

Graphs in Machine Learning

Michal Valko

Inria Lille - Nord Europe, France

Partially based on material by: Tomáš Kocák

November 23, 2015

MVA 2015/2016

Last Lecture

- Examples of applications of online SSL
- Analysis of online SSL
- SSL Learnability
- When does graph-based SSL provably help?
- Scaling harmonic functions to millions of samples

Previous Lab Session

- ▶ 16. 11. 2015 by Daniele Calandriello
- Content
 - Semi-supervised learning
 - Graph quantization
 - Online face recognizer
- Short written report
- Questions to piazza
- Deadline: 30. 11. 2015
- http://researchers.lille.inria.fr/~calandri/teaching.html

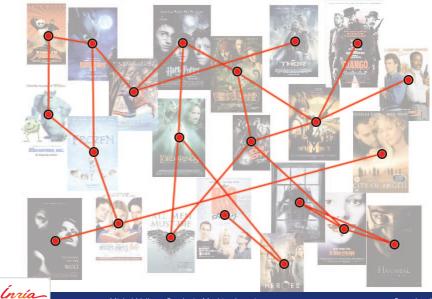
This Lecture

- Online decision-making on graphs
- Graph bandits
- Smoothness of rewards (preferences) on a given graph
- Observability graphs
- Exploiting side information

Final Class projects

- detailed description on the class website
- preferred option: you come up with the topic
- theory/implementation/review or a combination
- one or two people per project (exceptionally three)
- ▶ grade 60%: report + short presentation of the team
- deadlines
 - ▶ 23. 11. 2015 strongly recommended DL for taking projects
 - ▶ 30. 11. 2015 hard DL for taking projects
 - ▶ 06. 01. 2015 submission of the project report
 - 11. 01. 2016 (or later) project presentation
- list of suggested topics on piazza

Online Decision Making on Graphs



Online Decision Making on Graphs: Smoothness

Sequential decision making in structured settings

- we are asked to pick a node (or a few nodes) in a graph
- the graph encodes some structural property of the setting
- goal: maximize the sum of the outcomes
- application: recommender systems
- First application: Exploiting smoothness
 - fixed graph
 - iid outcomes
 - neighboring nodes have similar outcomes

nín

Online Decision Making on Graphs

Movie recommendation: (in each time step)

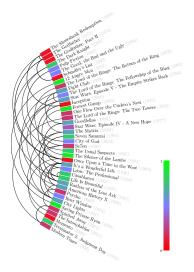
- Recommend movies to a **single user**.
- Good prediction after a few steps ($T \ll N$).

Goal:

Maximize overall reward (sum of ratings).

Assumptions:

- Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function *f* is **smooth** on a graph.
- Neighboring movies \Rightarrow similar preferences.
- ► Similar preferences ⇒ neighboring movies.



Let's be lazy: Ignore the structure!

This is an multi-armed bandit problem!

The performance depends on the number of movies (N arms).

Worst case regret (to the best fixed strategy) $R_T = \mathcal{O}\left(\sqrt{NT}\right)$

What is *N* for imdb.com? 3,538,545 http://www.imdb.com/stats

Let's be lazy: Ignore the structure!

Another problem of the typical bandits strategies for recommendation?

If there is no information shared, we need to try all of the options!

UCB/MOSS and likely TS start with pulling each of the arms once

This is a problem both algorithmically and theoretically

Watch all the movies and then I tell you which one you like

What do we need for movie recommendation?

An algorithm useful in the case $T \ll N!$

Exploiting the structure is a must!

Recap: Smooth graph functions

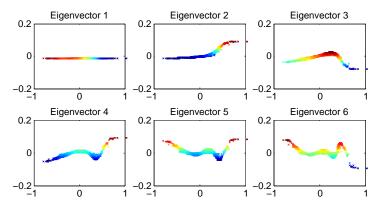
- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
 - Columns of Q are eigenvectors of L.
 - Columns of **Q** form a basis.

