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Previous Lecture

I where do the graphs come from?
I social, information, utility, and biological networks
I we create them from the flat data
I random graph models

I specific applications and concepts
I maximizing influence on a graph gossip propagation,

submodularity, proof of the approximation guarantee
I Google pagerank random surfer process, steady state

vector, sparsity
I online semi-supervised learning label propagation, backbone

graph, online learning, combinatorial sparsification,
stability analysis

I Erdős number project, real-world graphs, heavy tails, small
world – when did this happen?
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This Lecture
I similarity graphs

I different types
I construction
I practical considerations

I Laplacians and their properties

I spectral graph theory

I random walks

I recommendation on a bipartite graph

I resistive networks
I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks
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Graph theory refresher
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Graph theory refresher

Northern bank

Kirche

Southern bank

Gasthaus
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Graph theory refresher

I 250 years of graph theory

I Seven Bridges of Königsberg (Leonhard Euler, 1735)

I necessary for Eulerian circuit: 0 or 2 nodes of odd degree

I after bombing and rebuilding there are now 5 bridges in
Kaliningrad for the nodes with degrees [2, 2, 3, 3]

I the original problem is solved but not practical
http://people.engr.ncsu.edu/mfms/SevenBridges/
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Similarity Graphs
Input: x1, x2, x3, . . . , xN

I raw data
I flat data
I vectorial data
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Similarity Graphs

Similarity graph: G = (V, E) — (un)weighted

Task 1: For each pair i , j : define a similarity function sij

Task 2: Decide which edges to include

ε-neighborhood graphs – connect the points with the distances
smaller than ε

k-NN neighborhood graphs – take k nearest neighbors
fully connected graphs - consider everything

This is art (not much theory exists).
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf
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Similarity Graphs: ε-neighborhood graphs

Edges connect the points with the distances smaller than ε.

I distances are roughly on the same scale (ε)

I weights may not bring additional info → unweighted
I equivalent to: similarity function is at least ε
I theory [Penrose, 1999]: ε = ((log N)/N)d to guarantee

connectivity N nodes, d dimension

I practice: choose ε as the length of the longest edge in the
MST - minimum spanning tree

What could be the problem with this MST approach?

Anomalies can make ε too large.
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Similarity Graphs: k-nearest neighbors graphs
Edges connect each node to its k-nearest neighbors.

I asymmetric (or directed graph)
I option OR: ignore the direction
I option AND: include if we have both direction (mutual k-NN)

I how to choose k?

I k ≈ log N - suggested by asymptotics (practice: up to
√

N)

I for mutual k-NN we need to take larger k

I mutual k-NN does not connect regions with different density

I why don’t we take k = N − 1?

I space and time
I manifold considerations (preserving local properties)
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Similarity Graphs: Fully connected graphs

Edges connect everything.

I choose a “meaningful” similarity function s
I default choice:

sij = exp
(
−‖xi − xj‖2

2σ2

)
I why the exponential decay with the distance?
I σ controls the width of the neighborhoods

I similar role as ε
I a practical rule of thumb: 10% of the average empirical std
I possibility: learn σi for each feature independently

I metric learning (a whole field of ML)
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Similarity Graphs: Important considerations

I calculate all sij and threshold has its limits (N ≈ 10000)
I graph construction step can be a huge bottleneck
I want to go higher? (we often have to)

I down-sample
I approximate NN

I LSH - Locally Sensitive Hashing
I CoverTrees
I Spectral sparsifiers

I sometime we may not need the graph (just the final results)
I yet another story: when we start with a large graph and want

to make it sparse (later in the course)
I these rules have little theoretical underpinning
I similarity is very data-dependent
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Similarity Graphs: ε or k-NN?

DEMO IN CLASS

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf

Michal Valko – Graphs in Machine Learning SequeL - 13/42

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf


Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

sij = exp
(
−‖xi − xj‖2

2σ2

)
Cosine similarity function:

sij = cos(θ) =
(

xT
i xj

‖xi‖‖xj‖

)
Typical Kernels
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Similarity Graphs

G = (V, E) - with a set of nodes V and a set of edges E
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Sources of Real Networks

I http://snap.stanford.edu/data/
I http://www-personal.umich.edu/˜mejn/netdata/
I http://proj.ise.bgu.ac.il/sns/datasets.html
I http://www.cise.ufl.edu/research/sparse/matrices/
I http://vlado.fmf.uni-lj.si/pub/networks/data/

default.htm
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Graph Laplacian

G = (V, E) - with a set of nodes V and a set of edges E

A adjacency matrix
W weight matrix
D (diagonal) degree matrix

L = D−W graph Laplacian matrix

L =


4 −1 0 −1 −2

−1 8 −3 −4 0
0 −3 5 −2 0

−1 −4 −2 12 −5
−2 0 0 −5 7



L is SDD!

