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Last Lecture

v

Inductive and transductive semi-supervised learning

v

Manifold regularization

v

Theory of Laplacian-based manifold methods

v

Transductive learning stability based bounds

v

Online Semi-Supervised Learning

Online incremental k-centers

v
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This Lecture

v

Examples of applications of online SSL

v

Analysis of online SSL

v

SSL Learnability

v

When does graph-based SSL provably help?

v

Scaling harmonic functions to millions of samples
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Previous Lab Session

v

14. 11. 2016 by Daniele Calandriello
Content

» Semi-supervised learning
» Graph quantization
» Offline face recognizer

v

v

Install VM (in case you have not done it yet for TD1)

v

Short written report

v

Questions to piazza
Deadline: 28. 11. 2016

v

. brezia~
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Next Lab Session/Lecture

v

28. 11. 2016 by Daniele.Calandriello@inria.fr
Content (this time lecture in class + coding at home)

» Large-scale graph construction and processing (in class)
» Scalable algorithms:

v

> Online face recognizer (to code in Matlab)
> lterative label propagation (to code in Matlab)
> Graph sparsification (presented in class)

v

AR: record a video with faces

v

Short written report

v

Questions to piazza
Deadline: 12. 12. 2016

v

P http://researchers.lille.inria.fr/~calandri/teaching.html
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Final Class projects

. brezia~

detailed description on the class website

preferred option: you come up with the topic

theory /implementation /review or a combination

one or two people per project (exceptionally three)

grade 60%: report + short presentation of the team
» deadlines

>

vV vy

21. 11. 2016 - recommended DL for taking projects Today!
28. 11. 2016 - hard DL for taking projects

05. 01. 2017 - submission of the project report

09. 01. 2017 or later - project presentation

list of suggested topics on piazza
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Online SSL with Graphs

Video examples
http://www.bkveton.com/videos/Coffee.mpd
http://www.bkveton.com/videos/Ad.mp4

http://researchers.lille.inria.fr/~valko/hp/serve.php?
what=publications/kveton2009nipsdemo.adaptation.mov

http://researchers.lille.inria.fr/~valko/hp/serve.php?
what=publications/kveton2009nipsdemo.officespace.mov

http://bcove.me/a2derjeh

or: http://researchers.lille.inria.fr/~valko/hp/publications/press-intel-2015.mp4

II(QZZQLA

Michal Valko — Graphs in Machine Learning


http://www.bkveton.com/videos/Coffee.mp4
http://www.bkveton.com/videos/Ad.mp4
http://researchers.lille.inria.fr/~valko/hp/serve.php?what=publications/kveton2009nipsdemo.adaptation.mov
http://researchers.lille.inria.fr/~valko/hp/serve.php?what=publications/kveton2009nipsdemo.adaptation.mov
http://researchers.lille.inria.fr/~valko/hp/serve.php?what=publications/kveton2009nipsdemo.officespace.mov
http://researchers.lille.inria.fr/~valko/hp/serve.php?what=publications/kveton2009nipsdemo.officespace.mov
http://bcove.me/a2derjeh
http://researchers.lille.inria.fr/~valko/hp/publications/press-intel-2015.mp4

SSL with Graphs: Some experimental results

* 8 people classification
* Making funny faces
* 4 faces/person are labeled

Our method
105
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SSL with Graphs: Some experimental results
¢ One person moves among various indoor locations
¢ 4 labeled examples of a person in the cubicle

el

Unlabeled Unlabeled Unlabeled

Dataset VO Dataset VO
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99 W
g% =
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[ a0 »
g —O— NN classifier g a7
o 0SSB (all) o =—C— NN classifier
L] | [— 0SSB (half) ¥ 96 || —— Commercial solution
—O— Online HFS 1 —O— Online HFS
80 L. 95 ~ 1
70 75 80 85 90 95 100 70 75 80 85 90 95 100
Recall [%] Recall [%]
‘ Online HFS outperforms OSSB (even when the Online HFS yields better results than a commercial solution at
weak learners are chosen using future data) 20% of the computational cost
-

-

léz/ua,-
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SSL with Graphs: Some experimental results

* Logging in with faces
instead of password

* Able to learn and improve
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SSL with Graphs: Some experimental results

* 16 people log twice into a tablet PC at 10 locations

1 k. |

1 1

A
’ﬂ AN\

4 labeled examples

1 labeled example

100 100
_. 9 _. 98
2 &
5 96 5 96
@ 2
e 94 s o4
o —O— NN classifier o —O—NN classifier

92 || —xF— Commercial solution 92 || —=%¥— Commercial solution

—QO— Online HFS —O— Online HF S
90 90
40 60 100 0 20 40 60 100
Recall [%] Recall [%]

Online HFS yields better results than a commercial solution at 20% of
the computational cost
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Online SSL with Graphs: Analysis

What can we guarantee?

