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Last Lecture

I Examples of applications of online SSL

I Analysis of online SSL

I SSL Learnability

I When does graph-based SSL provably help?

I Scaling harmonic functions to millions of samples
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Previous Lab Session

I 16. 11. 2015 by Daniele Calandriello
I Content

I Semi-supervised learning
I Graph quantization
I Online face recognizer

I Short written report
I Questions to piazza
I Deadline: 30. 11. 2015
I http://researchers.lille.inria.fr/~calandri/teaching.html
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This Lecture

I Online decision-making on graphs

I Graph bandits

I Smoothness of rewards (preferences) on a given graph

I Observability graphs

I Exploiting side information
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Final Class projects

I detailed description on the class website
I preferred option: you come up with the topic
I theory/implementation/review or a combination
I one or two people per project (exceptionally three)
I grade 60%: report + short presentation of the team
I deadlines

I 23. 11. 2015 - strongly recommended DL for taking projects
I 30. 11. 2015 - hard DL for taking projects
I 06. 01. 2015 - submission of the project report
I 11. 01. 2016 (or later) - project presentation

I list of suggested topics on piazza
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Online Decision Making on Graphs
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Online Decision Making on Graphs: Smoothness

I Sequential decision making in structured settings
I we are asked to pick a node (or a few nodes) in a graph
I the graph encodes some structural property of the setting
I goal: maximize the sum of the outcomes
I application: recommender systems

I First application: Exploiting smoothness
I fixed graph
I iid outcomes
I neighboring nodes have similar outcomes
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Online Decision Making on Graphs

Movie recommendation: (in each time step)
I Recommend movies to a single user.
I Good prediction after a few steps (T�N).

Goal:
I Maximize overall reward (sum of ratings).

Assumptions:
I Unknown reward function f : V (G)→ R.
I Function f is smooth on a graph.
I Neighboring movies ⇒ similar preferences.
I Similar preferences 6⇒ neighboring movies.
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Let’s be lazy: Ignore the structure!

→

This is an multi-armed bandit problem!

The performance depends on the number of movies (N arms).

Worst case regret (to the best fixed strategy) RT = O
(√

NT
)

What is N for imdb.com? 3,538,545 http://www.imdb.com/stats
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Let’s be lazy: Ignore the structure!

Another problem of the typical bandits strategies for recommendation?

If there is no information shared, we need to try all of the options!

UCB/MOSS and likely TS start with pulling each of the arms once

This is a problem both algorithmically and theoretically . . . .

Watch all the movies and then I tell you which one you like . . . .

What do we need for movie recommendation?

An algorithm useful in the case T � N!

Exploiting the structure is a must!
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Recap: Smooth graph functions

I f = (f1, . . . , fN)T: Vector of function values.
I Let L = QΛQT be the eigendecomposition of the Laplacian.

I Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I α∗: Unique vector such that Qα∗ = f Note: QTf = α∗

SG(f) = fTLf = fTQΛQTf = α∗TΛα∗ = ‖α∗‖2
Λ =

N∑
i=1

λi(α
∗
i )

2

Smoothness and regularization: Small value of

(a) SG(f) (b) Λ norm of α∗ (c) α∗
i for large λi
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Smooth graph functions: Flixster eigenvectors
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Online Learning Setting - Bandit Problem
Learning setting for a bandit algorithm π

I In each time t step choose a node π(t).
I the π(t)-th row xπ(t) of the matrix Q corresponds to the arm π(t).
I Obtain noisy reward rt = xT

π(t)α
∗ + εt . Note: xT

π(t)α
∗ = fπ(t)

I εt is R-sub-Gaussian noise. ∀ξ ∈ R, E[eξεt ] ≤ exp
(
ξ2R2/2

)
I Minimize cumulative regret

RT = T max
a

(xT
aα

∗)−
T∑

t=1
xT
π(t)α

∗.

What is a good result?

Can’t we just use linear bandits?
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Online Decision Making on Graphs: Smoothness
I Linear bandit algorithms

I LinUCB (Li et al., 2010)
I Regret bound ≈ D

√
T ln T

I LinearTS (Agrawal and Goyal, 2013)
I Regret bound ≈ D

√
T ln N

Note: D is ambient dimension, in our case N, length of xi .
Number of actions, e.g., all possible movies → HUGE!

