

Graphs in Machine Learning

Michal Valko

Inria Lille - Nord Europe, France

Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman

October 5, 2015

MVA 2015/2016

Previous Lecture

- where do the graphs come from?
 - social, information, utility, and biological networks
 - we create them from the flat data
 - random graph models
- specific applications and concepts
 - maximizing influence on a graph gossip propagation, submodularity
 - google pagerank random surfer process, steady state vector, sparsity
 - online semi-supervised learning label propagation, backbone graph, online learning, combinatorial sparsification, stability analysis
 - Erdős number project heavy tails, small world

This Lecture

similarity graphs

- different types
- construction
- practical considerations
- spectral graph theory
- Laplacians and their properties
- random walks

Piazza for Q & A's

Purpose

- registration for the class
- online course discussions and announcements
- questions and answers about the material and logistics
- students encouraged to answer each others' questions
- homework assignments
- virtual machine link and instructions
- draft of the slides before the class

https://piazza.com/ens_cachan/fall2015/mvagraphsml

class code given during the class

Graph theory refresher

Ínría

Michal Valko – Graphs in Machine Learning

Graph theory refresher

Graph theory refresher

- 250 years of graph theory
- Seven Bridges of Königsberg (Leonhard Euler, 1735)
- necessary for Eulerian circuit: 0 or 2 nodes of odd degree
- after bombing and rebuilding there are now 5 bridges in Kaliningrad for the nodes with degrees [2, 2, 3, 3]
- the original problem is solved but not practical http://people.engr.ncsu.edu/mfms/SevenBridges/

Similarity Graphs

Input: $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_n$

- raw data
- flat data
- vectorial data

Similarity Graphs

Similarity graph: G = (V, E) - (un)weighted

Task 1: For each pair *i*, *j*: define a **similarity function** s_{ij} Task 2: Decide which edges to include

 $\varepsilon\text{-neighborhood graphs}$ – connect the points with the distances smaller than ε

k-NN neighborhood graphs – take *k* nearest neighbors fully connected graphs – consider everything

This is art (not much theory exists).

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

Similarity Graphs: *c*-neighborhood graphs

Edges connect the points with the distances smaller than ε .

- distances are roughly on the same scale (ε)
- \blacktriangleright weights may not bring additional info \rightarrow unweighted
- equivalent to: similarity function is at least ε
- ► theory [Penrose, 1999]: ε = ((log n)/n)^d to guarantee connectivity n nodes, d dimension
- ▶ practice: choose ε as the length of the longest edge in the MST - minimum spanning tree

What could be the problem with this MST approach?

Similarity Graphs: *k*-nearest neighbors graphs

Edges connect each node to its *k*-nearest neighbors.

- asymmetric (or directed graph)
 - option OR: ignore the direction
 - option AND: include if we have both direction (mutual k-NN)

how to choose k?

- $k \approx \log n$ suggested by asymptotics (practice: up to \sqrt{n})
- ▶ for mutual *k*-NN we need to take larger *k*
- mutual k-NN does not connect regions with different density
- why don't we take k = n 1?

Similarity Graphs: Fully connected graphs

Edges connect everything.

- choose a "meaningful" similarity function s
- default choice:

$$s_{ij} = \exp\left(\frac{-\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

- why the exponential decay with the distance?
- $\blacktriangleright~\sigma$ controls the width of the neighborhoods
 - similar role as ε
 - ▶ a practical rule of thumb: 10% of the average empirical std
 - possibility: learn σ_i for each feature independently
- metric learning (a whole field of ML)

Similarity Graphs: Important considerations

- calculate all s_{ij} and threshold has its limits ($n \approx 10000$)
- graph construction step can be a huge bottleneck
- want to go higher? (we often have to)
 - down-sample
 - approximate NN
 - LSH Locally Sensitive Hashing
 - CoverTrees
 - sometime we may not need the graph (just the final results)
 - yet another story: when we start with a large graph and want to make it sparse (later in the course)
- these rules have little theoretical underpinning
- similarity is very data-dependent

Similarity Graphs: ε or k-NN?