Three sources of error
» generalization error — if all data: (£} — y;)?
» online error — data only incrementally: (£7[t] — £5)?

> quantization error — memory limitation:

All together:
N N N N
1 2= <y D (6 —ye) o D (Gl €3 )
t=1 t=1 t=1 t=1

Since for any a, b, ¢, d € [-1,1]:

(a—b)2<2[(a—c)?+(c—d)?+ ]
.&zu&»
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Online SSL with Graphs: Analysis

Bounding transduction error (£} — y;)?

If all labeled examples / are i.i.d., ¢, =1 and ¢; > ¢, then

RE) < RE)+ 5+ 2020 (51 4)

transductive error Ar(8,n;,8)

+\/7 Cu)\M )+’Yg

f}/g‘i_]. CU 7g+1

g <2

holds with the probability of 1 — §, where

1 ~ 1
= Wyl and R =S8 -y
t

How should we set 47

. Cbreia—
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Online SSL with Graphs: Analysis
Bounding online error (£9[t] — £})?

Idea: If L and L° are regularized, then HFSs get closer together.
since they get closer to zero
Recall £ = (C_lQ + I)_ly, where Q = L + 7,
and also v € R™*1, Ay (A)[Ivll2 < [[Av]l2 < Ap(A)llvll2
2 2 ny
e Wl e _

Am(CTIQ +1) ’\m((Q; +1 g +1

Difference between offline and online solutions:

2
(£2[t] — £3)% < [1€°[] — €15 < [|€°[e] — €13 < (v
Again, how should we set ~g7?

. Crzia—~
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Online SSL with Graphs: Analysis

Bounding quantization error
How are the quantized and full solution different?

£ = min (£—y)'Cl—y)+£'QL
nin (£-y)'Ct—y)+£Q

In Q! Q° (online) vs. Q% (quantized)
We have: £° = (C71Q° + 1)1y vs. £ = (C71QI+ 1)1y
Let Z4=C!'Q%+1land Z°=C!1Q° + 1.

= (@) Yy - (20 Yy = (292) (20 - 2
= (279 C @ - Q)

. brezia~
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Online SSL with Graphs: Analysis

Bounding quantization error
o = (29 Yy - (20) Ty = (292°) (20 - 2%y
= (292°)'cH(Q° - Q)
Am(CH(Q - Q°)yl
Am(Z9)Am(Z°)

|| - ||F and || - ||2 are compatible and y; is zero when unlabeled:

Q" = Q%)yll2 < 1Q% = @[~ - llyll2 < v [|Q% — Q%

€% = €°]]2 <

Am(Q°)
Am(C)

Furthermore, \p,(Z°) > +1>v; and Ay (Cfl) <ct

u

n
We get [[€9 — €], < Y Q% — Q||

- CLI’Yg
.&zv@
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Online SSL with Graphs: Analysis

Bounding quantization error

The quantization error depends on ||Q% — Q°||r = ||[LY — L°||£.
When can we keep ||[LY — L°||r under control?

Charikar guarantees distortion error of at most Rm/(m — 1)
For what kind of data {x;}i=1,.n is the distortion small?

Assume manifold M

» all {xj}i>1 lie on a smooth s-dimensional compact M

» with boundary of bounded geometry Def. 11 of Hein [HALO7]
» should not intersect itself

should not fold back onto itself

has finite volume V

has finite surface area A

-
brzia—
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Online SSL with Graphs: Analysis

Bounding quantization error
Bounding ||L? — L°|r when x; € M
Consider k-sphere packing of radius r with centers contained in M.

What is the maximum volume of this packing?
kesr® < V 4 Acpqr with ¢, cpq depending on dimension and M.