•
$$\alpha^*$$
: Unique vector such that $\mathbf{Q}\alpha^* = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \alpha^*$

$$S_G(\mathbf{f}) = \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\alpha}^{*\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\alpha}^* = \| \boldsymbol{\alpha}^* \|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^N \lambda_i (\alpha_i^*)^2$$

Smoothness and <u>regularization</u>: Small value of (a) $S_G(\mathbf{f})$ (b) Λ norm of α^* (c) α_i^* for large λ_i

Smooth graph functions: Flixster eigenvectors



Eigenvectors from the Flixster data corresponding to the smallest few eigenvalues of the graph Laplacian projected onto the first principal component of data. Colors indicate the values.

Online Learning Setting - Bandit Problem

Learning setting for a bandit algorithm $\boldsymbol{\pi}$

- In each time t step choose a node $\pi(t)$.
- ▶ the $\pi(t)$ -th row $\mathbf{x}_{\pi(t)}$ of the matrix **Q** corresponds to the arm $\pi(t)$.
- ► Obtain noisy reward $r_t = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$. Note: $\mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* = f_{\pi(t)}$

► ε_t is *R*-sub-Gaussian noise. $\forall \xi \in \mathbb{R}, \mathbb{E}[e^{\xi \varepsilon_t}] \leq \exp(\xi^2 R^2/2)$

Minimize cumulative regret

$$R_T = T \max_a (\mathbf{x}_a^{\mathsf{T}} \boldsymbol{lpha}^*) - \sum_{t=1}^T \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{lpha}^*.$$

What is a good result?

Can't we just use *linear bandits*?

Online Decision Making on Graphs: Smoothness

- Linear bandit algorithms
 - ► LinUCB
 - Regret bound $\approx D\sqrt{T \ln T}$
 - ► LinearTS
 - Regret bound $\approx D\sqrt{T \ln N}$

(Li et al., 2010)

(Agrawal and Goyal, 2013)

Note: *D* is ambient dimension, in our case *N*, length of x_i . Number of actions, e.g., all possible movies \rightarrow **HUGE**!

Spectral bandit algorithms

- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
 - Operations per step: D²N
- SpectralTS
 - Regret bound $\approx d\sqrt{T \ln N}$
 - Operations per step: $D^2 + DN$

Note: *d* is effective dimension, usually much smaller than *D*.

SequeL - 14/40

(Valko et al., ICML 2014)

(Kocák et al., AAAI 2014)

Effective dimension

Effective dimension: Largest *d* such that

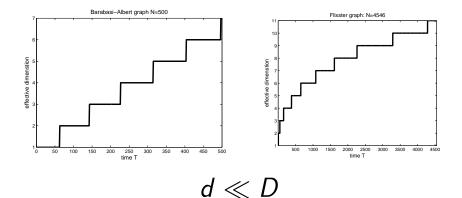
$$(d-1)\lambda_d \leq rac{\mathcal{T}}{\log(1+\mathcal{T}/\lambda)}.$$

- Function of time horizon and graph properties
- λ_i : *i*-th smallest eigenvalue of **A**.
- λ : Regularization parameter of the algorithm.

Properties:

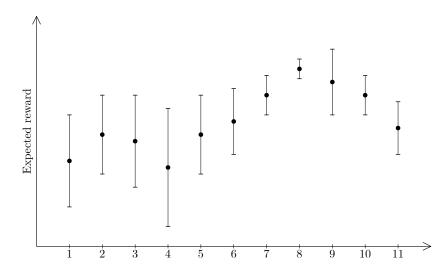
- *d* is small when the coefficients λ_i grow rapidly above time.
- ► *d* is related to the number of "non-negligible" dimensions.
- ▶ Usually *d* is much smaller than *D* in real world graphs.
- Can be computed beforehand.

Effective dimension vs. Ambient dimension



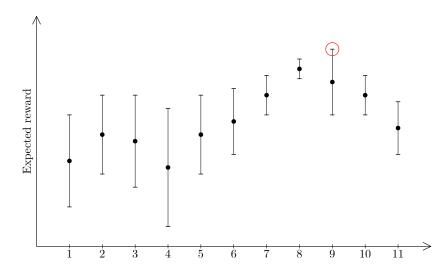
Note: In our setting T < N = D.