I Spectral bandit algorithms
I SpectralUCB (Valko et al., ICML 2014)

I Regret bound ≈ d
√

T ln T
I Operations per step: D2N

I SpectralTS (Kocák et al., AAAI 2014)
I Regret bound ≈ d

√
T ln N

I Operations per step: D2 + DN

Note: d is effective dimension, usually much smaller than D.
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Effective dimension
I Effective dimension: Largest d such that

(d − 1)λd ≤
T

log(1 + T/λ)
.

I Function of time horizon and graph properties
I λi : i-th smallest eigenvalue of Λ.
I λ: Regularization parameter of the algorithm.

Properties:
I d is small when the coefficients λi grow rapidly above time.
I d is related to the number of “non-negligible” dimensions.
I Usually d is much smaller than D in real world graphs.
I Can be computed beforehand.
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Effective dimension vs. Ambient dimension
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UCB-style algorithms: Estimate
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UCB-style algorithms: Sample
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UCB-style algorithms: Estimate . . .
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SpectralUCB

Given a vector of weights α, we define its Λ norm as

‖α‖Λ =

√√√√ N∑
k=1

λkα
2
k =
√
αTΛα,

and fit the ratings rv with a (regularized) least-squares estimate

α̂t = arg min
α

( t∑
v=1

[〈xv ,α〉 − rv ]
2 + ‖α‖2Λ

)
.

‖α‖Λ is a penalty for non-smooth combinations of eigenvectors.
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SpectralUCB

1: Input:
2: N, T , {ΛL,Q}, λ, δ, R, C
3: Run:
4: Λ← ΛL + λI
5: d ← max{d : (d − 1)λd ≤ T/ ln(1 + T/λ)}
6: for t = 1 to T do
7: Update the basis coefficients α̂:
8: Xt ← [xπ(1), . . . , xπ(t−1)]

T

9: r← [r1, . . . , rt−1]
T

10: Vt ← XtXT
t + Λ

11: α̂t ← V−1
t XT

t r
12: ct ← 2R

√
d ln(1 + t/λ) + 2 ln(1/δ) + C

13: π(t)← arg maxa

(
xT

a α̂+ ct‖xa‖V−1
t

)
14: Observe the reward rt

15: end for
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SpectralUCB: Synthetic experiment
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SpectralUCB: Movie data experiments
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SpectralUCB: Regret Bound

I d : Effective dimension.
I λ: Minimal eigenvalue of Λ = ΛL + λI.
I C : Smoothness upper bound, ‖α∗‖Λ ≤ C .
I xT

i α
∗ ∈ [−1, 1] for all i .

The cumulative regret RT of SpectralUCB is with probability 1− δ
bounded as

RT ≤

(
8R
√

d ln λ+ T
λ

+ 2 ln 1
δ
+ 4C + 4

)√
dT ln λ+ T

λ
.

RT ≈ d
√

T ln T
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SpectralUCB: Regret Bound
I Derivation of the confidence ellipsoid for α̂ with probability 1− δ.

I Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

|xT(α̂−α∗)| ≤ ‖x‖V−1
t

(
R
√

2 ln
(

|Vt |1/2

δ|Λ|1/2

)
+ C

)
I Regret in one time step: rt = xT

∗α
∗ − xT

π(t)α
∗ ≤ 2ct‖xπ(t)‖V−1

t

I Cumulative regret:

RT =
T∑

t=1
rt ≤

√√√√T
T∑

t=1
r2
t ≤ 2( cT + 1)

√
2T ln |VT |

|Λ|

I Upperbound for ln(|Vt |/|Λ|)

ln |Vt |
|Λ|
≤ ln |VT |

|Λ|
≤ 2d ln

(
λ+ T

λ

)
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SpectralUCB: Regret Bound
Sylvester’s determinant theorem:

|A + xxT| = |A||I + A−1xxT| = |A|(1 + xTA−1x)

Goal:
I Upperbound determinant |A + xxT| for ‖x‖2 ≤ 1
I Upperbound xTA−1x

xTA−1x = xTQΛ−1QTx = yTΛ−1y =
N∑

i=1
λ−1

i y2
i

I ‖y‖2 ≤ 1.
I y is a canonical vector.
I x = Qy is an eigenvector of A.