If k is large — r < injectivity radius of M [HALO7] and r < 1:
r< ((V+ Acm) / (keo)) % = 0 (k1)
r-packing is a 2r-covering:
. _ —-1/s\ _ —1/s
_max [x—cll2 < Rm/(m—1) < 2(1+£)0 <k ) =0 (k )

But what about [[LY — L°||£?
.&’zua,
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Online SSL with Graphs: Analysis
Bounding quantization error
If similarity is M-Lipschitz, L is normalized,
c,fj’- = ,/D2D% > cmin/V:

ijj
q
|_‘.1._|_9.:W"f Wi
_ WZ. - W5 ng-(c;-1 — cfj’)
— q q
Cij ciici
4MRm AM(NMRm)

~ (m—=DcminN  ((m—1)cminV)?

-o(z)

Finally, L9 — L°||Z2 < N2O(R?/N?) = O(k=2%/%).

Are the assumptions reasonable?
. lrzia—
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Online SSL with Graphs: Analysis

Bounding quantization error
We showed ||LY — L°||Z < N2O(R?/N?) = O(k=?/) = O(1).

nj

g (310 - €512])? Ul < g

This converges to zero at the rate of O(N~Y/2) with
75 = QNYE).

With properly setting v, e.g., 75 = Q(Nl/g), we can have:
1
2 _
N E (L[t —ye) = O (N 1/2)

What does that mean?
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SSL with Graphs: What is behind it?

Why and when it helps?
Can we guarantee benefit of SSL over SL?

Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:

» SL: does not know about M and only knows (x;, y;)

» SSL: perfect knowledge of M = humongous amounts of x;

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf

. brezia~
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SSL with Graphs: What is behind it?

Set of learning problems - collections P of probability distributions:

P =UmPm = Upm{p € Plpx is uniform on M}

+1

M, M,
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SSL with Graphs: What is behind it?

Set of problems P = UpPrq = {p € P|px is uniform on M}
Regression function m, = E [y |x] when x € M

Algorithm A and labeled examples z = {z;}!"; = {(x;,yi)} 1,
Minimax rate

R(ny, P) = inf sup Ez [IAZ) = mpll 2(py)]
pEP

Since P = UpmPum

R(n;,P) = ir)‘f sup Ez [||A(?) - mpHL2(px)]
PEPM

(SSL) When A is allowed to know M

Q(n,P) = 'nf sup Ez [[[A(Z) — mpll2(py))
A pEPM

In which cases there is a gap between Q(n;,P) and R(n;, P)?
. Creia—
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SSL with Graphs: What is behind it?
Hypothesis space #: half of the circle as +1 and the rest as —1

1

/ Y

/ \
\ N+ S
- ~
-1

M, M,
Case 1: M is known to the learner (H /)
What is a VC dimension of H4?

3log ny

Optimal rate Q(n, P) < 2 -
I

. Crzia—~
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SSL with Graphs: What is behind it?

Case 2: M is unknown to the learner

R(m,P) = inf sup Ez [ A(2) = my 2] = Q(1)
peEP

We consider 29 manifolds of the form

M = Loops U Links U C where C = U,('l:1 G

Loops (A) Loops (A)

Main idea: d segments in C, d — / with no data, 2/ possible
choices for labels, which helps us to lower bound [|A(Z) — mp||12(py)

. Crzia—~
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SSL with Graphs: What is behind it?

Loops (A) Loops (A)
~

Links

Links

Knowing the manifold helps
» C; and (4 are close
» (; and G5 are far
> we also need: target function varies smoothly

» altogether: closeness on manifold — similarity in labels

-
brzia—
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SSL with Graphs: What is behind it?

What does it mean to know M7

Different degrees of knowing M

>

set membership oracle: x é M
approximate oracle

knowing the harmonic functions on M
knowing the Laplacian £ 4

knowing eigenvalues and eigenfunctions
topological invariants, e.g., dimension

metric information: geodesic distance
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Scaling SSL with Graphs to Millions

Semi-supervised learning with graphs

f*=min (F—y)'C(f—vy)+
min (f—y)'C(f —y)
Let us see the same in eigenbasis of L = UAUT, ie,, f = U

a*= min (Ua—y)'C(Ua—y)+
acRV
What is the problem with scalability?
Diagonalization of NV x /N matrix

What can we do? Let's take only first k eigenvectors f = Ua!

. Cbreia—

Michal Valko — Graphs in Machine Learning Sequel - 28/40



Scaling SSL with Graphs to Millions

U is now a n x k matrix

a*= min (Uax—y)'C(Ua—y)+
acRV

Closed form solution is (N + U"CU)a = U'Cy

What is the size of this system of equation now?

