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Piazza for Q&A’s

Purpose
I registration for the class
I register with your school email and full name
I online course discussions and announcements
I questions and answers about the material and logistics
I students encouraged to answer each others’ questions
I homework assignments
I virtual machine link and instructions
I draft of the slides before the class

https://piazza.com/ens_cachan/fall2016/mvagraphsml

class code given during the class
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Graphs from social networks

I people and their interactions

I directed (Twitter) and
undirected (Facebook)

I structure is rather a
phenomena

I typical ML tasks
I advertising
I product placement
I link prediction (PYMK)
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Success story #1 Product placement - problem

A

B

C

F

E

D

Who should get free cell phones?
V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}
F (S) = Expected number of people influenced when targeting
S ⊆ V under some propagation model - e.g., cascades

How would you choose the target customers?
highest degree, close to the center, . . .

Maximizing the Spread of Influence through a Social Network
http://www.cs.cornell.edu/home/kleinber/kdd03-inf.pdf
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Submodularity: Definition
A set function on a discrete set A is submodular if for any
S ⊆ T ⊆ A and for any e ∈ A \ T

f (S ∪ {e})− f (S) ≥ f (T ∪ {e})− f (T )

Example: S = {stuff} = {bread, apple, tomato, . . . }
f (V ) = cost of getting products V
f ({bread}) = c(bakery) + c(bread)
f ({bread, apple}) = c(bakery) + c(bread) + c(market) + c(apple})
f ({bread, tomato}) = c(bakery) + c(bread) + c(market) + c(tomato)
f ({bread, tomato, apple}) = c(bakery) + c(bread) + c(market) + c(tomato) + c(apple)

Adding an apple to the smaller set costs more!

{bread}⊆{bread, tomato}
f ({bread, apple})− f ({bread})>f ({bread, tomato, apple})− f ({tomato, bread})

Diminishing returns: Buying in bulk is cheaper!
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Submodularity: Application
Objective: Find arg maxS⊆A,|S|≤k f (S)
Property: NP-hard in general
Special case: f is also nonnegative and monotone.

Other examples: information, graph cuts, covering, . . .

Link to our product placement problem on a social network graph?
submodular?, nonnegative?, monotone?, k?

http://thibaut.horel.org/submodularity/papers/nemhauser1978.pdf

Let S? = arg maxS⊆A,|S|≤k f (S) where f is monotonic and
submodular set function and let SGreedy be a greedy solution.

Then f (SGreedy) ≥
(
1 − 1

e
)
· f (S?).
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Submodularity: Greedy algorithm

1: Input:
2: k: the maximum allowed cardinality of the output
3: V : a ground set
4: f : a monotone, non-negative, and submodular function
5: Run:
6: S0 = ∅
7: for i = 1 to k do
8: Si ← Si−1 ∪

{
arg maxa∈V\Si−1

[f ({a} ∪ Si−1)− f (Si−1)]
}

9: end for
10: Output:
11: Return SGreedy = Sk

Let S? = arg maxS⊆A,|S|≤k f (S) where f is monotonic and
submodular set function and let SGreedy be a greedy solution.

Then f (SGreedy) ≥
(
1 − 1

e
)
· f (S?).
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Submodularity: Approximation guarantee of Greedy
Let Si be the i-th set selected by Greedy, SGreedy = Sk . We show

f (S?)− f (Si) ≤
(
1 − 1

k
)i · f (S?).

Difference from the optimum before the i-th step . . .
f (S?)− f (Si−1) ≤ f (S? ∪ Si−1)− f (Si−1)

≤
∑

a∈S?\Si−1

(f ({a} ∪ Si−1)− f (Si−1))

≤
∑

a∈S?\Si−1

(f (Si)− f (Si−1))

≤ k (f (Si)− f (Si−1))

Difference from the optimum after the i-th step . . .
f (S?)− f (Si) = f (S?)− f (Si−1)− (f (Si)− f (Si−1))

≤ f (S?)− f (Si−1)−
f (S?)− f (Si−1)

k
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Submodularity: Graph-related examples

I influence maximization on networks (current example)

I maximum-weight spanning trees

I graph cuts

I structure learning in graphical models (PGM course)

back to the influence-maximization example . . .
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Success story #1 Product placement - solution

0.30.50.5
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Key idea: Flip coins c in advance → “live” edges

Fc(V ) = People influenced under outcome c (set cover!)
F (V ) =

∑
c P(c)Fc(V ) is submodular as well!