Michal Valko – Graphs in Machine Learning SequeL - 24/40



SpectralUCB: Regret Bound
Corollary: Determinant |VT | of VT = Λ+

∑T
t=1 xtxT

t is
maximized when all xt are aligned with axes.

|VT | ≤ max∑
ti=T

∏
(λi + ti)

ln |VT |
|Λ|
≤ max∑

ti=T

∑
ln
(

1 +
ti
λi

)
ln |VT |
|Λ|
≤

d∑
i=1

ln
(

1 +
T
λ

)
+

N∑
i=d+1

ln
(

1 +
ti

λd+1

)
≤ d ln

(
1 +

T
λ

)
+

T
λd+1

≤ 2d ln
(

1 +
T
λ

)
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SpectralUCB: Improving the running time

I Reduced basis: We only need first few eigenvectors.
I Getting J eigenvectors: O(Jm log m) time for m edges
I Computationally less expensive, comparable performance.
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SpectralUCB: How to make it even faster?

I UCB-style algorithms need to (re)-compute UCBs every t

I Can be a problem for large set of arms → D2N → N3

I Optimistic (UCB) approach vs. Thompson Sampling
I Play the arm maximizing probability of being the best

I Sample α̃ from the distribution N (α̂, v 2V−1)
I Play arm which maximizes xTα̃ and observe reward

I Compute posterior distribution according to reward received

I Only requires D2 + DN → N2 per step update
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Thomson Sampling: Estimate

α̂

α∗
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Thomson Sampling: Sample
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Thomson Sampling: Estimate

α̂

α∗
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Thomson Sampling: Sample
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Thomson Sampling: Estimate . . .

α̂ α∗
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SpectralTS for Graphs

1: Input:
2: N, T , {ΛL,Q}, λ, δ, R, C
3: Initialization:
4: v = R

√
6d log((λ+ T )/δλ) + C

5: α̂ = 0N
6: f = 0N
7: V = ΛL + λIN
8: Run:
9: for t = 1 to T do

10: Sample α̃ ∼ N (α̂, v 2V−1)
11: π(t)← arg maxa xT

a α̃
12: Observe a noisy reward r(t) = xT

π(t)α
∗ + εt

13: f ← f + xπ(t)r(t)
14: Update V← V + xπ(t)xT

π(t)
15: Update α̂← V−1f
16: end for
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SpectralTS: Regret bound
I d : Effective dimension.
I λ: Minimal eigenvalue of Λ = ΛL + λI.
I C : Smoothness upper bound, ‖α∗‖Λ ≤ C .
I xT

i α
∗ ∈ [−1, 1] for all i .

The cumulative regret RT of SpectralTS is with probability 1− δ
bounded as

RT ≤
11g
p

√
4 + 4λ

λ
dT log

λ+ T
λ

+
1
T

+
g
p

(
11
√
λ

+ 2
)√

2T log
2
δ
,

where p = 1/(4e
√
π) and

g =
√

4 log TN
(

R

√
6d log

(
λ+ T
δλ

)
+ C

)
+ R

√
2d log

(
(λ+ T )T 2

δλ

)
+ C .

RT ≈ d
√

T log N
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SpectralTS: Analysis sketch

Divide arms into two groups

I ∆i = xT
∗α− xT

i α ≤ g‖xi‖V−1
t

arm i is unsaturated

I ∆i = xT
∗α− xT

i α > g‖xi‖V−1
t

arm i is saturated

Saturated arm
I Small standard deviation → accurate regret estimate.
I High regret on playing the arm → Low probability of picking

Unsaturated arm
I Low regret bounded by a factor of standard deviation
I High probability of picking
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SpectralTS: Analysis sketch
I Confidence ellipsoid for estimate µ̂ of µ (with probability 1 − δ/T 2)

I Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

|xT
i α̂− xT

i α| ≤
(

R

√
2 d log

(
(λ+ T )T 2

δλ

)
+ C

)
‖xi‖V−1

t
= `‖xi‖V−1

t

I The key result coming from spectral properties of Vt .

