
October 17, 2016 MVA 2016/2017

Graphs in Machine Learning
Michal Valko
Inria Lille - Nord Europe, France
TA: Daniele Calandriello

Partially based on material by: Ulrike von Luxburg,
Gary Miller, Doyle & Schnell, Daniel Spielman



Previous Lecture

I similarity graphs
I different types
I construction
I sources of graphs
I practical considerations

I spectral graph theory
I Laplacians and their properties

I symmetric and asymmetric normalization
I random walks
I recommendation on a bipartite graph
I resistive networks

I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks
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Statistical Machine Learning in Paris!

https://sites.google.com/site/smileinparis/sessions-2016--17

Speaker: Isabelle Guyon - LRI (équipe TAO), UPSud
Topic: Network Reconstruction
Date: Monday, October 17, 2016
Time: 13:30 - 14:30 (this is pretty soon)
Place: Institut Henri Poincaré — salle 314
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This Lecture

I geometry of the data and the connectivity

I spectral clustering

I manifold learning with Laplacians eigenmaps

I Gaussian random fields and harmonic solution

I graph-based semi-supervised learning and manifold
regularization

I transductive learning

I inductive and transductive semi-supervised learning

Michal Valko – Graphs in Machine Learning SequeL - 4/41



Next Class: Lab Session

I 24. 10. 2016 by Daniele Calandriello
I cca. 10h30-11h help with setup (optional), 11h-13: TD
I Salle Condorcet
I Download the image and set it up BEFORE the class
I Matlab/Octave
I Short written report (graded)
I All homeworks together account for 40% of the final grade
I Content

I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation
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How to rule the world?

Let’s make Sokovia great again!
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How to rule the world?
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How to rule the world: “AI” is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/
1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U
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Application of Graphs for ML: Clustering
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Application: Clustering - Recap

I What do we know about the clustering in general?
I ill defined problem (different tasks → different paradigms)
I “I know it when I see it”
I inconsistent (wrt. Kleinberg’s axioms)

I scale-invariance, richness, consistency

I number of clusters k need often be known
I difficult to evaluate

I What do we know about k-means?
I “hard” version of EM clustering
I sensitive to initialization
I optimizes for compactness
I yet: algorithm-to-go
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Spectral Clustering: Cuts on graphs
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Spectral Clustering: Cuts on graphs
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Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs
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MinCut: cut(A,B) =
∑

i∈A,j∈B wij Are we done?
Can be solved efficiently, but maybe not what we want . . . .
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Spectral Clustering: Balanced Cuts
Let’s balance the cuts!

MinCut

cut(A,B) =
∑

i∈A,j∈B
wij

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
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Spectral Clustering: Balanced Cuts

RatioCut(A,B) = cut(A,B)

(
1
|A| +

1
|B|

)
NCut(A,B) = cut(A,B)

(
1

vol(A) +
1

vol(B)

)

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

min
A,B

cut(A,B) s.t. |A| = |B|

Graph function f for cluster membership: fi =
{

1 if Vi ∈ A,
−1 if Vi ∈ B.

What it is the cut value with this definition?

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

|A| = |B| =⇒
∑

i fi = 0 =⇒ f ⊥ 1N

‖f‖ =
√

N

objective function of spectral clustering

min
f

fTLf s.t. fi = ±1, f ⊥ 1N , ‖f‖ =
√

N

Still NP hard :( → Relax even further!

fi = ±1 → fi ∈ R
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Rayleigh-Ritz theorem
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L then

λ1 = min
x 6=0

xTLx
xTx = min

xTx=1
xTLx

λN = max
x 6=0

xTLx
xTx = max

xTx=1
xTLx

xTLx
xTx ≡ Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L and
v1, . . . , vN the corresponding orthogonal eigenvalues, then for
k = 1 : N − 1

λk+1 = min
x 6=0,x⊥v1,...vk

xTLx
xTx = min

xTx=1,x⊥v1,...vk
xTLx

λN−k = max
x 6=0,x⊥vn,...vN−k+1

xTLx
xTx = max

xTx=1,x⊥vN ,...vN−k+1
xTLx
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Rayleigh-Ritz theorem: Quick and dirty proof
When we reach the extreme points?

∂

∂x

(
xTLx
xTx

)
=

∂

∂x

(
f (x)
g(x)

)
= 0 ⇐⇒ f ′(x)g(x) = f (x)g ′(x)

By matrix calculus (or just calculus):

∂xTLx
∂x = 2Lx and ∂xTx

∂x = 2x

When f ′(x)g(x) = f (x)g ′(x)?

Lx (xTx) = (xTLx) x ⇐⇒ Lx =
xTLx
xTx x ⇐⇒ Lx = λx

Conclusion: Extremes are the eigenvectors with their eigenvalues
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Solution: second eigenvector How do we get the clustering?

The solution may not be integral. What to do?

clusteri =

{
1 if fi ≥ 0,
−1 if fi < 0.