Tutorial: cf. Andreas Krause http://submodularity.org/

Course: Jeff Billmes at UW
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Success story #1 Product placement - comparison

propagation on the ArXiv/Physics co-authorship dataset

greedy approximation does better than the centrality measures
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Graphs from utility and technology networks

I link services

I power grids, roads,
transportation networks,
Internet, sensor networks,
water distribution networks

I structure is either hand
designed or not

I typical ML tasks
I best routing under

unknown or variable costs
I identify the node of

interest

Berkeley’s Floating Sensor Network
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Graphs from information networks

I web

I blogs

I wikipedia

I typical ML tasks
I find influential sources
I search (PageRank)

Blog cascades (ETH) - submodularity
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Success story #2 Google PageRank

Objective: Rank all web pages (nodes on the graph) by how many
other pages link to them and how important they are.

basic PageRank is independent of query and the page content

Internet → graph → matrix → stochastic matrix M (
∑

j Mij = 1)

G

A

?

B

?

C

?

D

?

F

?

E

?

Random Surfer Process

What is wrong with it?

dangling pages act like sinks
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Success story #2 Google PageRank

http://infolab.stanford.edu/˜backrub/google.html:

PageRank can be thought of as a model of user behavior. We assume
there is a ”random surfer” who is given a web page at random and keeps
clicking on links, never hitting ”back” but eventually gets bored and
starts on another random page.

I page is important if important pages link to it
I circular definition

I importance of a page is distributed evenly
I probability of being bored is 15%
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Success story #2 Google PageRank

Google matrix: G = (1 − p)M + p · 1
N1N×N , where p = 0.15

G is stochastic why? What is Ga for any a? We look for Gv = 1 × v,
steady-state vector, a right eigenvector with eigenvalue 1. why?
Perron’s theorem: Such v exists and it is unique (if the entries
of G are positive).

G

A

B

C

D

F

E
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Success story #2 Google PageRank

Google matrix: G = (1 − p)M + p · 1
N1N×N , where p = 0.15

G is stochastic why? What is Ga for any a? We look for Gv = 1 × v,
steady-state vector, a right eigenvector with eigenvalue 1. why?
Perron’s theorem: Such v exists and it is unique (if the entries
of G are positive).

G

A

0.15

B

0.31

C

0.54

D

0.38

F

0.64

E

0.38
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Success story #2 Google PageRank

Google matrix: G = (1 − p)M + p · 1
N1N×N , where p = 0.15

G is stochastic why? What is Ga for any a? We look for Gv = 1 × v,
steady-state vector, a right eigenvector with eigenvalue 1. why?
Perron’s theorem: Such v exists and it is unique (if the entries
of G are positive).

G

0.15

A

0.21

B

0.40

C

0.67

D

0.44

F

0.70

E

0.44
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Success story #2 Google PageRank

History: [Desikan, 2006]
I The anatomy of a large-scale hypertextual web search engine

[Brin & Page 1998]
I US patent for PageRank granted in 2001
I Google indexes 10’s of billions of web pages (1 billion = 109)
I Google serves ≥ 200 million queries per day
I Each query processed by ≥ 1000 machines
I All search engines combined process more than 500 million

queries per day
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Success story #2 Google PageRank

Problem: Find an eigenvector of a stochastic matrix.

I n = 109 !!!
I luckily: sparse (average outdegree: 7)
I better than a simple centrality measure (e.g., degree)
I power method

v0 = (1A 0B 0C 0D 0E 0F )
T

v1 = Gv0

vt+1 = Gvt = Gt+1v

vt+1 = vt =⇒ Gvt = vt and we found the steady vector

But wait, M is sparse, but G is dense! What to do?

we store only M but do computations as with G
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Graphs from biological networks

I protein-protein interactions

I gene regulatory networks

I typical ML tasks
I discover unexplored

interactions
I learn or reconstruct the

structure

Diffuse large B-cell lymphomas - Dittrich et al. (2008)
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Graphs from similarity networks
graph is not naturally given
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Graphs from similarity networks

but we can construct it
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Graphs from similarity networks

and use it as an abstraction
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Graphs from similarity networks