UCB-style algorithms: Estimate

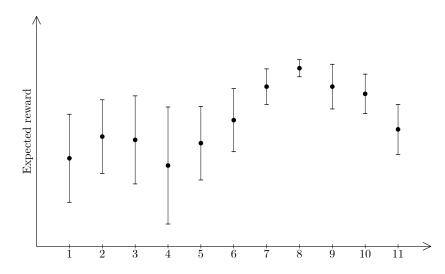


Michal Valko – Graphs in Machine Learning

UCB-style algorithms: Sample



UCB-style algorithms: Estimate ...



Michal Valko – Graphs in Machine Learning

SpectralUCB

Given a vector of weights α , we define its $\mathbf{\Lambda}$ norm as

$$\|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}} = \sqrt{\sum_{k=1}^{N} \lambda_k \alpha_k^2} = \sqrt{\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\alpha}},$$

and fit the ratings r_v with a (regularized) least-squares estimate

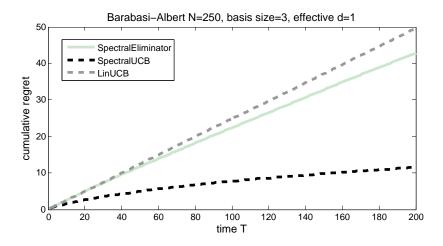
$$\widehat{\boldsymbol{\alpha}}_t = \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \left(\sum_{\nu=1}^t \left[\langle \boldsymbol{\mathsf{x}}_{\nu}, \boldsymbol{\alpha} \rangle - r_{\nu} \right]^2 + \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 \right).$$

 $\|\alpha\|_{\Lambda}$ is a penalty for non-smooth combinations of eigenvectors.

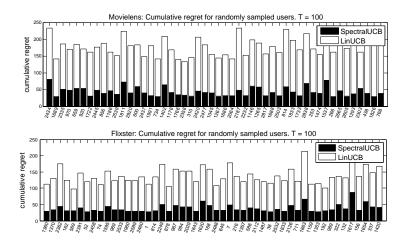
SpectralUCB

1: Input: 2: $N, T, \{\Lambda_L, \mathbf{Q}\}, \lambda, \delta, R, C$ 3: Run: 4: $\Lambda \leftarrow \Lambda_1 + \lambda_1$ 5: $d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}$ 6: for t = 1 to T do 7: Update the basis coefficients $\hat{\alpha}$: $\mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^{\mathsf{T}}$ 8: 9: $\mathbf{r} \leftarrow [r_1, \ldots, r_{t-1}]^{\mathsf{T}}$ 10: $\mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^{\mathsf{T}} + \mathbf{\Lambda}$ 11: $\widehat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^{\mathsf{T}} \mathbf{r}$ 12: $c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C$ $\pi(t) \leftarrow \arg \max_{a} \left(\mathbf{x}_{a}^{\mathsf{T}} \widehat{\alpha} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}_{t}^{-1}} \right)$ 13: 14: Observe the reward r_{t} 15: end for

SpectralUCB: Synthetic experiment



SpectralUCB: Movie data experiments



- ► *d*: Effective dimension.
- λ : Minimal eigenvalue of $\mathbf{\Lambda} = \mathbf{\Lambda}_{\mathbf{L}} + \lambda \mathbf{I}$.
- C: Smoothness upper bound, $\|\alpha^*\|_{\mathbf{A}} \leq C$.

•
$$\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$$
 for all *i*.

