Graphs in Machine Learning

Michal Valko
Inria Lille - Nord Europe, France
Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle \& Schnell, Daniel Spielman

Previous Lecture

- similarity graphs
- different types
- construction
- sources of graphs
- practical considerations
- spectral graph theory
- Laplacians and their properties
- symmetric and asymmetric normalization
- random walks
- recommendation on a bipartite graph

This Lecture

- resistive networks
- recommendation score as a resistance?
- Laplacian and resistive networks
- resistance distance and random walks
- geometry of the data and the connectivity
- spectral clustering
- manifold learning with Laplacians

Next Class: Lab Session

- 19. 10. 2015 by Daniele.Calandriello@inria.fr
- Salle Condorcet
- Download the image and set it up BEFORE the class
- Matlab/Octave
- Short written report (graded)
- All homeworks together account for 40% of the final grade
- Content
- Graph Construction
- Test sensitivity to parameters: σ, k, ε
- Spectral Clustering
- Spectral Clustering vs. k-means
- Image Segmentation

Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

Question: Do we recommend L'Odeur de la Mandarine to Adam? Let's compute some $\operatorname{score}(v, m)$!

Use of Laplacians: Movie recommendation

How to compute the $\operatorname{score}(v, m)$?

Using some graph distance!

Idea ${ }_{1}$: maximally weighted path
$\operatorname{score}(v, m)=\max _{v P m} \operatorname{weight}(P)=\max _{v P m} \sum_{e \in P} \operatorname{ranking}(e)$

Idea 2 : change the path weight
$\operatorname{score}_{2}(v, m)=\max _{v P m}$ weight $_{2}(P)=\max _{v P m} \min _{e \in P} \operatorname{ranking}(e)$

Ideas: consider everything
$\operatorname{score}_{3}(v, m)=$ max flow from m to v

Laplacians and Resistive Networks

How to compute the $\operatorname{score}(v, m)$?

Idea $_{4}$: view edges as conductors

score $_{4}(v, m)=$ effective resistance between m and v

$$
\begin{aligned}
C & \equiv \text { conductance } \\
R & \equiv \text { resistance } \\
i & \equiv \text { current } \\
V & \equiv \text { voltage }
\end{aligned}
$$

$$
C=\frac{1}{R} \quad i=C V=\frac{V}{R}
$$

Resistive Networks

resistors in series

$$
R=R_{1}+\cdots+R_{n} \quad C=\frac{1}{\frac{1}{C_{1}}+\cdots+\frac{1}{C_{n}}} \quad i=\frac{V}{R}
$$

conductors in parallel

$$
C=C_{1}+\cdots+C_{n} \quad i=V C
$$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let $V_{a b}$ be the voltage between them and $i_{a b}$ the current between them. Define $R_{a b}=\frac{V_{a b}}{i_{a b}}$ and $C_{a b}=\frac{1}{R_{a b}}$.

We treat the entire graph as a resistor!

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1. $R_{a b} \geq 0$
2. $R_{a b}=0$ iff $a=b$
3. $R_{a b}=R_{b a}$
4. $R_{a c} \leq R_{a b}+R_{b c}$

The effective resistance is a distance!

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out

$V=\frac{C_{1}}{C} V_{1}+\frac{C_{2}}{C} V_{2}+\frac{C_{3}}{C} V_{3}$ (convex combination) residual current $=C V-C_{1} V_{1}-C_{2} V_{2}-C_{3} V_{3}$

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_{i}=\sum_{j} c_{i j}=$ sum of conductances

$$
\mathbf{L}_{i j}= \begin{cases}d_{i} & \text { if } i=j \\ -c_{i j} & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbf{v}=$ voltage setting of the nodes on graph.
$(\mathbf{L v})_{i}=$ residual current at \mathbf{v}_{i} - as we derived
Use: setting voltages and getting the current
Inverting \equiv injecting current and getting the voltages

The net injected has to be zero - Kirchhoff's Law.