1

3

2

1

2
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Properties of Graph Laplacian

Graph function: a vector f ∈ RN assigning values to nodes:

f : V(G)→ R.

fTLf = 1
2
∑

i ,j≤N
wi ,j(fi − fj)2 = SG(f)

Proof:

fTLf = fTDf − fTWf =
N∑

i=1
di f 2

i −
∑

i,j≤N

wi,j fi fj

=
1
2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +
N∑

j=1
di f 2

j

 =
1
2

∑
i,j≤N

wi,j(fi − fj)
2
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Recap: Eigenwerte und Eigenvektoren
A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

If (λ1, v1) are (λ2, v2) eigenpairs for symmetric M with λ1 6= λ2
then v1 ⊥ v2, i.e., vT

1v2 = 0.

Proof: λ1vT
1v2 = vT

1Mv2 = vT
1λ2v2 = λ2vT

1v2 =⇒ vT
1v2 = 0

If (λ, v1), (λ, v2) are eigenpairs for M then (λ, v1 + v2) is as well.

For symmetric M, the multiplicity of λ is the dimension of the
space of eigenvectors corresponding to λ.

Every N × N symmetric matrix has N eigenvalues (w/
multiplicities).
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Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

Vectors {vi}i form an orthonormal basis with λ1 ≤ λ2 ≤ . . . λN .

∀i Mvi = λivi ≡ MQ = QΛ

Q has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying MQ = QΛ by QT we get the
eigendecomposition of M:

M = MQQT = QΛQT =
∑

i λivivT
i
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: wij ≥ 0.

L is symmetric

L positive semi-definite ← fTLf = 1
2
∑

i ,j≤N wi ,j(fi − fj)2

Recall: If Lf = λf then λ is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1N .

All eigenvalues are non-negative reals 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

Self-edges do not change the value of L.
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Properties of Graph Laplacian
The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0, f) is an eigenpair then 0 = 1
2
∑

i ,j≤N wi ,j(fi − fj)2.
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:

L =


L1

L2
. . .

Lk


For block-diagonal matrices: the spectrum is the union of the
spectra of Li (eigenvectors of Li padded with zeros elsewhere).

For Li (0, 1|Vi |) is an eigenpair, hence the claim.
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Smoothness of the Function and Laplacian
I f = (f1, . . . , fN)T: graph function
I Let L = QΛQT be the eigendecomposition of the Laplacian.

I Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I α: Unique vector such that Qα = f Note: QTf = α

Smoothness of a graph function SG(f)

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2
Λ =

N∑
i=1

λiα
2
i

Smoothness and regularization: Small value of

(a) SG(f) (b) Λ norm of α? (c) α?
i for large λi
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Smoothness of the Function and Laplacian

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2Λ =
N∑

i=1
λiα

2
i

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?

Spectral coordinates of eigenvector vk : QTvk = ek

SG(vk)=vT
kLvk =vT

kQΛQTvk = eT
kΛek = ‖ek‖2Λ =

N∑
i=1

λi(ek)
2
i = λk

The smoothness of k-th eigenvector is the k-th eigenvalue.
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Laplacian of the Complete Graph KN
What is the eigenspectrum of LKN ?

1

2

3 4

5
LKN =


N − 1 −1 −1 −1 −1
−1 N − 1 −1 −1 −1
−1 −1 N − 1 −1 −1
−1 −1 −1 N − 1 −1
−1 −1 −1 −1 N − 1



From before: we know that (0, 1N) is an eigenpair.

If v 6= 0N and v ⊥ 1N =⇒
∑

i vi = 0. To get the other
eigenvalues, we compute (LKN v)1 and divide by v1 (wlog v1 6= 0).

(LKN v)1 = (N − 1)v1 −
N∑

i=2
vi = Nv1.

What are the remaining eigenvalues/vectors?

Answer: N − 1 eigenvectors ⊥ 1N for eigenvalue N with multiplicity N − 1.

Michal Valko – Graphs in Machine Learning SequeL - 25/42



Normalized Laplacians

Lun = D−W
Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw = D−1L = I−D−1W

fTLsymf = 1
2
∑

i ,j≤N
wi ,j

(
fi√
di
− fj√

dj

)2

(λ,u) is an eigenpair for Lrw iff (λ,D1/2u) is an eigenpair for Lsym
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Normalized Laplacians
Lsym and Lrw are PSD with non-negative real eigenvalues

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN

.
(λ,u) is an eigenpair for Lrw iff (λ,u) solve the generalized
eigenproblem Lu = λDu.

(0, 1N) is an eigenpair for Lrw .

(0,D1/21N) is an eigenpair for Lsym.

Multiplicity of eigenvalue 0 of Lrw or Lsym equals to the number of
connected components.