log
|Vt |
|Λ|

≤ 2d log
(

1 +
T
λ

)

I Concentration of sample α̃ around mean α̂ (with probability 1 − 1/T 2)

I Using concentration inequality for Gaussian random variable.

|xT
i α̃− xT

i α̂| ≤
(

R

√
6d log

(
λ+ T
δλ

)
+ C

)
‖xi‖V−1

t

√
4 log(TN) = v‖xi‖V−1

t

√
4 log(TN)
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SpectralTS: Analysis sketch
Define regret′(t) = regret(t) · 1{|xT

i α̂(t)− xT
i α| ≤ `‖xi‖V−1

t
}

regret′(t) ≤ 11g
p ‖xa(t)‖V−1

t
+

1
T 2

Super-martingale (i.e. E[Yt − Yt−1|Ft−1] ≤ 0)

Xt = regret′(t)− 11g
p ‖xa(t)‖V−1

t
− 1

T 2

Yt =
t∑

w=1
Xw .

(Yt ; t = 0, . . . ,T ) is a super-martingale process w.r.t. history Ft .

Azuma-Hoeffding inequality for super-martingales, w.p. 1− δ/2:
T∑

t=1
regret′(t) ≤ 11g

p

T∑
t=1
‖xa(t)‖V−1

t
+

1
T +

g
p

(
11√
λ
+ 2
)√

2T ln 2
δ
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Spectral Bandits: Synthetic experiment
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Spectral Bandits: Real world experiment
MovieLens dataset of 6k users who rated one million movies.
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Spectral Bandits Summary

I Spectral bandit setting (smooth graph functions).
I SpectralUCB

I Regret bound RT = Õ
(

d
√

T ln T
)

I SpectralTS

I Regret bound RT = Õ
(

d
√

T ln N
)

I Computationally more efficient.
I SpectralEliminator

I Regret bound RT = Õ
(√

dT ln T
)

I Better upper, empirically does not seem to work well (yet)
I Bounds scale with effective dimension d � D.
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SpectralEliminator: Pseudocode
Input:

N : the number of nodes, T : the number of pulls
{ΛL,Q} spectral basis of L
λ : regularization parameter
β, {tj}J

j parameters of the elimination and phases
A1 ← {x1, . . . , xK}.
for j = 1 to J do

Vtj ← γΛL + λI
for t = tj to min(tj+1 − 1,T ) do

Play xt ∈ Aj with the largest width to observe rt :
xt ← arg maxx∈Aj ‖x‖V−1

t
Vt+1 ← Vt + xtxT

t
end for
Eliminate the arms that are not promising:
α̂t ← V−1

t [xtj , . . . , xt ][rtj , . . . , rt ]
T

Aj+1 ←
{

x ∈ Aj , 〈α̂t , x〉+‖x‖V −1
t

β ≥ maxx∈Aj

[
〈α̂t , x〉−‖x‖V−1

t
β
]}

end for

Michal Valko – Graphs in Machine Learning SequeL - 37/40



SpectralEliminator: Analysis

SpectralEliminator
I Divide time into sets (t1 = 1 ≤ t2 ≤ . . . ) to introduce

independence for Azuma-Hoeffding inequality and observe
RT ≤

∑J
j=0(tj+1 − tj)

[
〈x∗ − xt , α̂j〉+ (‖x∗‖V−1

j
+ ‖xt‖V−1

j
)β
]

I Bound 〈x∗ − xt , α̂j〉 for each phase
I No bad arms: 〈x∗ − xt , α̂j〉 ≤ (‖x∗‖V−1

j
+ ‖xt‖V−1

j
)β

I By algorithm: ‖x‖2V−1
j
≤ 1

tj−tj−1

∑tj
s=tj−1+1 ‖xs‖2V−1

s−1

I
∑tj

s=tj−1+1 min
(

1, ‖xs‖2V−1
s−1

)
≤ log |Vj |

|Λ|
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Spectral Bandits: Is it possible to do better?
Is d a good quantity that embodies the difficulty?

Lower bound!

For any d , we construct a graph that for any reasonable algorithm,
the regret is at least Ω(

√
dT ).

How? By reduction to d-arm bandits problem.

weights εKMT

KMT
KMT

KMT

KMT
KMT
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