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Previous Lecture

» where do the graphs come from?
» social, information, utility, and biological networks
» we create them from the flat data
» random graph models

» specific applications and concepts

» maximizing influence on a graph gossip propagation,
submodularity, proof of the approximation guarantee

» Google pagerank random surfer process, steady state
vector, sparsity

> online semi-supervised learning label propagation, backbone
graph, online learning, combinatorial sparsification,
stability analysis

» ErdGs number project, real-world graphs, heavy tails, small
world — when did this happen?
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This Lecture

> similarity graphs
» different types
» construction
» practical considerations

» Laplacians and their properties
> spectral graph theory
» random walks

> recommendation on a bipartite graph

> resistive networks

» recommendation score as a resistance?
» Laplacian and resistive networks
> resistance distance and random walks
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Graph theory refresher
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Graph theory refresher
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Graph theory refresher

» 250 years of graph theory
» Seven Bridges of Konigsberg (Leonhard Euler, 1735)
> necessary for Eulerian circuit: 0 or 2 nodes of odd degree

> after bombing and rebuilding there are now 5 bridges in
Kaliningrad for the nodes with degrees [2,2, 3, 3]

> the original problem is solved but not practical
http://people.engr.ncsu.edu/mfms/SevenBridges/

. brezia~
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Similarity Graphs
Input: Xx1,X2,X3,...,Xy
> raw data
> flat data

» vectorial data




Similarity Graphs

Similarity graph: G = (V,€) — (un)weighted

Task 1: For each pair i, j: define a similarity function s;;
Task 2: Decide which edges to include

e-neighborhood graphs — connect the points with the distances
smaller than ¢

k-NN neighborhood graphs — take k nearest neighbors
fully connected graphs - consider everything
This is art (not much theory exists).

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

. brezia~
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Similarity Graphs: s-neighborhood graphs
Edges connect the points with the distances smaller than e.

» distances are roughly on the same scale (¢)
> weights may not bring additional info — unweighted
> equivalent to: similarity function is at least ¢

> theory [Penrose, 1999]: ¢ = ((log V)/N)9 to guarantee
con neCtiVity N nodes, d dimension

> practice: choose ¢ as the length of the longest edge in the
MST - minimum spanning tree

What could be the problem with this MST approach?
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Similarity Graphs: k-nearest neighbors graphs
Edges connect each node to its k-nearest neighbors.
» asymmetric (or directed graph)

» option OR: ignore the direction
» option AND: include if we have both direction (mutual k-NN)

v

how to choose k?

k ~ log NV - suggested by asymptotics (practice: up to v//V)

v

v

for mutual k-NN we need to take larger k

v

mutual k-NN does not connect regions with different density

v

why don't we take k = N/ — 17
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Similarity Graphs: Fully connected graphs

Edges connect everything.

v

choose a “meaningful” similarity function s

2
i —x
sy = enp (L5

why the exponential decay with the distance?

default choice:

v

v

» o controls the width of the neighborhoods

» similar role as ¢
» a practical rule of thumb: 10% of the average empirical std
» possibility: learn o; for each feature independently

» metric learning (a whole field of ML)

-
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Similarity Graphs: Important considerations

» calculate all sij and threshold has its limits (/V =~ 10000)
» graph construction step can be a huge bottleneck

» want to go higher? (we often have to)

» down-sample
» approximate NN

» LSH - Locally Sensitive Hashing
» CoverTrees
> Spectral sparsifiers

» sometime we may not need the graph (just the final results)
» yet another story: when we start with a large graph and want
to make it sparse (later in the course)

> these rules have little theoretical underpinning

> similarity is very data-dependent

. brezia~
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Similarity Graphs: ¢ or k-NN?

DEMO IN CLASS
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http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

-
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Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

2
i —x,
:p< b~ >

Cosine similarity function:

xXIX;
= 0) = i
s = cos(f) <ux,-u||x,-||)

Typical Kernels

. Cbreia—
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Similarity Graphs
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Sources of Real Networks

» http://snap.stanford.edu/data/

> http://www-personal.umich.edu/~mejn/netdata/

> http://proj.ise.bgu.ac.il/sns/datasets.html

> http://www.cise.ufl.edu/research/sparse/matrices/

> http://vlado.fmf.uni-1j.si/pub/networks/data/
default.htm

IlédzéLA
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Graph Laplacian

G = (V,€) - with a set of nodes V and a set of edges £

A adjacency matrix
W weight matrix
D (diagonal) degree matrix

L=D—W graph Laplacian matrix

4 -1 0o -1 -2

-1 8 -3 —4 0

L= 0 -3 5 =2 0
-1 -4 -2 12 -5

-2 0 0 -5 7

L is SDD!