Cool!  Any problem with this approach?

Are there any reasonable assumptions when this is feasible?

Let's see what happens when N — oo!

-
brzia—
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Scaling SSL with Graphs to Millions

Density

Landmarks

G—

Limitasn — oo Reduce n
Linear in number Polynomial in number of
of data-points landmarks

https://cs.nyu.edu/~fergus/papers/fut_ssl.pdf

. Cbreia—

Michal Valko — Graphs in Machine Learning


https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

Scaling SSL with Graphs to Millions
What happens to L when N — oo?

We have data x; € R sampled from p (x).
When n — oo, instead of vectors f, we consider functions F(x).

Instead of L, we define £, - weighted smoothness operator
Lo (F) =3 [ (F ) = F () Wix sa)p () p (s2) e

_ _ 2
with W/(xq,x,) = 22l xael’) ”2212 )

L defined the eigenvectors of increasing smoothness.

What defines L% Eigenfunctions!

. Cbreia—
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Scaling SSL with Graphs to Millions

L, (F) = /(F(xl F (%2))> W(x1,%0)p (x1) p (x2) dx0

First eigenfunction

o = arg min Ly (F)
F:f F2(x)p(x)D(x) dx=1

where D (x) = [ W (x,x2) p(x2) dx>

What is the solution? ®; (x) =1 because £, (1) =0

How to define ®2? Same, constraining to be orthogonal to 4

/F(X)‘Dl (x) p(x) D(x)dx =0
.&'ma,
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Scaling SSL with Graphs to Millions

Eigenfunctions of £,
®3 as before, orthogonal to ®; and ®; etc.
How to define eigenvalues? A\, = L, (Px)

Relationship to the discrete Laplacian

efLf =5 Z Wy (f; — £)? o Le(F)
ij

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg04_diss.pdf
http://arxiv.org/pdf/1510.08110v1.pdf

Isn't estimating eigenfunctions p (x) more difficult?

Are there some “easy” distributions?

Can we compute it numerically?

. brezia~
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Scaling SSL with Graphs to Millions

Eigenvectors
Data $.61=0 0002 ¢3..0:=0.038
i R
oA

Eigenfunctions

Density ®,0,=0 ®,,0,=0.0002 d;,c;3=0.035

Graphs in Machine Learning



Scaling SSL with Graphs to Millions
Factorized data distribution What if

p(s)=p(s)p(s2)---p(sd)

In general, this is not true. But we can rotate data with s = Rx.

7 2

PCA

Treating each factor individually
pkd:ef marginal distribution of sj

0¥ (sk)déf eigenfunction of £, with eigenvalue );
Then: ®;(s) = ®; (sk) is eigenfunction of £, with \;

We only considered single-coordinate eigenfunctions.

. Cbreia—
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Scaling SSL with Graphs to Millions

How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [FWT09] for eigenfunctions
> Find R such that s = Rx
» For each “independent” s, approximate p(s)
> Given p(sk) numerically solve for eigensystem of L,

(f) - PWP) g = \PDg (generalized eigensystem)

g - vector of length B = number of bins
P - density at discrete points
D - diagonal sum of PWP
D - diagonal sum of PW
» Order eigenfunctions by increasing eigenvalues

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

-
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Scaling SSL with Graphs to Millions

Numerical 1D Eigenfunctions

1%t Eigenfunction 2" Eigenfunction 3" Eigenfunction
of h(x,) of h(x,) of h(x,)

https://cs.nyu.edu/~fergus/papers/fut_ssl.pdf
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Scaling SSL with Graphs to Millions

Computational complexity for N x d dataset

Typical harmonic approach
one diagonalization of NV x /N system

Numerical eigenfunctions with B bins and k eigenvectors

d eigenvector problems of B x B
(D-PWP) g — APDg

one k x k least squares problem
(N+U'CU)a = U'Cy

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors,

When d is not too big then /V can be in millions!

. Cbreia—
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Scaling SSL with Graphs to Millions

0.7 : . . T . . .
I 1 I 1 I i I

065 - -+ - - - -, - - - - - - 5k - 1
= 0.6 = = - 1-1
®© »n
g 8
© @ 055 - - - 1-1
D ©°
-~ ©
®T 05 = I = =
s g === Figenfunction
2045 -
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05
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= 035 ~| m— Eigenvector

EEEEEEEN SVM
0.3 | s— NN
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Log2 number of +ve training examples/class

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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