The **cumulative regret** R_T of **SpectralUCB** is with probability $1 - \delta$ bounded as

$$R_{T} \leq \left(8R\sqrt{d\ln\frac{\lambda+T}{\lambda}+2\ln\frac{1}{\delta}}+4C+4\right)\sqrt{dT\ln\frac{\lambda+T}{\lambda}}.$$

$$R_T \approx d\sqrt{T \ln T}$$

- Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|\mathbf{x}^{\mathsf{T}}(\widehat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)| \leq \|\mathbf{x}\|_{\mathbf{V}_t^{-1}} \left(R_{\sqrt{2 \ln \left(\frac{|\mathbf{V}_t|^{1/2}}{\delta |\mathbf{A}|^{1/2}}\right)} + C \right)$$

- Regret in one time step: $r_t = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha}^* \mathbf{x}_{\pi}^{\mathsf{T}} t \boldsymbol{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$

$$R_{T} = \sum_{t=1}^{T} r_{t} \leq \sqrt{T \sum_{t=1}^{T} r_{t}^{2}} \leq 2(\frac{V}{C_{T}} + 1) \sqrt{2T \ln \frac{|V_{T}|}{|\Lambda|}}$$

• Upperbound for $\ln(|\mathbf{V}_t|/|\mathbf{\Lambda}|)$

$$\ln \frac{|\mathbf{V}_t|}{|\mathbf{A}|} \leq \ln \frac{|\mathbf{V}_{\mathcal{T}}|}{|\mathbf{A}|} \leq 2d \ln \left(\frac{\lambda + \mathcal{T}}{\lambda}\right)$$

Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

Goal:

- \blacktriangleright Upperbound determinant $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\scriptscriptstyle\mathsf{T}}|$ for $\|\mathbf{x}\|_2 \leq 1$
- ▶ Upperbound x^TA⁻¹x

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{\Lambda}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{x} = \mathbf{y}^{\mathsf{T}}\mathbf{\Lambda}^{-1}\mathbf{y} = \sum_{i=1}^{N} \lambda_{i}^{-1}y_{i}^{2}$$

▶ $\|\mathbf{y}\|_2 \le 1.$

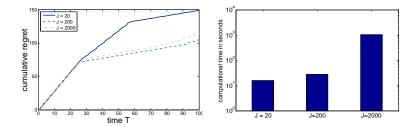
- **y** is a canonical vector.
- $\mathbf{x} = \mathbf{Q}\mathbf{y}$ is an eigenvector of \mathbf{A} .

Corollary: Determinant $|\mathbf{V}_{\mathcal{T}}|$ of $\mathbf{V}_{\mathcal{T}} = \mathbf{\Lambda} + \sum_{t=1}^{\mathcal{T}} \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}}$ is maximized when all \mathbf{x}_t are aligned with axes.

$$\begin{split} |\mathbf{V}_{\mathcal{T}}| &\leq \max_{\sum t_i = \mathcal{T}} \prod (\lambda_i + t_i) \\ \ln \frac{|\mathbf{V}_{\mathcal{T}}|}{|\mathbf{\Lambda}|} &\leq \max_{\sum t_i = \mathcal{T}} \sum \ln \left(1 + \frac{t_i}{\lambda_i}\right) \\ \ln \frac{|\mathbf{V}_{\mathcal{T}}|}{|\mathbf{\Lambda}|} &\leq \sum_{i=1}^{d} \ln \left(1 + \frac{T}{\lambda}\right) + \sum_{i=d+1}^{N} \ln \left(1 + \frac{t_i}{\lambda_{d+1}}\right) \\ &\leq d \ln \left(1 + \frac{T}{\lambda}\right) + \frac{T}{\lambda_{d+1}} \\ &\leq 2d \ln \left(1 + \frac{T}{\lambda}\right) \end{split}$$

SpectralUCB: Improving the running time

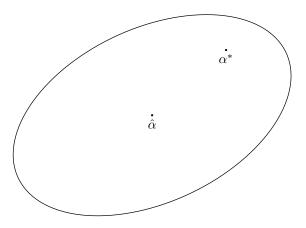
- Reduced basis: We only need first few eigenvectors.
- **Getting** J eigenvectors: $\mathcal{O}(Jm \log m)$ time for m edges
- Computationally less expensive, comparable performance.



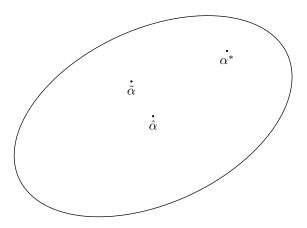
SpectralUCB: How to make it even faster?

