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Previous Lecture

I similarity graphs
I different types
I construction
I sources of graphs
I practical considerations

I spectral graph theory

I Laplacians and their properties
I symmetric and asymmetric normalization

I random walks

I recommendation on a bipartite graph
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This Lecture

I resistive networks
I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks

I geometry of the data and the connectivity

I spectral clustering

I manifold learning with Laplacians
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Next Class: Lab Session

I 19. 10. 2015 by Daniele.Calandriello@inria.fr
I Salle Condorcet
I Download the image and set it up BEFORE the class
I Matlab/Octave
I Short written report (graded)
I All homeworks together account for 40% of the final grade
I Content

I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation

Michal Valko – Graphs in Machine Learning SequeL - 4/36

mailto:Daniele.Calandriello@inria.fr


Use of Laplacians: Movie recommendation
How to do movie recommendation on a bipartite graph?

ranking

ranking

ranking

ranking

viewer1

Adam

movieA

La Famille Bélier

movieB

Boomerang

viewer2

Barbara

movieC

L’Odeur de la Mandarine

viewer3

Céline

Question: Do we recommend L’Odeur de la Mandarine to Adam?
Let’s compute some score(v ,m)!
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Use of Laplacians: Movie recommendation

How to compute the score(v ,m)? Using some graph distance!

Idea1: maximally weighted path
score(v ,m) = maxvPm weight(P) = maxvPm

∑
e∈P ranking(e)

Problem: If there is a weak edge, then the path is not good.

Idea2: change the path weight
score2(v ,m) = maxvPm weight2(P) = maxvPm mine∈P ranking(e)

Problem of 1&2: Additional paths does not improve the score.

Idea3: consider everything
score3(v ,m) = max flow from m to v

Problem of 3: Shorter paths do not improve the score.
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Laplacians and Resistive Networks
How to compute the score(v ,m)?

Idea4: view edges as conductors
score4(v ,m) = effective resistance between m and v

+
−v

i
C

C ≡ conductance

R ≡ resistance

i ≡ current

V ≡ voltage

C =
1
R i = CV =

V
R
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Resistive Networks

resistors in series

R = R1 + · · ·+ Rn C =
1

1
C1

+ · · ·+ 1
Cn

i = V
R

conductors in parallel

C = C1 + · · ·+ Cn i = VC

Effective Resistance on a graph
Take two nodes: a 6= b. Let Vab be the voltage between them and
iab the current between them. Define Rab = Vab

iab
and Cab = 1

Rab
.

We treat the entire graph as a resistor!
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Resistive Networks: Optional Homework (ungraded)

Show that Rab is a metric space.

1. Rab ≥ 0
2. Rab = 0 iff a = b
3. Rab = Rba

4. Rac ≤ Rab + Rbc

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’s Law ≡ flow in = flow out

C1

C2

C3

V1

V

V2V3

V = C1
C V1 +

C2
C V2 +

C3
C V3 (convex combination)

residual current = CV − C1V1 − C2V2 − C3V3
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Resistors: Where is the link with the Laplacian?
General case of the previous! di =

∑
j cij = sum of conductances

Lij =


di if i = j ,
−cij if (i , j) ∈ E ,

0 otherwise.

v = voltage setting of the nodes on graph.

(Lv)i = residual current at vi — as we derived

Use: setting voltages and getting the current

Inverting ≡ injecting current and getting the voltages

The net injected has to be zero - Kirchhoff’s Law.

Michal Valko – Graphs in Machine Learning SequeL - 11/36



Resistors and the Laplacian: Finding Rab

Let’s calculate R1n to get the movie recommendation score!

L


0
v2
...

vn−1
1

 =


i
0
...
0
−i


i = V

R V = 1 R =
1
i

Return R1n =
1
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R1n

Lv = (i , 0, . . . ,−i)T ≡ boundary valued problem

For R1n

V1 and Vn are the boundary

(v1, v2, . . . , vn) is harmonic

Vi ∈ interior (not boundary)

Vi is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R1n

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle
If f is harmonic then min and max are on the boundary.

Proof: k ∈ ◦ =⇒ ∃ neighbors Vi ,Vj s.t. vi ≤ vk ≤ vj

Uniqueness Principle
If f and g are harmonic with the same boundary then f = g

Proof: f − g is harmonic with zero on the boundary
=⇒ f − g ≡ 0 =⇒ f = g
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Resistors and the Laplacian: Finding R1n

Alternative method to calculate R1n:

Lv =


1
0
...
0
−1

 def
= iext Return R1n = v1 − vn Why?