Resistors and the Laplacian: Finding $R_{a b}$

Let's calculate R_{1} to get the movie recommendation score!
$\mathbf{L}\left(\begin{array}{c}0 \\ v_{2} \\ \vdots \\ v_{n-1} \\ 1\end{array}\right)=\left(\begin{array}{c}i \\ 0 \\ \vdots \\ 0 \\ -i\end{array}\right)$

$$
i=\frac{V}{R} \quad V=1 \quad R=\frac{1}{i}
$$

Return $R_{1 n}=\frac{1}{i}$
Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

Resistors and the Laplacian: Finding $R_{1 n}$

$$
\mathbf{L v}=(i, 0, \ldots,-i)^{\top} \equiv \text { boundary valued problem }
$$

For $R_{1 n}$
V_{1} and V_{n} are the boundary
$\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is harmonic
$V_{i} \in$ interior (not boundary)
V_{i} is a convex combination of its neighbors

Resistors and the Laplacian: Finding $R_{1 n}$

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If \mathbf{f} is harmonic then min and max are on the boundary.

Uniqueness Principle

If \mathbf{f} and \mathbf{g} are harmonic with the same boundary then $\mathbf{f}=\mathbf{g}$

Resistors and the Laplacian: Finding $R_{1 n}$

Alternative method to calculate $R_{1 n}$:
$\mathbf{L v}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0 \\ -1\end{array}\right) \stackrel{\text { def }}{=} \mathbf{i}_{\mathrm{ext}} \quad$ Return $\quad R_{1 n}=v_{1}-v_{n} \quad$ Why?
Question: Does v exist? L does not have an inverse :(.
Solution: Instead of $\mathbf{v}=\mathbf{L}^{-1} \mathbf{i}_{\text {ext }}$ we take $\mathbf{v}=\mathbf{L}^{+} \mathbf{i}_{\text {ext }}$
Moore-Penrose pseudo-inverse solves LS
We get: $R_{1 n}=v_{1}-v_{n}=\mathbf{i}_{\text {ext }}^{\mathbf{T}} \mathbf{v}=\mathbf{i}_{\text {ext }}^{\mathbf{T}} \mathbf{L}^{+} \mathbf{i}_{\text {ext }}$.
Not unique: $\mathbf{1}$ in the nullspace of $\mathbf{L}: \mathbf{L}(\mathbf{v}+c \mathbf{1})=\mathbf{L v}+c \mathbf{L} \mathbf{1}=\mathbf{L} \mathbf{v}$

Application of Graphs for ML: Clustering

Application: Clustering - Recap

- What do we know about the clustering in general?
- ill defined problem (different tasks \rightarrow different paradigms)
- inconsistent (wrt. Kleinberg's axioms)
- number of clusters k need often be known
- difficult to evaluate
- What do we know about k-means?
- "hard" version of EM clustering
- sensitive to initialization
- optimizes for compactness
- yet: algorithm-to-go

Spectral Clustering: Cuts on graphs

Defining the cut objective we get the clustering!

Spectral Clustering: Cuts on graphs

Defining the cut objective we get the clustering!

Spectral Clustering: Cuts on graphs

Defining the cut objective we get the clustering!

MinCut: $\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i j}$
Are we done?
Can be solved efficiently, but maybe not what we want

Spectral Clustering: Balanced Cuts

Let's balance the cuts!

MinCut

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i j}
$$

RatioCut

$$
\operatorname{RatioCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{|A|}+\frac{1}{|B|}\right)
$$

Normalized Cut

$$
\operatorname{NCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
$$

Spectral Clustering: Balanced Cuts

$$
\begin{gathered}
\operatorname{RatioCut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{|A|}+\frac{1}{|B|}\right) \\
\operatorname{NCut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
\end{gathered}
$$

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!

Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts

$$
\min _{A, B} \operatorname{cut}(A, B) \text { s.t. }|A|=|B|
$$

Graph function \mathbf{f} for cluster membership: $f_{i}= \begin{cases}1 & \text { if } V_{i} \in A, \\ -1 & \text { if } V_{i} \in B .\end{cases}$
What it is the cut value with this definition?

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i, j}=\frac{1}{4} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \mathbf{f}^{\top} \mathbf{L f}
$$

What is the relationship with the smoothness of a graph function?