- UCB-style algorithms need to (re)-compute UCBs every t
- Can be a problem for large set of arms $\rightarrow D^2 N \rightarrow N^3$
- Optimistic (UCB) approach vs. Thompson Sampling
 - Play the arm maximizing probability of being the best
 - Sample $\widetilde{\alpha}$ from the distribution $\mathcal{N}(\widehat{\alpha}, v^2 \mathbf{V}^{-1})$
 - Play arm which maximizes $\mathbf{x}^{\mathsf{T}} \widetilde{\boldsymbol{\alpha}}$ and observe reward
 - Compute posterior distribution according to reward received
- Only requires $D^2 + DN \rightarrow N^2$ per step update

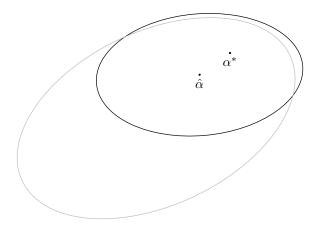
Thomson Sampling: Estimate



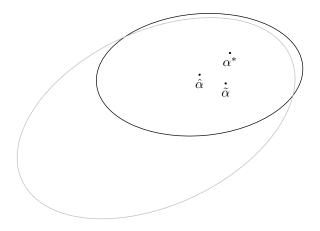
Thomson Sampling: Sample



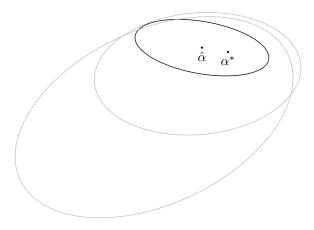
Thomson Sampling: Estimate



Thomson Sampling: Sample



Thomson Sampling: Estimate



SpectralTS for Graphs

1: Input: 2: $N, T, \{\mathbf{A}_{\mathbf{L}}, \mathbf{Q}\}, \lambda, \delta, R, C$ 3: Initialization: 4: $v = R\sqrt{6d \log((\lambda + T)/\delta\lambda)} + C$ 5: $\widehat{\alpha} = 0_N$ 6: $f = 0_N$ 7: $\mathbf{V} = \mathbf{\Lambda}_{\mathbf{I}} + \lambda \mathbf{I}_{\mathbf{N}}$ 8: Run: 9: for t = 1 to T do 10: Sample $\widetilde{\alpha} \sim \mathcal{N}(\widehat{\alpha}, v^2 \mathbf{V}^{-1})$ 11: $\pi(t) \leftarrow \arg \max_{a} \mathbf{x}_{a}^{\mathsf{T}} \widetilde{\alpha}$ 12: Observe a noisy reward $r(t) = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ 13: $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{x}_{\pi(t)} r(t)$ 14: Update $\mathbf{V} \leftarrow \mathbf{V} + \mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\mathsf{T}}$ 15: Update $\widehat{\alpha} \leftarrow \mathbf{V}^{-1}\mathbf{f}$ 16: end for

SpectralTS: Regret bound

- ► *d*: Effective dimension.
- λ: Minimal eigenvalue of $\Lambda = \Lambda_L + \lambda I$.
- C: Smoothness upper bound, $\|\alpha^*\|_{\mathbf{A}} \leq C$.
- ► $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$ for all *i*.

The **cumulative regret** R_T of **SpectralTS** is with probability $1 - \delta$ bounded as

$$\mathcal{R}_{T} \leq \frac{11g}{p} \sqrt{\frac{4+4\lambda}{\lambda}} dT \log \frac{\lambda+T}{\lambda} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \log \frac{2}{\delta}},$$

where $p = 1/(4e\sqrt{\pi})$ and
 $g = \sqrt{4\log TN} \left(R \sqrt{6d \log \left(\frac{\lambda+T}{\delta\lambda}\right)} + C \right) + R \sqrt{2d \log \left(\frac{(\lambda+T)T^{2}}{\delta\lambda}\right)} + C.$

$$R_T \approx d\sqrt{T \log N}$$

SpectralTS: Analysis sketch

Divide arms into two groups

$$\Delta_i = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha} - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha} \leq g \|\mathbf{x}_i\|_{\mathbf{V}_*^{-1}}$$

arm *i* is **unsaturated**

arm *i* is **saturated**

Saturated arm

- Small standard deviation \rightarrow accurate regret estimate.
- ▶ High regret on playing the arm → Low probability of picking