Question: Does v exist? L does not have an inverse :(.
Solution: Instead of v = L−1iext we take v = L+iext
Moore-Penrose pseudo-inverse solves LS
We get: R1n = v1 − vn = iTextv = iTextL+iext.
Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = Lv
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Application of Graphs for ML: Clustering
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Application: Clustering - Recap

I What do we know about the clustering in general?
I ill defined problem (different tasks → different paradigms)
I inconsistent (wrt. Kleinberg’s axioms)

I scale-invariance, richness, consistency

I number of clusters k need often be known
I difficult to evaluate

I What do we know about k-means?
I “hard” version of EM clustering
I sensitive to initialization
I optimizes for compactness
I yet: algorithm-to-go
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

Defining the cut objective we get the clustering!
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A

B
C

E

D

F

G

I J

H

K
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Spectral Clustering: Cuts on graphs
A

B
C

E

D

F

G

I J

H

K

Defining the cut objective we get the clustering!
MinCut: cut(A,B) =

∑
i∈A,j∈B wij Are we done?

Can be solved efficiently, but maybe not what we want . . . .
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Spectral Clustering: Balanced Cuts
Let’s balance the cuts!

MinCut

cut(A,B) =
∑

i∈A,j∈B
wij

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
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Spectral Clustering: Balanced Cuts

RatioCut(A,B) = cut(A,B)

(
1
|A| +

1
|B|

)
NCut(A,B) = cut(A,B)

(
1

vol(A) +
1

vol(B)

)

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts

min
A,B

cut(A,B) s.t. |A| = |B|

Graph function f for cluster membership: fi =
{

1 if Vi ∈ A,
−1 if Vi ∈ B.

What it is the cut value with this definition?

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

|A| = |B| =⇒
∑

i fi = 0 =⇒ f ⊥ 1n

‖f‖ =
√

n

objective function of spectral clustering

min
f

fTLf s.t. fi = ±1, f ⊥ 1n, ‖f‖ =
√

n

Still NP hard :( →
Relax even further!

fi = ±1 → fi ∈ R;
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n

Rayleigh-Ritz Theorem
If λ1 ≤ · · · ≤ λn are the eigenvectors of real symmetric M then

λ1 = min
x 6=0

xTMx
xTx = min

xTx=1
xTMx

λn = max
x 6=0

xTMx
xTx = max

xTx=1
xTMx

xTMx
xTx ≡ Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n

Generalized Rayleigh-Ritz Theorem
If λ1 ≤ · · · ≤ λn are the eigenvectors of real symmetric M and
v1, . . . , vn the corresponding orthogonal eigenvalues, then for
k = 1 : n − 1

λk+1 = min
x 6=0,x⊥v1,...vk

xTMx
xTx = min

xTx=1,x⊥v1,...vk
xTMx

λn−k = max
x 6=0,x⊥vn,...vn−k+1

xTMx
xTx = max

xTx=1,x⊥vn,...vn−k+1
xTMx
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n

We have a solution: second eigenvector
How do we get the clustering?

The solution may not be integer. What to do?

clusteri =

{
1 if fi ≥ 0,
−1 if fi < 0.

Works but often too simple. In practice: cluster f using k-means
to get {Ci}i and assign:

clusteri =

{
1 if i ∈ C1,

−1 if i ∈ C−1.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

fTLf = 1
2

∑
i ,j

wi ,j(fi − fj)2 = (|A|+ |B|)RatioCut(A,B)
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Spectral Clustering: Approximating RatioCut
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

∑
i

fi = 0

∑
i

f 2
i = n

objective function of spectral clustering (same)

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n
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Spectral Clustering: Approximating NCut

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
Define graph function f for cluster membership of NCut:

fi =


√

vol(A)
vol(B) if Vi ∈ A,

−
√

vol(B)
vol(A) if Vi ∈ B.

(Df)T1n = 0 fTDf = vol(V ) fTLf = vol(V )NCut(A,B)

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1n, fTDf = vol(V )
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1n, fTDf = vol(V )

Can we apply Rayleigh-Ritz now? Define w = D1/2f

objective function of spectral clustering (NCut)

min
w

wTD−1/2LD−1/2w s.t. wi ∈ R,w ⊥ D1/21n, ‖w‖2 = vol(V )

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖2 = vol(V )
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V )

Solution by Rayleigh-Ritz? w = v2,Lsym f = D−1/2w

f is a the second eigenvector of Lrw !

tl;dr: Get the second eigenvector of L/Lrw for RatioCut/NCut.
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Pretty bad.

Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters
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Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of date we can use one vs. the other?
Any disadvantages of spectral clustering?
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Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf

Michal Valko – Graphs in Machine Learning SequeL - 33/36

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf


Spectral Clustering: 1D Example - Eigenvectors
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