Spectral Clustering: Relaxing Balanced Cuts

$$
\begin{aligned}
& \quad \operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i, j}=\frac{1}{4} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \mathbf{f}^{\top} \mathbf{L f} \\
& |A|=|B| \Longrightarrow \sum_{i} f_{i}=0 \Longrightarrow \mathbf{f} \perp \mathbf{1}_{n} \\
& \|\mathbf{f}\|=\sqrt{n}
\end{aligned}
$$

objective function of spectral clustering

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i}= \pm 1, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Still NP hard :($\quad \rightarrow$
Relax even further!

$$
f_{i}=< \pm 1 \quad \rightarrow \quad f_{i} \in \mathbb{R}
$$

Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Rayleigh-Ritz Theorem

If $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvectors of real symmetric \mathbf{M} then

$$
\begin{aligned}
& \lambda_{1}=\min _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\min _{\mathbf{x}^{\top} \mathbf{x}=1} \mathbf{x}^{\top} \mathbf{M} \mathbf{x} \\
& \lambda_{n}=\max _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\max _{\mathbf{x}^{\top} \mathbf{x}=1} \mathbf{x}^{\top} \mathbf{M} \mathbf{x}
\end{aligned}
$$

$\frac{x^{\top} M x}{x^{\top} x} \equiv$ Rayleigh quotient

> How can we use it?

Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Generalized Rayleigh-Ritz Theorem

If $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvectors of real symmetric \mathbf{M} and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ the corresponding orthogonal eigenvalues, then for $k=1: n-1$

$$
\begin{aligned}
& \lambda_{k+1}=\min _{\mathbf{x} \neq 0, \mathbf{x} \perp \mathbf{v}_{1}, \ldots \mathbf{v}_{k}} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\min _{\mathbf{x}^{\top} \mathbf{x}=1, \mathbf{x} \perp \mathbf{v}_{1}, \ldots \mathbf{v}_{k}} \mathbf{x}^{\top} \mathbf{M} \mathbf{x} \\
& \lambda_{n-k}=\max _{\mathbf{x} \neq 0, \mathbf{x} \perp \mathbf{v}_{n}, \ldots \mathbf{v}_{n-k+1}} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\max _{\mathbf{x}^{\top} \mathbf{x}=1, \mathbf{x} \perp \mathbf{v}_{n}, \ldots \mathbf{v}_{n-k+1}} \mathbf{x}^{\top} \mathbf{M} \mathbf{x}
\end{aligned}
$$

Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering
 $$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|f\|=\sqrt{n}
$$

We have a solution: second eigenvector How do we get the clustering?

The solution may not be integer. What to do?

$$
\text { cluster }_{i}= \begin{cases}1 & \text { if } f_{i} \geq 0 \\ -1 & \text { if } f_{i}<0\end{cases}
$$

Works but often too simple. In practice: cluster \mathbf{f} using k-means to get $\left\{C_{i}\right\}_{i}$ and assign:

$$
\text { cluster }_{i}= \begin{cases}1 & \text { if } i \in C_{1} \\ -1 & \text { if } i \in C_{-1}\end{cases}
$$

Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

$$
\operatorname{RatioCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{|A|}+\frac{1}{|B|}\right)
$$

Define graph function \mathbf{f} for cluster membership of RatioCut:

$$
\begin{gathered}
f_{i}= \begin{cases}\sqrt{\frac{|B|}{|A|}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{|A|}{|B|}} & \text { if } V_{i} \in B .\end{cases} \\
\mathbf{f}^{\top} \mathbf{L f}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=(|A|+|B|) \operatorname{RatioCut}(A, B)
\end{gathered}
$$

Spectral Clustering: Approximating RatioCut

Define graph function \mathbf{f} for cluster membership of RatioCut:

$$
\begin{gathered}
f_{i}=\left\{\begin{array}{cl}
\sqrt{\frac{|B|}{|A|}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{|A|}{|B|}} & \text { if } V_{i} \in B .
\end{array}\right. \\
\sum_{i} f_{i}=0 \\
\sum_{i} f_{i}^{2}=n
\end{gathered}
$$

objective function of spectral clustering (same)

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Spectral Clustering: Approximating NCut

