What do we know about k-means?
I “hard” version of EM clustering
I sensitive to initialization
I optimizes for compactness
I yet: algorithm-to-go
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

MinCut: cut(A,B) =
∑

i∈A,j∈B wij Are we done?
Can be solved efficiently, but maybe not what we want . . . .
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Next class on Wednesday, October 17th at 14:00!

Amphi Marie Curie

Amphi e-media

Amphi 109

Amphi 121

Amphi Tocqueville
Bretécher

S. des Conférences

S. Visio DSI

S. Renaudeau

Uderzo

Condorcet

S. des Comm.

C518

FCD

Fonteneau
131 bis

131
132

133
135
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