. brezia~
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Properties of Graph Laplacian

Graph function: a vector f € R" assigning values to nodes:

f:V(G) =R

1
fILf =2 > wij(fi — £)* = Sc(f)
ij<N

Michal Valko — Graphs in Machine Learning

Sequel - 18/42



Recap: Eigenwerte und Eigenvektoren

A vector v is an eigenvector of matrix M of eigenvalue A

Mv = )\v.

If (A1,v1) are (A2, v2) eigenpairs for symmetric M with A\; # A
then vi L vy, i.e., vjvp = 0.

If (A, v1), (A, v2) are eigenpairs for M then (X, vi 4 v2) is as well.

For symmetric M, the multiplicity of A is the dimension of the
space of eigenvectors corresponding to A.

Every N x N symmetric matrix has ) eigenvalues (w/
multiplicities).

-
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Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an eigenvector of matrix M of eigenvalue \
Mv = Av.
Vectors {v;}; form an orthonormal basis with A\; < Ay < ... \p.
Vi Mv; = A\v; = MQ = QA
Q has eigenvectors in columns and A has eigenvalugs on its diagonal.

Right-multiplying MQ = QA by Q" we get the
eigendecomposition of M:

M= MQQ" = QAQ" =) \ivjv]

-

brzia~
. Michal Valko — Graphs in Machine Learning Sequel - 20/42



M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

L is symmetric

L positive semi-definite < fTLf = 1 >iien wij(fi = 6)?
Recall: If Lf = Af then X is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1.
All eigenvalues are non-negative reals 0 = A\; < Ao < --- < Ay

Self-edges do not change the value of L.

-
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components' indicators.

Proof: If (0,f) is an eigenpair then 0 = %Zi,jgN w;j(fi — )2
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:

L;
Lo

Ly

For block-diagonal matrices: the spectrum is the union of the
spectra of L; (eigenvectors of L; padded with zeros elsewhere).

For L; (0,1}y,)) is an eigenpair, hence the claim.

-
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Smoothness of the Function and Laplacian
> f=(f,...,fy)": graph function
> Let L = QAQT be the eigendecomposition of the Laplacian.

» Diagonal matrix A whose diagonal entries are eigenvalues of L.
» Columns of Q are eigenvectors of L.
» Columns of Q form a basis.

» «: Unique vector such that Qo = f Note: Q'f = «

Smoothness of a graph function S¢(f)

N
So(f) = fLE=fQAQf = a'Aa = ol = > Aio?
i=1

Smoothness and regularization: Small value of

(a) Sg(f) (b) A norm of a*  (c) af for large \;

. brezia~
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Smoothness of the Function and Laplacian

N
Se(f) = f'Lf = QAQ"f = a"Aax = [laf[f = D Nio?
i=1

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

Spectral coordinates of eigenvector vi: Qv = e,
P g

N
Se(vi) =viLvik =viQAQ vy = efAej = [lex [z = > Ai(ex)] = A
i=1

The smoothness of k-th eigenvector is the k-th eigenvalue.

-
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Laplacian of the Complete Graph K

What is the eigenspectrum of Lk, ?

N-1 -1 -1 -1 -1
-1 N-1 -1 -1 -1

ey = -1 -1 wN-1 -1 -1
-1 -1 -1 N-1 -1
-1 -1 -1 -1 N-1

From before: we know that (0,1,) is an eigenpair.

Ifv#Oyandv L1y = ), v; =0. To get the other
eigenvalues, we compute (Lk, v); and divide by v; (wlog vi # 0).
N

(LKNV)l = (/V — 1)V1 — ZV,’ = Nvl.
i=2

What are the remaining eigenvalues/vectors?

-
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Normalized Laplacians

L,=D-W
Loym = D 2LD"12 = | — p~Y/2WwpD1/2
L, =D'L=1-D"'w

2
1 i f
fTLSymf = — W;,j (—/ — #>
2 2, \Va Vs

(A, u) is an eigenpair for L, iff (\,D/?u) is an eigenpair for Ls,m

-
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Normalized Laplacians

Lsym and L,, are PSD with non-negative real eigenvalues
0= < <A< <y

(A, u) is an eigenpair for L, iff (A, u) solve the generalized
eigenproblem Lu = ADu.

(0,1y) is an eigenpair for L,,,.
(0, D1/21N) is an eigenpair for Lgym.

Multiplicity of eigenvalue 0 of L,, or Ls,, equals to the number of
connected components.

Proof: As for L.