Normalized Cut

$$
\operatorname{NCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
$$

Define graph function \mathbf{f} for cluster membership of NCut:

$$
\begin{array}{cc}
& f_{i}= \begin{cases}\sqrt{\frac{\operatorname{vol}(A)}{\operatorname{vol}(B)}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{\operatorname{vol}(B)}{\operatorname{vol}(A)}} & \text { if } V_{i} \in B .\end{cases} \\
(\mathbf{D f})^{\top} \mathbf{1}_{n}=0 & \mathbf{f}^{\top} \mathbf{D} \mathbf{f}=\operatorname{vol}(V)
\end{array} \mathbf{f}^{\top} \mathbf{L f}=\operatorname{vol}(V) \operatorname{NCut}(A, B) .
$$

objective function of spectral clustering (NCut)

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{D f} \perp \mathbf{1}_{n}, \quad \mathbf{f}^{\top} \mathbf{D f}=\operatorname{vol}(V)
$$

Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{D f} \perp \mathbf{1}_{n}, \quad \mathbf{f}^{\top} \mathbf{D f}=\operatorname{vol}(V)
$$

Can we apply Rayleigh-Ritz now? Define $\mathbf{w}=\mathbf{D}^{1 / 2} \mathbf{f}$

objective function of spectral clustering (NCut)

$$
\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{D}^{-1 / 2} \mathbf{L} \mathbf{D}^{-1 / 2} \mathbf{w} \quad \text { s.t. } \quad w_{i} \in \mathbb{R}, \mathbf{w} \perp \mathbf{D}^{1 / 2} \mathbf{1}_{n},\|\mathbf{w}\|^{2}=\operatorname{vol}(V)
$$

objective function of spectral clustering (NCut)

$$
\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{L}_{\text {sym }} \mathbf{w} \quad \text { s.t. } \quad w_{i} \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1, \mathbf{L}_{\text {sym }}}, \quad\|\mathbf{w}\|^{2}=\operatorname{vol}(V)
$$

Spectral Clustering: Approximating NCut

 objective function of spectral clustering (NCut)$\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{L}_{\text {sym }} \mathbf{w} \quad$ s.t. $\quad w_{i} \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1, \mathbf{L}_{\text {sym }}}, \quad\|\mathbf{w}\|=\operatorname{vol}(V)$

Solution by Rayleigh-Ritz? $\quad \mathbf{w}=\mathbf{v}_{2, \mathbf{L}_{\text {sym }}} \mathbf{f}=\mathbf{D}^{-1 / 2} \mathbf{w}$
\mathbf{f} is a the second eigenvector of \mathbf{L}_{rw} !
$\mathbf{t l} ; \mathbf{d r}$: Get the second eigenvector of $\mathbf{L} / \mathbf{L}_{\mathrm{rw}}$ for RatioCut/NCut.

Spectral Clustering: Approximation

These are all approximations. How bad can they be?
Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.

Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of date we can use one vs. the other?
Any disadvantages of spectral clustering?

Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/ publications/Luxburg07_tutorial.pdf

Spectral Clustering: 1D Example - Eigenvectors

Eigenvalues

Eigenvalues

Eigenvector 1

Eigenvector 1 Eigenvector 2
Eigenvector 3

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5

Eigenvector 1 Eigenvector 2

Eigenvector 4
Eigenvector 5

Spectral Clustering: Bibliography

- M. Meila et al. "A random walks view of spectral segmentation". In: Al and Statistics (AISTATS) 57 (2001), p. 5287
- $\mathrm{L}_{\text {sym }}$ Andrew Y Ng, Michael I Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm". In: Advances in Neural Information Processing Systems 14. 2001, pp. 849-856
- L_{rm} J Shi and J Malik. "Normalized Cuts and Image Segmentation". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000), pp. 888-905
- Things can go wrong with the relaxation: Daniel A. Spielman and Shang H. Teng. "Spectral partitioning works: Planar graphs and finite element meshes". In: Linear Algebra and Its Applications 421 (2007), pp. 284-305

Michal Valko

michal.valko@inria.fr

SequeL - Inria Lille
 MVA 2015/2016