Unsaturated arm

- Low regret bounded by a factor of standard deviation
- High probability of picking

SpectralTS: Analysis sketch

nía

- ▶ Confidence ellipsoid for estimate $\widehat{\mu}$ of μ (with probability $1 \delta/T^2$)
 - Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{x}_{i}^{\mathsf{T}}\widehat{\boldsymbol{\alpha}} - \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\alpha}| \leq \left(R\sqrt{2\,d\log\left(\frac{(\lambda+T)\,T^{2}}{\delta\lambda}\right)} + C\right)\|\mathbf{x}_{i}\|_{\mathbf{V}_{t}^{-1}} = \ell\|\mathbf{x}_{i}\|_{\mathbf{V}_{t}^{-1}}$$

The key result coming from spectral properties of V_t.

$$\log rac{|\mathbf{V}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + rac{T}{\lambda}
ight)$$

- ▶ Concentration of sample $\widetilde{\alpha}$ around mean $\widehat{\alpha}$ (with probability $1 1/T^2$)
 - Using concentration inequality for Gaussian random variable.

$$|\mathbf{x}_{i}^{\mathsf{T}}\widetilde{\boldsymbol{\alpha}} - \mathbf{x}_{i}^{\mathsf{T}}\widehat{\boldsymbol{\alpha}}| \leq \left(R\sqrt{6d\log\left(\frac{\lambda+T}{\delta\lambda}\right)} + C\right) \|\mathbf{x}_{i}\|_{\mathbf{V}_{t}^{-1}}\sqrt{4\log(TN)} = \nu \|\mathbf{x}_{i}\|_{\mathbf{V}_{t}^{-1}}\sqrt{4\log(TN)}$$

SpectralTS: Analysis sketch

nría

Define regret'(t) = regret(t) $\cdot \mathbb{1}\{|\mathbf{x}_i^{\mathsf{T}}\widehat{\alpha}(t) - \mathbf{x}_i^{\mathsf{T}}\alpha| \le \ell \|\mathbf{x}_i\|_{\mathbf{V}_t^{-1}}\}$

$$\mathsf{regret}'(t) \leq \frac{11g}{p} \|\mathbf{x}_{\boldsymbol{a}(t)}\|_{\mathbf{V}_t^{-1}} + \frac{1}{\mathcal{T}^2}$$

Super-martingale (i.e. $\mathbb{E}[Y_t - Y_{t-1}|\mathcal{F}_{t-1}] \leq 0$)

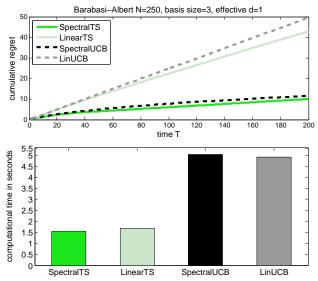
$$\begin{aligned} X_t &= \operatorname{regret}'(t) - \frac{11g}{p} \|\mathbf{x}_{a(t)}\|_{\mathbf{V}_t^{-1}} - \frac{1}{T^2} \\ Y_t &= \sum_{w=1}^t X_w. \end{aligned}$$

 $(Y_t; t = 0, ..., T)$ is a super-martingale process w.r.t. history \mathcal{F}_t .

Azuma-Hoeffding inequality for super-martingales, w.p. $1-\delta/2$:

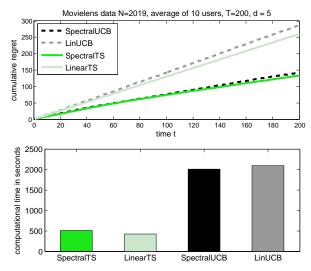
$$\sum_{t=1}^{T} \operatorname{regret}'(t) \leq \frac{11g}{p} \sum_{t=1}^{T} \|\mathbf{x}_{a(t)}\|_{\mathbf{V}_{t}^{-1}} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \ln \frac{2}{\delta}}$$

Spectral Bandits: Synthetic experiment



Spectral Bandits: Real world experiment

MovieLens dataset of 6k users who rated one million movies.