-
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Laplacian and Random Walks on Undirected Graphs

> stochastic process: vertex-to-vertex jumping

» transition probability vi — v; is p;j = w;/d;

> d,'gzj Wij
> transition matrix P = (p;;); = D™!W (notice )
» if G is connected and non-bipartite — unique stationary
distribution © = (71, 72, 73, ..., my) where 7; = d;/vol(V)
> vol(G) = vol(V) = vol(W) £ 37, dy = 3, wy
> 1w

= Sol(W) verifies 7P = 7 as:

_I'wp _ 1'DP _ 1'DD'W  1'W
~ vol(W)  vol(W)  vol(W)  vol(W)

=T
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Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

Adam Barbara Céline
viewery viewers viewers
ranking ranking
ranking ranking

moviea movieg moviec

Le ciel attendra La Danseuse  Juste la fin du monde

Question: Do we recommend Juste la fin du monde to Adam?
Let's compute some score(v, m)!

. Cbreia—
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Use of Laplacians: Movie recommendation

How to compute the score(v, m)? Using some graph distance!

Idea;: maximally weighted path

score(v, m) = max,py, weight(P) = max,pm Y .. p ranking(e)

Idea,: change the path weight

scorep (v, m) = max,pp, weight,(P) = max,py, minecp ranking(e)

Ideas: consider everything

scores(v, m) = max flow from m to v

-
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Laplacians and Resistive Networks

How to compute the score(v, m)?

Ideas: view edges as conductors

scoreq(v, m) = effective resistance between m and v

C = conductance
R = resistance

i = current

V = voltage

4
R

. Cbreia—
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Resistive Networks: Some high-school physics

Electricity/explained ™

. brezia~
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Resistive Networks

resistors

R=R +---+R, C=

conductors in

C=GCG+ ---+Cy i=VC

Take two nodes: a # b. Let V,, be the voltage between them and

isp the current between them. Define R, = \,/—ab" and C,p = RL,,'
ai a

We treat the entire graph as a resistor!

-
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Resistive Networks: Optional Homework (ungraded)

Show that R, is a metric space.

1. Rab > 0

2. Ryp=0iffa=b
3. Ry = Rps

4. Rac < Rab + Rbc

The effective resistance is a distance!

Michal Valko — Graphs in Machine Learning Sequel - 34/42



How to compute effective resistance?

Kirchhoff's Law = flow in = flow out

v=%v, + % Vo + % V3 (convex combination)

residual current = CV — GVi — GV — G5V
Kirchhoff says: This is zero! There is no residual current!

. Clreia—
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Resistors: Where is the link with the Laplacian?

General case of the previous! d; = ZJ- cjj = sum of conductances

d; if i =],
Lj =< —c; if(i,j) €E,
0 otherwise.

v = voltage setting of the nodes on graph.
(Lv); = residual current at v; — as we derived
Use: setting voltages and getting the current

Inverting = injecting current and getting the voltages

The net injected has to be zero - Kirchhoff’s Law.

. Cbreia—
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Resistors and the Laplacian: Finding R,

Let's calculate R;) to get the movie recommendation score!

0 i
Vo 0
L : =
Vn—1 0
1 —i

1
Return Ry = =
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

. brezia~
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Resistors and the Laplacian: Finding Ry

Lv=(/,0,...,—/)" = boundary valued problem
For Ry

Vi and V) are the boundary

(vi,va,...,vy) is harmonic:

V; € interior (not boundary)

V; is a convex combination of its neighbors

-
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Resistors and the Laplacian: Finding Ry,

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle

If f = v is harmonic then min and max are on the boundary.

Uniqueness Principle

If f and g are harmonic with the same boundary then f = g
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Resistors and the Laplacian: Finding Ry

Alternative method to calculate Ry y:
1

0
. def .
Lv = : =iext Return Riy =wvi — vy Why?

0
-1

Question: Does v exist? L does not have an inverse :(.

Not unique: 1 in the nullspace of L : L(v+ cl) = Lv+ cL1 =Lv
Moore-Penrose pseudo-inverse |solves LS

Solution: Instead of v = L™ ligy we take v = Lt iy

We get: Ry = vi — vy = il v =il LTiey.

Notice: We can reuse L™ to get resistances for any pair of nodes!

. Clreia—
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What? A pseudo-inverse?
Eigendecomposition of the Laplacian:
N N
L=QAQ" = Z Aigiq; = Z Aig;q;
i=1 i=2
Pseudo-inverse of the Laplacian:

N
1
LT =QA Q" = ) i
i=2 7

Moore-Penrose pseudo-inverse solves a least squares problem:

v =argmin ||Lx — iext ||, = L iy
X

-
lrzia—
. Michal Valko — Graphs in Machine Learning Sequel - 41/42



Michal Valko

michal.valko@inria.fr
ENS Paris-Saclay, MVA 2016/2017
Sequel team, Inria Lille — Nord Europe

https://team.inria.fr/sequel/


https://team.inria.fr/sequel/

