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Previous Lecture

> similarity graphs

different types
construction

sources of graphs
practical considerations
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» spectral graph theory

» Laplacians and their properties
» symmetric and asymmetric normalization

» random walks

» recommendation on a bipartite graph
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This Lecture

v

resistive networks
» recommendation score as a resistance?
» Laplacian and resistive networks
» resistance distance and random walks

v

geometry of the data and the connectivity

v

spectral clustering

v

manifold learning with Laplacians
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Next Class: Lab Session

» 19. 10. 2015 by Daniele.Calandriello@inria.fr

» Salle Condorcet

» Download the image and set it up BEFORE the class
» Matlab/Octave

» Short written report (graded)

» All homeworks together account for 40% of the final grade
» Content

» Graph Construction

Test sensitivity to parameters: o, k,
Spectral Clustering

Spectral Clustering vs. k-means
Image Segmentation

vV vy VvVvYyYy
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Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

Adam Barbara Céline
viewer; viewery viewers
ranking ranking
ranking ranking

moviep movieg moviec
La Famille Bélier Boomerang L'Odeur de la Mandarine

Question: Do we recommend L’'Odeur de la Mandarine to Adam?
Let's compute some score(v, m)!
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Use of Laplacians: Movie recommendation

How to compute the score(v, m)? Using some graph distance!

Idea;: maximally weighted path

score(v, m) = max,py, weight(P) = max,pm Y .. p ranking(e)

Idea,: change the path weight

scorep (v, m) = max,pp, weight,(P) = max,py, minecp ranking(e)

Ideas: consider everything

scores(v, m) = max flow from m to v

-
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Laplacians and Resistive Networks

How to compute the score(v, m)?

Ideas: view edges as conductors

scoreq(v, m) = effective resistance between m and v

C = conductance
R = resistance

i = current

V = voltage

4
R
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Resistive Networks

resistors

R=R +-+R, C=

conductors in

C=GC+-+C, i=VC

Take two nodes: a # b. Let V,, be the voItage between them and

isp the current between them. Define R, = :abb and Cyp = Rb

We treat the entire graph as a resistor!

-

&Z 227 B
. Michal Valko — Graphs in Machine Learning Sequel - 8/36




Resistive Networks: Optional Homework (ungraded)

Show that R, is a metric space.

1. Rab > 0

2. Ryp=0iffa=b
3. Ry = Rps

4. Rac < Rab + Rbc

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’'s Law = flow in = flow out

vV=%v + % Vo + % V3 (convex combination)
residual current = CV — GGVi — GV — (33
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Resistors: Where is the link with the Laplacian?

General case of the previous! d; = ZJ- cjj = sum of conductances

d; if i =],
Lj =< —c; if(i,j) €E,
0 otherwise.

v = voltage setting of the nodes on graph.
(Lv); = residual current at v; — as we derived
Use: setting voltages and getting the current

Inverting = injecting current and getting the voltages

The net injected has to be zero - Kirchhoff’s Law.
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Resistors and the Laplacian: Finding R,

Let's calculate R; to get the movie recommendation score!

0 i
Vo 0

L : =
Vn—1 0

1
Return Ry, = -
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R;

Lv=(/,0,...,—/)" = boundary valued problem
For R;

Vi and V,, are the boundary

(vi,va,...,Vv,) is harmonic

V; € interior (not boundary)

V; is a convex combination of its neighbors

-
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Resistors and the Laplacian: Finding R;

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle

If f is harmonic then min and max are on the boundary.

Uniqueness Principle

If f and g are harmonic with the same boundary then f = g
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Resistors and the Laplacian: Finding R;

Alternative method to calculate Ry ,:
1

0
def .
Lv = : = iext Return Ry, =wvi — v Why?

Question: Does v exist? L does not have an inverse :(.
Solution: Instead of v = L™ ligy we take v = LT gy
Moore-Penrose pseudo-inverse |solves LS

We get: Ry, = vi — v, =il v =il L iext.

Not unique: 1 in the nullspace of L: L(v+ cl) =Lv+ cL1l =Lv
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Application of Graphs for ML: Clustering
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Application: Clustering - Recap

» What do we know about the clustering in general?

> ill defined problem (different tasks — different paradigms)
» inconsistent (wrt. Kleinberg's axioms)

» number of clusters k need often be known
» difficult to evaluate

» What do we know about k-means?
“hard” version of EM clustering
sensitive to initialization

optimizes for compactness

yet: algorithm-to-go

vV vy vy
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Spectral Clustering: Cuts on graphs

A
C b
B
E G
F H
J

Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs

A
C b
B
E G
F H
J

K

Defining the cut objective we get the clustering!

MinCut: cut(A, B) = 3 cp jep Wi Are we done?
Can be solved efficiently, but maybe not what we want . ...
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Spectral Clustering: Balanced Cuts

Let's balance the cuts!

cut(A, B) = Z wij

11
RatioCut(A,B) = 3w <W+|§)
i€EAJEB ‘

Normalized Cut
1 1
NCut(A,B)= > wj (vol(A)+V01(B)>

i€eAjeB
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Spectral Clustering: Balanced Cuts

1 1
RatioCut(A, B) = cut(A, B) <W + ]B|>

NCut(A, B) = cut(A, B) <voll(A) " voll(B)>

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts

mincut(A, B) s.t. |Al =|B]|
AB

1 if V;eA,

Graph function f for cluster membership: f; =
-1 if VieB.