Works but this heuristics is often too simple. In practice, cluster f
using k-means to get {Ci}i and assign:

clusteri =

{
1 if i ∈ C1,

−1 if i ∈ C−1.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

fTLf = 1
2

∑
i ,j

wi ,j(fi − fj)2 = (|A|+ |B|)RatioCut(A,B)
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Spectral Clustering: Approximating RatioCut
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

∑
i

fi = 0

∑
i

f 2
i = N

objective function of spectral clustering (same - it’s magic!)

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N
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Spectral Clustering: Approximating NCut

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
Define graph function f for cluster membership of NCut:

fi =


√

vol(A)
vol(B) if Vi ∈ A,

−
√

vol(B)
vol(A) if Vi ∈ B.

(Df)T1n = 0 fTDf = vol(V) fTLf = vol(V)NCut(A,B)

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)

Can we apply Rayleigh-Ritz now? Define w = D1/2f

objective function of spectral clustering (NCut)

min
w

wTD−1/2LD−1/2w s.t. wi ∈ R,w ⊥ D1/21N , ‖w‖2 = vol(V)

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖2 = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V)

Solution by Rayleigh-Ritz? w = v2,Lsym f = D−1/2w

f is a the second eigenvector of Lrw !

tl;dr: Get the second eigenvector of L/Lrw for RatioCut/NCut.
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Pretty bad.

Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.
https://www.cs.cmu.edu/˜glmiller/Publications/Papers/GuMi95.pdf
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters
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Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of data we can use one vs. the other?

Any disadvantages of spectral clustering?
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Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf
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Spectral Clustering: 1D Example - Eigenvectors
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Spectral Clustering: Bibliography

I M. Meila et al. “A random walks view of spectral
segmentation”. In: International Conference on Artificial
Intelligence and Statistics (2001)

I Lsym Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On
spectral clustering: Analysis and an algorithm”. In: Neural
Information Processing Systems. 2001

I Lrm J Shi and J Malik. “Normalized Cuts and Image
Segmentation”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 22 (2000), pp. 888–905

I Things can go wrong with the relaxation: Daniel A. Spielman
and Shang H. Teng. “Spectral partitioning works: Planar
graphs and finite element meshes”. In: Linear Algebra and Its
Applications 421 (2007), pp. 284–305
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Manifold Learning: Recap

problem: definition reduction/manifold learning
Given {xi}N

i=1 from Rd find {yi}N
i=1 in Rm, where m � d .

I What do we know about the dimensionality reduction
I representation/visualization (2D or 3D)
I an old example: globe to a map
I often assuming M ⊂ Rd

I feature extraction
I linear vs. nonlinear dimensionality reduction

I What do we know about linear vs. nonlinear methods?
I linear: ICA, PCA, SVD, ...
I nonlinear often preserve only local distances
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Manifold Learning: Linear vs. Non-linear
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Manifold Learning: Preserving (just) local distances

d(yi , yj) = d(xi , xj) only if d(xi , xj) is small

min
∑

ij
wij‖yi − yj‖2

Looks familiar?
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Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = λDf

Step 2: Assign m new coordinates:

xi 7→ (f2 (i) , . . . , fm+1 (i))

Note1: we need to get m + 1 smallest eigenvectors
Note2: f1 is useless

http://web.cse.ohio-state.edu/˜mbelkin/papers/LEM_NC_03.pdf
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Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

min
f

fTLf s.t. fi ∈ R, fTD1 = 0, fTDf = 1

The meaning of the constraints is similar as for spectral clustering:

fTDf = 1 is for scaling

fTD1 = 0 is to not get v1

What is the solution?
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Manifold Learning: Example

http://www.mathworks.com/matlabcentral/fileexchange/

36141-laplacian-eigenmap-˜-diffusion-map-˜-manifold-learning
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Semi-supervised learning: How is it possible?

This is how children learn! hypothesis
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Semi-supervised learning (SSL)

SSL problem: definition
Given {xi}N

i=1 from Rd and {yi}nl
i=1, with nl � N, find {yi}n

i=nl+1
(transductive) or find f predicting y well beyond that (inductive).

Some facts about SSL
I assumes that the unlabeled data is useful
I works with data geometry assumptions

I cluster assumption — low-density separation
I manifold assumption
I smoothness assumptions, generative models, . . .

I now it helps now, now it does not (sic)
I provable cases when it helps

I inductive or transductive/out-of-sample extension
http://olivier.chapelle.cc/ssl-book/discussion.pdf
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SSL: Self-Training
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SSL: Overview: Self-Training

SSL: Self-Training
Input: L = {xi , yi}nl

i=1 and U = {xi}N
i=nl+1

Repeat:
I train f using L
I apply f to (some) U and add them to L

What are the properties of self-training?
I its a wrapper method
I heavily depends on the the internal classifier
I some theory exist for specific classifiers
I nobody uses it anymore
I errors propagate (unless the clusters are well separated)
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SSL: Self-Training: Bad Case
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