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Last Lecture

I Inductive and transductive semi-supervised learning
I Manifold regularization
I Theory of Laplacian-based manifold methods
I Transductive learning stability based bounds
I Online Semi-Supervised Learning
I Online incremental k-centers

Michal Valko – Graphs in Machine Learning SequeL - 2/40



This Lecture

I Examples of applications of online SSL

I Analysis of online SSL

I SSL Learnability

I When does graph-based SSL provably help?

I Scaling harmonic functions to millions of samples
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Previous Lab Session

I 14. 11. 2016 by Daniele Calandriello
I Content

I Semi-supervised learning
I Graph quantization
I Offline face recognizer

I Install VM (in case you have not done it yet for TD1)
I Short written report
I Questions to piazza
I Deadline: 28. 11. 2016
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Next Lab Session/Lecture

I 28. 11. 2016 by Daniele.Calandriello@inria.fr
I Content (this time lecture in class + coding at home)

I Large-scale graph construction and processing (in class)
I Scalable algorithms:

I Online face recognizer (to code in Matlab)
I Iterative label propagation (to code in Matlab)
I Graph sparsification (presented in class)

I AR: record a video with faces
I Short written report
I Questions to piazza
I Deadline: 12. 12. 2016
I http://researchers.lille.inria.fr/˜calandri/teaching.html
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Final Class projects

I detailed description on the class website
I preferred option: you come up with the topic
I theory/implementation/review or a combination
I one or two people per project (exceptionally three)
I grade 60%: report + short presentation of the team
I deadlines

I 21. 11. 2016 - recommended DL for taking projects Today!
I 28. 11. 2016 - hard DL for taking projects
I 05. 01. 2017 - submission of the project report
I 09. 01. 2017 or later - project presentation

I list of suggested topics on piazza
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Online SSL with Graphs

Video examples

http://www.bkveton.com/videos/Coffee.mp4

http://www.bkveton.com/videos/Ad.mp4

http://researchers.lille.inria.fr/˜valko/hp/serve.php?
what=publications/kveton2009nipsdemo.adaptation.mov

http://researchers.lille.inria.fr/˜valko/hp/serve.php?
what=publications/kveton2009nipsdemo.officespace.mov

http://bcove.me/a2derjeh
or: http://researchers.lille.inria.fr/˜valko/hp/publications/press-intel-2015.mp4
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SSL with Graphs: Some experimental results
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SSL with Graphs: Some experimental results
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SSL with Graphs: Some experimental results
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Online SSL with Graphs: Analysis

What can we guarantee?

Three sources of error
I generalization error — if all data: (`?t − yt)

2

I online error — data only incrementally: (`ot [t]− `?t )
2

I quantization error — memory limitation: (`qt [t]− `ot [t])2

All together:

1
N

N∑
t=1

(`qt [t]−yt)
2≤ 9

2N

N∑
t=1

(`?t −yt)
2+ 9

2N

N∑
t=1

(`ot [t]−`?t )
2+ 9

2N

N∑
t=1

(`qt [t]−`ot [t])2

Since for any a, b, c, d ∈ [−1, 1]:

(a − b)2 ≤ 9
2
[
(a − c)2 + (c − d)2 + (d − b)2]
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Online SSL with Graphs: Analysis
Bounding transduction error (`?t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(`?) ≤ R̂(`?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1 − cu
cu

λM(L) + γg
γ2

g + 1

]
holds with the probability of 1 − δ, where

R(`?) =
1
N

∑
t
(`?t − yt)

2 and R̂(`?) =
1
nl

∑
t∈l

(`?t − yt)
2

How should we set γg?

Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.
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Online SSL with Graphs: Analysis
Bounding online error (`ot [t]− `?t )

2

Idea: If L and Lo are regularized, then HFSs get closer together.
since they get closer to zero

Recall ` = (C−1Q + I)−1y, where Q = L + γg I
and also v ∈ Rn×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM (A)‖v‖2

‖`‖2 ≤ ‖y‖2
λm(C−1Q + I) =

‖y‖2
λm(Q)
λM(C) + 1

≤
√nl

γg + 1

Difference between offline and online solutions:

(`ot [t]− `?t )
2 ≤ ‖`o[t]− `?‖2

∞ ≤ ‖`o[t]− `?‖2
2 ≤

(
2√nl
γg + 1

)2

Again, how should we set γg ?

If we want O
(

n−1/2
)

? Then γg = Ω
(

n1/4
)
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

How are the quantized and full solution different?

`? = min
`∈RN

(`− y)TC(`− y) + `TQ`

In Q! Qo (online) vs. Qq (quantized)

We have: `o = (C−1Qo + I)−1y vs. `q = (C−1Qq + I)−1y

Let Zq = C−1Qq + I and Zo = C−1Qo + I.