What it is the cut value with this definition?

cut(A,B) = > wi = ZW,J = 1fLf

i€A,jeB

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B)= Y wij=j Zw,d = LfLf

i€EAjEB
Al=|B] = > ;i=0 = le,,
Ifll = /n
objective function of spectral clustering

mfin flLf st. fi=+1, f11, |f|l=+vn

Still NP hard :( —
Relax even further!

}{—)EER
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min flLf st. feR, fLl1, |[f|l=+vn

Rayleigh-Ritz Theorem

If Ay <--- <\, are the eigenvectors of real symmetric M then

.
. x"Mx .

A1 = min = min x"'Mx
X#O XTX xTx=1

T
x"'Mx

Ap = max max x' Mx

x7#0 XTx xTx=1

X Mx

T Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

mfin fiLf st. feR, fl1, |[f]|l=+vn

Generalized Rayleigh-Ritz Theorem

If Ay <--- < A, are the eigenvectors of real symmetric M and
Vi,...,V, the corresponding orthogonal eigenvalues, then for
=1:n-1

.
. x" Mx .
Ap1 = min —— = min x"Mx
x£A0,x Lvy,...vp X'X xTx=1,xLvy,...vx

T
x'Mx
A—k = max — = max x"Mx
x£0,XxLvp,..Vp_gr1 X' X xTx=1,xLvp,..vh_ k11

-
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

mfin fiLf st. feR, fl11, |[f]|l=+vn

We have a solution: second eigenvector
How do we get the clustering?

The solution may not be integer. 'What to do?

1 if >0,
cluster; =
-1 if f;<O.

Works but often too simple. In practice: cluster f using k-means
to get {C;}; and assign:

1 if i € Cq,
cluster; =
-1 ifie C;.

. Crzia—~
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

11
RatioCut(A,B) = 3w (WJFE)

icAjeB

Define graph function f for cluster membership of RatioCut:

] % if Vi€ A,

_ AL ey
B if Vi € B.
fILF = 3> wiy(fi — £;)* = (JAl + | B])RatioCut(A, B)
iJj

. brezia~
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Spectral Clustering: Approximating RatioCut

Define graph function f for cluster membership of RatioCut:

B :
. TAl if Vi €A,
A

—\/g if V, € B.
-0
S

objective function of spectral clustering (same)

minf'Lf st fieR, fLl, [f]=vn
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Spectral Clustering: Approximating NCut

Normalized Cut
1 1
MMMBF=Z‘WQwM+M@J

icAjeB

Define graph function f for cluster membership of NCut:

vol(A .
ﬁ{ W@ ifVieA

vol(B .
vl ifvieB

(DF)'1,=0 fDf=vol(V)  f'Lf = vol(V)NCut(A, B)

objective function of spectral clustering (NCut)

minf'Lf st fieR, Df L1, fDf=vol(V)

. Cbreia—
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

mfin f'lLf st. fieR, Df L1, fDf=vol(V)

Can we apply Rayleigh-Ritz now? Define w = D/2f

objective function of spectral clustering (NCut)

minw'D~Y2LD 2w st. w; € R,w L D21, ||w||? = vol(V)
w

objective function of spectral clustering (NCut)

minw'Lgymw st wi €eR, w Lvy o, [w||? = vol(V)
w

-
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw st wi €R, w Lvy o, |w] =vol(V)
w

Solution by Rayleigh-Ritz? w=vy;  f= D /2w

f is a the second eigenvector of L,y !

tl;dr: Get the second eigenvector of L/L, for RatioCut/NCut.

. Clreia—
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Spectral Clustering: Approximation

These are all approximations. ' How bad can they be?

Example: cockroach graphs

Vi Vi Vi Vo

Vop+1 Vik Va1 Vax

No efficient approximation exist. Other relaxations possible.

. Cbreia—
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

10 10 6
4
5 5
2
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Eigenvalues Eigenvalues Eigenvalues
* *
% 0.08 *
0.06
0.06
0.04
0.04 %
0.02 % % % * 0.02 x * ¥
o d o
123 456 7 8910 123 4567 8 910 123 456 7 8 910
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Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of date we can use one vs. the other?
Any disadvantages of spectral clustering?
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Spectral Clustering: 1D Example - Histogram
8 -

6 L

1l | .
0 2 4 6 8 10

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

-
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Spectral Clustering: 1D Example - Eigenvectors

norm, full graph unnorm, knn norm, knn

unnorm, full graph

Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
0.08 [ \ \
- ﬂ \ -0.1 | \ 05 w
0.06 Soal | | 02 x o4l | 04 ‘
004 . £ [ -03 \ \ 0
002 502 | \ 04 \ 02 | 02 (
’ L = [ -05 \ \ 05
I l | 0 | 0
23456788910 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
0.04 m 0 Vo 0 1 o f
003 g | \ | 0.1 A
= -0.05 -0.05 I
0.02 € \ | o | S
g -0.41 [ \
0.01 < \ S ~01 w
[ S S AL A 4 — L L |
23456788910 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
P < - ~ Ve N 0.5 |
08 * & -0.4s1 0.1 \ o1y [ oa ~N / \
06 > \ / \ [
04 2ot 0 \ 0 / 0 \ ’J \\ 0
3 \
0.2 = -0.1 . -0.1 \ o
o * S -0.1451 \ 0.1 \ J \ / s
12345678910 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
axx*x 5 Ve )
0.15 . g oonr 0.05 \\ 005t | [ oosh ,” \ 08
= \ | \ 0.6
o 2 0 \ o | of | [\ s
g -0.0707 \ \ / \ \\
0.05 N 5 -0.05 \ 005! | | -oos| |\ | 02|
. £ _0.0707 \_/ \J ol_—
12345678910 > 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
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