(nría_

Michal Valko – Graphs in Machine Learning

Spectral Bandits Summary

- Spectral bandit setting (smooth graph functions).
- SpectralUCB

• Regret bound
$$R_T = \widetilde{\mathcal{O}}\left(\frac{d}{\sqrt{T \ln T}}\right)$$

SpectralTS

• Regret bound
$$R_T = \widetilde{O}\left(\frac{d}{\sqrt{T \ln N}}\right)$$

- Computationally more efficient.
- SpectralEliminator

• Regret bound
$$R_T = \widetilde{O}\left(\sqrt{dT \ln T}\right)$$

- Better upper, empirically does not seem to work well (yet)
- Bounds scale with effective dimension $d \ll D$.

SpectralEliminator: Pseudocode

Input:

N : the number of nodes, T : the number of pulls $\{\Lambda_{I}, Q\}$ spectral basis of L λ : regularization parameter β , $\{t_i\}_i^J$ parameters of the elimination and phases $A_1 \leftarrow \{\mathbf{x}_1, \ldots, \mathbf{x}_K\}.$ for i = 1 to J do $\mathbf{V}_{t_i} \leftarrow \gamma \mathbf{\Lambda}_{\mathbf{L}} + \lambda \mathbf{I}$ for $t = t_i$ to min $(t_{i+1} - 1, T)$ do Play $\mathbf{x}_t \in A_i$ with the largest width to observe r_t : $\mathbf{x}_t \leftarrow \arg \max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}$ $\mathbf{V}_{t+1} \leftarrow \mathbf{V}_t + \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}}$ end for Eliminate the arms that are not promising: $\widehat{\alpha}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}$ $A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \widehat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[\langle \widehat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \right] \right\}$ end for

Ínría

SpectralEliminator: Analysis

SpectralEliminator

 Divide time into sets (t₁ = 1 ≤ t₂ ≤ ...) to introduce independence for Azuma-Hoeffding inequality and observe
 R_T ≤ ∑_{j=0}^J(t_{j+1} − t_j)[⟨**x**^{*} − **x**_t, â_j⟩ + (||**x**^{*}||_{V_j⁻¹} + ||**x**_t||_{V_j⁻¹})β]

• Bound
$$\langle \mathbf{x}^* - \mathbf{x}_t, \widehat{oldsymbol{lpha}}_j
angle$$
 for each phase

- $\blacktriangleright \text{ No bad arms: } \langle \mathbf{x}^* \mathbf{x}_t, \widehat{\alpha}_j \rangle \leq (\|\mathbf{x}^*\|_{\mathbf{V}_j^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_j^{-1}})\beta$
- By algorithm: $\|\mathbf{x}\|_{\mathbf{V}_{j}^{-1}}^{2} \leq \frac{1}{t_{j}-t_{j-1}} \sum_{s=t_{j-1}+1}^{t_{j}} \|\mathbf{x}_{s}\|_{\mathbf{V}_{s-1}^{-1}}^{2}$

$$\blacktriangleright \sum_{s=t_{j-1}+1}^{t_j} \min\left(1, \|\mathbf{x}_s\|_{\mathbf{V}_{s-1}}^2\right) \le \log \frac{|\mathbf{V}_j|}{|\mathbf{A}|}$$

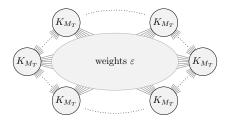
Spectral Bandits: Is it possible to do better?

Is d a good quantity that embodies the difficulty?

Lower bound!

For any d, we construct a graph that for any reasonable algorithm, the regret is at least $\Omega(\sqrt{dT})$.

How? By reduction to *d*-arm bandits problem.



SequeL – Inria Lille

MVA 2015/2016

Michal Valko michal.valko@inria.fr sequel.lille.inria.fr