I vision

I audio

I text

I typical ML tasks
I semi-supervised learning
I spectral clustering
I manifold learning

Movie similarity
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Two sources of graphs in ML

Graph as models for networks
I given as an input

I discover interesting
properties of the structure

I represent useful information
(viral marketing)

I be the object of study
(anomaly detection)

Graph as nonparametric basis
I we create (learn) the

structure

I flat vectorial data →
similarity graph

I nonparametric regularizer

I encode structural properties:
smoothness, independence,
. . .
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Random Graph Models

Erdős-Rényi
independent edges

Barabási-Albert
preferential attachment

Stochastic Blocks
modeling communities

Watts-Strogatz, Chung-Lu, Fiedler, ....

Michal Valko – Graphs in Machine Learning SequeL - 23/37



What will you learn in the Graphs in ML course?

Concepts, tools, and methods to work with graphs in ML.

Theoretical toolbox to analyze graph-based algorithms.

Specific applications of graphs in ML.

How to tackle: large graphs, online setting, graph construction . . .

One example: Online Semi-Supervised Face Recognition
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Online Semi-Supervised Face Recognition

graph is not given

Michal Valko – Graphs in Machine Learning SequeL - 25/37



Online Semi-Supervised Face Recognition
we will construct it!

Michal Valko – Graphs in Machine Learning SequeL - 25/37



Online Semi-Supervised Face Recognition

graph-based semi-supervised learning
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Online Semi-Supervised Face Recognition

online learning - graph sparsification
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DEMO
second TD

see the demo: http://researchers.lille.inria.fr/˜valko/hp/serve.php?what=
publications/kveton2009nipsdemo.officespace.mov
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OSS FaceReco: Analysis
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Erdős number project

I http://www.oakland.edu/enp/

I and example of a real-world graph

I 401 000 authors, 676 000 edges (� 4010002 → sparse)

I average degree 3.36

I average distance for the largest component: 7.64

I 6 degrees of separation [Travers & Milgram, 1967]

I heavy tail
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Spanish flu in San Francisco 1918–1919

http://rsif.royalsocietypublishing.org/content/4/12/155

Small world: Obvious?
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Black death!
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Black death: spread

source: catholic.org

https://www.youtube.com/watch?v=EEK6c9Bh5CQ
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Other topics

Some of the other topics
I spectral graph theory, graph Laplacians, spectral clustering
I semi-supervised learning and manifold learning
I learnability on graphs - transductive learning
I online decision-making on graphs, graph bandits
I submodularity on graphs
I real-world graphs scalability and approximations
I spectral sparsification
I social network and recommender systems applications
I link prediction/link clasification
I signed networks (eOpinions)
I generalization bounds by perturbation analysis
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Administrivia

MVA and Graphs: 2 courses
The two MVA graph courses offer complementary material.

Fall: Graphs in ML
this class

I focus on learning
I spectral clustering
I random walks
I graph Laplacian
I semi-supervised learning
I manifold learning
I theoretical analyses
I online learning
I recommender systems

Spring: ALTeGraD
by Michalis Vazirgiannis

I dimensionality reduction
I feature selection
I text mining
I graph mining
I community mining
I graph generators
I graph-evaluation measures
I privacy in graph mining
I big data
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Administrivia

Statistical Machine Learning in Paris!

https://sites.google.com/site/smileinparis/sessions-2016--17
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Administrivia

Administrivia

Time: Mondays 11h-13h
Place: ENS Cachan - Salle Condorcet

7 lectures: 3.10. 10.10. 17.10. 31.10. 7.11. 21.11. 12.12.
3 recitations (TDs): 24.10. 14.11.(11h-13h) 28.11.(14h-16h)

Validation: grades from TDs (40%) + class project (60%)
Research: contact me for internships, PhD.theses, projects, etc.

Course website:
http://researchers.lille.inria.fr/˜valko/hp/mva-ml-graphs

Contact, online class discussions, and announcements:
https://piazza.com/ens_cachan/fall2016/mvagraphsml
class code given during the class
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