Proof: As for L.
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Laplacian and Random Walks on Undirected Graphs
I stochastic process: vertex-to-vertex jumping

I transition probability vi → vj is pij = wij/di

I di
def=
∑

j wij

I transition matrix P = (pij)ij = D−1W (notice Lrw = I− P)

I if G is connected and non-bipartite → unique stationary
distribution π = (π1, π2, π3, . . . , πN) where πi = di/vol(V )

I vol(G) = vol(V ) = vol(W)
def=
∑

i di =
∑

i,j wij

I π = 1TW
vol(W) verifies πP = π as:

πP =
1TWP
vol(W)

=
1TDP
vol(W)

=
1TDD−1W
vol(W)

=
1TW

vol(W)
= π
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Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

ranking

ranking

ranking

ranking

viewer1

Adam

movieA

Le ciel attendra

movieB

La Danseuse

viewer2

Barbara

movieC

Juste la fin du monde

viewer3

Céline

Question: Do we recommend Juste la fin du monde to Adam?
Let’s compute some score(v ,m)!
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Use of Laplacians: Movie recommendation

How to compute the score(v ,m)? Using some graph distance!

Idea1: maximally weighted path
score(v ,m) = maxvPm weight(P) = maxvPm

∑
e∈P ranking(e)

Problem: If there is a weak edge, the path should not be good.

Idea2: change the path weight
score2(v ,m) = maxvPm weight2(P) = maxvPm mine∈P ranking(e)

Problem of 1&2: Additional paths does not improve the score.

Idea3: consider everything
score3(v ,m) = max flow from m to v

Problem of 3: Shorter paths do not improve the score.
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Laplacians and Resistive Networks
How to compute the score(v ,m)?

Idea4: view edges as conductors
score4(v ,m) = effective resistance between m and v

+
−v

i
C

C ≡ conductance

R ≡ resistance

i ≡ current

V ≡ voltage

C =
1
R i = CV =

V
R
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Resistive Networks: Some high-school physics

Michal Valko – Graphs in Machine Learning SequeL - 32/42



Resistive Networks

resistors in series

R = R1 + · · ·+ Rn C =
1

1
C1

+ · · ·+ 1
CN

i = V
R

conductors in parallel

C = C1 + · · ·+ CN i = VC

Effective Resistance on a graph
Take two nodes: a 6= b. Let Vab be the voltage between them and
iab the current between them. Define Rab = Vab

iab
and Cab = 1

Rab
.

We treat the entire graph as a resistor!
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Resistive Networks: Optional Homework (ungraded)

Show that Rab is a metric space.

1. Rab ≥ 0
2. Rab = 0 iff a = b
3. Rab = Rba

4. Rac ≤ Rab + Rbc

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’s Law ≡ flow in = flow out

C1

C2

C3

V1

V

V2V3

V = C1
C V1 +

C2
C V2 +

C3
C V3 (convex combination)

residual current = CV − C1V1 − C2V2 − C3V3
Kirchhoff says: This is zero! There is no residual current!
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Resistors: Where is the link with the Laplacian?
General case of the previous! di =

∑
j cij = sum of conductances

Lij =


di if i = j ,
−cij if (i , j) ∈ E ,

0 otherwise.

v = voltage setting of the nodes on graph.

(Lv)i = residual current at vi — as we derived

Use: setting voltages and getting the current

Inverting ≡ injecting current and getting the voltages

The net injected has to be zero - Kirchhoff’s Law.
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Resistors and the Laplacian: Finding Rab

Let’s calculate R1N to get the movie recommendation score!

L


0
v2
...

vn−1
1

 =


i
0
...
0
−i


i = V

R V = 1 R =
1
i

Return R1N =
1
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/˜doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R1N

Lv = (i , 0, . . . ,−i)T ≡ boundary valued problem

For R1N

V1 and VN are the boundary

(v1, v2, . . . , vN) is harmonic:

Vi ∈ interior (not boundary)

Vi is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R1n

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle
If f = v is harmonic then min and max are on the boundary.

Proof: k ∈ ◦ =⇒ ∃ neighbors Vi ,Vj s.t. vi ≤ vk ≤ vj

Uniqueness Principle
If f and g are harmonic with the same boundary then f = g

Proof: f − g is harmonic with zero on the boundary
=⇒ f − g ≡ 0 =⇒ f = g
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Resistors and the Laplacian: Finding R1N

Alternative method to calculate R1N :

Lv =


1
0
...
0
−1


def= iext Return R1N = v1 − vN Why?

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = Lv
Moore-Penrose pseudo-inverse solves LS
Solution: Instead of v = L−1iext we take v = L+iext
We get: R1N = v1 − vN = iTextv = iTextL+iext.
Notice: We can reuse L+ to get resistances for any pair of nodes!
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

L = QΛQT =
N∑

i=1
λiqiqT

i =
N∑

i=2
λiqiqT

i

Pseudo-inverse of the Laplacian:

L+ = QΛ+QT =
N∑

i=2

1
λi

qiqT
i

Moore-Penrose pseudo-inverse solves a least squares problem:

v = arg min
x
‖Lx− iext‖2 = L+iext
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