`q − `o = (Zq)−1y − (Zo)−1y = (ZqZo)−1(Zo − Zq)y
= (ZqZo)−1C−1(Qo − Qq)y
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

`q − `o = (Zq)−1y − (Zo)−1y = (ZqZo)−1(Zo − Zq)y
= (ZqZo)−1C−1(Qo − Qq)y

‖`q − `o‖2 ≤ λM(C−1)‖(Qq − Qo)y‖2
λm(Zq)λm(Zo)

|| · ||F and || · ||2 are compatible and yi is zero when unlabeled:

‖(Qq − Qo)y‖2 ≤ ‖Qq − Qo‖F · ‖y‖2 ≤
√nl‖Qq − Qo‖F

Furthermore, λm(Zo) ≥ λm(Qo)

λM(C)
+1 ≥ γg and λM

(
C−1) ≤ c−1

u

We get ‖`q − `o‖2 ≤
√nl
cuγ2

g
‖Qq − Qo‖F
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Online SSL with Graphs: Analysis

Bounding quantization error (`qt [t]−`ot [t])
2

The quantization error depends on ‖Qq − Qo‖F = ‖Lq − Lo‖F .
When can we keep ‖Lq − Lo‖F under control?

Charikar guarantees distortion error of at most Rm/(m − 1)
For what kind of data {xi}i=1,...,n is the distortion small?

Assume manifold M
I all {xi}i≥1 lie on a smooth s-dimensional compact M
I with boundary of bounded geometry Def. 11 of Hein [HAL07]

I should not intersect itself
I should not fold back onto itself
I has finite volume V
I has finite surface area A
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

Bounding ‖Lq − Lo‖F when xi ∈ M

Consider k-sphere packing of radius r with centers contained in M.

What is the maximum volume of this packing?
kcsr s ≤ V + AcMr with cs , cM depending on dimension and M.

If k is large → r < injectivity radius of M [HAL07] and r < 1:

r < ((V + AcM) / (kcs))
1/s = O

(
k−1/s

)
r -packing is a 2r -covering:

max
i=1,...,N

‖xi −c‖2 ≤ Rm/(m−1) ≤ 2(1+ε)O
(

k−1/s
)
= O

(
k−1/s

)
But what about ‖Lq − Lo‖F ?
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

If similarity is M-Lipschitz, L is normalized,
coij =

√
Do

iiDo
jj > cminN:

Lq
ij − Lo

ij =
Wq

ij
cqij

−
Wo

ij
coij

≤
Wq

ij − Wo
ij

cqij
+

Wq
ij(c

q
ij − coij )

coij c
q
ij

≤ 4MRm
(m − 1)cminN +

4M(NMRm)

((m − 1)cminN)2

= O
(

R
N

)
Finally, ‖Lq − Lo‖2

F ≤ N2O(R2/N2) = O(k−2/s).

Are the assumptions reasonable?
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

We showed ‖Lq − Lo‖2
F ≤ N2O(R2/N2) = O(k−2/s) = O(1).

1
N

N∑
t=1

(`qt [t]− `ot [t])2 ≤ nl
c2

uγ
4
g
‖Lq − Lo‖2

F ≤ nl
c2

uγ
4
g

This converges to zero at the rate of O(N−1/2) with
γg = Ω(N1/8).

With properly setting γg , e.g., γg = Ω(N1/8), we can have:

1
N

N∑
t=1

(`qt [t]−yt)
2
= O

(
N−1/2

)

What does that mean?
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SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:
I SL: does not know about M and only knows (xi , yi)

I SSL: perfect knowledge of M ≡ humongous amounts of xi

http://people.cs.uchicago.edu/˜niyogi/papersps/ssminimax2.pdf
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SSL with Graphs: What is behind it?
Set of learning problems - collections P of probability distributions:

P = ∪MPM = ∪M{p ∈ P|pX is uniform on M}
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SSL with Graphs: What is behind it?
Set of problems P = ∪MPM = {p ∈ P|pX is uniform on M}
Regression function mp = E [y |x ] when x ∈ M
Algorithm A and labeled examples z = {zi}nl

i=1 = {(xi , yi)}nl
i=1

Minimax rate

R(nl ,P) = inf
A

sup
p∈P

Ez
[
‖A(z)− mp‖L2(pX)

]
Since P = ∪MPM

R(nl ,P) = inf
A

sup
M

sup
p∈PM

Ez
[
‖A(z)− mp‖L2(pX)

]
(SSL) When A is allowed to know M

Q(nl ,P) = sup
M

inf
A

sup
p∈PM

Ez
[
‖A(z)− mp‖L2(pX)

]
In which cases there is a gap between Q(nl ,P) and R(nl ,P)?
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SSL with Graphs: What is behind it?
Hypothesis space H: half of the circle as +1 and the rest as −1

Case 1: M is known to the learner (HM)

What is a VC dimension of HM?

2

Optimal rate Q(n,P) ≤ 2

√
3 log nl

nl
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SSL with Graphs: What is behind it?
Case 2: M is unknown to the learner

R(nl ,P) = inf
A

sup
p∈P

Ez
[
‖A(z)− mp‖L2(pX)

]
= Ω(1)

We consider 2d manifolds of the form

M = Loops ∪ Links ∪ C where C = ∪d
i=1Ci

Main idea: d segments in C , d − l with no data, 2l possible
choices for labels, which helps us to lower bound ‖A(z)−mp‖L2(pX)
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SSL with Graphs: What is behind it?

Knowing the manifold helps
I C1 and C4 are close
I C1 and C3 are far
I we also need: target function varies smoothly
I altogether: closeness on manifold → similarity in labels
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SSL with Graphs: What is behind it?

What does it mean to know M?

Different degrees of knowing M

I set membership oracle: x
?
∈ M

I approximate oracle
I knowing the harmonic functions on M
I knowing the Laplacian LM
I knowing eigenvalues and eigenfunctions
I topological invariants, e.g., dimension
I metric information: geodesic distance
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Scaling SSL with Graphs to Millions

Semi-supervised learning with graphs

f? = min
f∈RN

(f − y)TC(f − y) + fTLf

Let us see the same in eigenbasis of L = UΛUT, i.e., f = Uα

α? = min
α∈RN

(Uα− y)TC(Uα− y) +αTΛα

What is the problem with scalability?

Diagonalization of N × N matrix

What can we do? Let’s take only first k eigenvectors f = Uα!
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Scaling SSL with Graphs to Millions
U is now a n × k matrix

α? = min
α∈RN

(Uα− y)TC(Uα− y) +αTΛα

Closed form solution is (Λ+ UTCU)α = UTCy

What is the size of this system of equation now?

k × k!

Cool! Any problem with this approach?

Getting L = UΛUT means solving a N × N system :(

Are there any reasonable assumptions when this is feasible?

Let’s see what happens when N → ∞!
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Scaling SSL with Graphs to Millions

https://cs.nyu.edu/˜fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions
What happens to L when N → ∞?

We have data xi ∈ R sampled from p (x).

When n → ∞, instead of vectors f, we consider functions F (x).

Instead of L, we define Lp - weighted smoothness operator

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2)dx1x2

with W (x1, x2) =
exp

(
−‖x1−x2‖2)

2σ2

L defined the eigenvectors of increasing smoothness.

What defines Lp? Eigenfunctions!
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Scaling SSL with Graphs to Millions

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2) dx1x2

First eigenfunction

Φ1 = arg min
F :

∫
F 2(x)p(x)D(x) dx=1

Lp (F )

where D (x) =
∫

x2
W (x, x2) p (x2)dx2

What is the solution? Φ1 (x) = 1 because Lp (1) = 0

How to define Φ2? Same, constraining to be orthogonal to Φ1∫
F (x)Φ1 (x) p (x)D(x)dx = 0
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Scaling SSL with Graphs to Millions
Eigenfunctions of Lp

Φ3 as before, orthogonal to Φ1 and Φ2 etc.

How to define eigenvalues? λk = Lp (Φk)

Relationship to the discrete Laplacian
1

N2 fTLf = 1
2N2

∑
ij

Wij(fi − fj)2 −−−−→
N→∞

Lp (F )

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg04_diss.pdf
http://arxiv.org/pdf/1510.08110v1.pdf

Isn’t estimating eigenfunctions p (x) more difficult?

Yes it is.

Are there some “easy” distributions?

Can we compute it numerically?
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Scaling SSL with Graphs to Millions
Eigenvectors

Eigenfunctions
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Scaling SSL with Graphs to Millions
Factorized data distribution What if

p (s) = p (s1) p (s2) . . . p (sd)

In general, this is not true. But we can rotate data with s = Rx.

Treating each factor individually
pk

def= marginal distribution of sk

Φi (sk)
def= eigenfunction of Lpk with eigenvalue λi

Then: Φi (s) = Φi (sk) is eigenfunction of Lp with λi

We only considered single-coordinate eigenfunctions.
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Scaling SSL with Graphs to Millions
How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [FWT09] for eigenfunctions
I Find R such that s = Rx
I For each “independent” sk approximate p(sk)
I Given p(sk) numerically solve for eigensystem of Lpk(

D̃ − PW̃P
)

g = λPD̂g (generalized eigensystem)

g - vector of length B ≡ number of bins
P - density at discrete points
D̃ - diagonal sum of PW̃P
D̂ - diagonal sum of PW̃

I Order eigenfunctions by increasing eigenvalues

https://cs.nyu.edu/˜fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions

Numerical 1D Eigenfunctions

https://cs.nyu.edu/˜fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions
Computational complexity for N × d dataset

Typical harmonic approach
one diagonalization of N × N system

Numerical eigenfunctions with B bins and k eigenvectors
d eigenvector problems of B × B(

D̃ − PW̃P
)

g = λPD̂g

one k × k least squares problem

(Λ+ UTCU)α = UTCy

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors, . . .

When d is not too big then N can be in millions!
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Scaling SSL with Graphs to Millions

CIFAR experiments https://cs.nyu.edu/˜fergus/papers/fwt_ssl.pdf
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