DEMO IN CLASS

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

Michal Valko - Graphs in Machine Learning

Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

$$s_{ij} = \exp\left(rac{-\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}
ight)$$

Cosine similarity function:

$$s_{ij} = \cos(heta) = \left(rac{\mathbf{x}_i^{\intercal} \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}
ight)$$

Typical Kernels

Similarity Graphs

G = (V, E) - with a set of **nodes** V and a set of **edges** E

Sources of Real Networks

- http://snap.stanford.edu/data/
- http://www-personal.umich.edu/~mejn/netdata/
- http://proj.ise.bgu.ac.il/sns/datasets.html
- http://www.cise.ufl.edu/research/sparse/matrices/
- http://vlado.fmf.uni-lj.si/pub/networks/data/ default.htm

ría.

Eigenwerte und Eigenvektoren

A vector **v** is an **eigenvector** of matrix **M** of **eigenvalue** λ

 $\mathbf{M}\mathbf{v} = \lambda\mathbf{v}.$

If $(\lambda_1, \mathbf{v}_1)$ are $(\lambda_2, \mathbf{v}_2)$ eigenpairs for symmetric **M** with $\lambda_1 \neq \lambda_2$ then $\mathbf{v}_1 \perp \mathbf{v}_2$, i.e., $\mathbf{v}_1^{\mathsf{T}} \mathbf{v}_2 = 0$.

If (λ, \mathbf{v}_1) , (λ, \mathbf{v}_2) are eigenpairs for **M** then $(\lambda, \mathbf{v}_1 + \mathbf{v}_2)$ is as well.

For symmetric **M**, the **multiplicity** of λ is the dimension of the space of eigenvectors corresponding to λ .

Every $n \times n$ symmetric matrix has n eigenvalues (w/ multiplicities).

Eigenvalues, Eigenvectors, and Eigendecomposition

A vector **v** is an **eigenvector** of matrix **M** of **eigenvalue** λ

 $\mathbf{M}\mathbf{v} = \lambda \mathbf{v}.$

Vectors $\{\mathbf{v}_i\}_i$ form an **orthonormal** basis with $\lambda_1 \leq \lambda_2 \leq \ldots \lambda_n$.

$$\forall i \quad \mathbf{M}\mathbf{v}_i = \lambda_i \mathbf{v}_i \qquad \equiv \qquad \mathbf{M}\mathbf{Q} = \mathbf{Q}\mathbf{\Lambda}$$

Q has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying $\mathbf{M}\mathbf{Q} = \mathbf{Q}\mathbf{\Lambda}$ by \mathbf{Q}^{T} we get the **eigendecomposition** of **M**:

$$\mathbf{M} = \mathbf{M} \mathbf{Q} \mathbf{Q}^{\mathsf{T}} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \Leftarrow \sum_{i} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathsf{T}}$$

Graph Laplacian

G = (V, E) - with a set of **nodes** V and a set of **edges** E

Properties of Graph Laplacian

Graph function: a vector $\mathbf{f} \in \mathbb{R}^n$ assigning values to nodes:

 $\mathbf{f}: V(G) \to \mathbb{R}.$

$$\mathbf{f}^{\mathsf{T}}\mathbf{L}\mathbf{f} = \frac{1}{2}\sum_{i,j\leq n} w_{i,j}(f_i - f_j)^2 = S_G(\mathbf{f})$$

Properties of Graph Laplacian

We assume **non-negative weights**: $w_{ij} \ge 0$.

 $\boldsymbol{\mathsf{L}}$ is symmetric

L positive semi-definite
$$\leftarrow \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq n} w_{i,j} (f_i - f_j)^2$$

Recall: If $\mathbf{L}\mathbf{f} = \lambda \mathbf{f}$ then λ is an **eigenvalue**.

The smallest eigenvalue of **L** is 0. Corresponding eigenvector: $\mathbf{1}_n$.

All eigenvalues are non-negative reals $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

Self-edges do not change the value of L.

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \le n} w_{i,j} (f_i - f_j)^2$. Therefore, **f** is constant on each connected component. If there are k components, then **L** is k-block-diagonal:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & & \\ & \mathbf{L}_2 & \\ & & \ddots & \\ & & & \mathbf{L}_k \end{bmatrix}$$

For block-diagonal matrices: the spectrum is the union of the spectra of L_i (eigenvectors of L_i padded with zeros elsewhere).

For \mathbf{L}_i $(0, \mathbf{1}_{|V_i|})$ is an eigenpair, hence the claim.

Smoothness of the Function and Laplacian

- $\mathbf{f} = (f_1, \ldots, f_n)^{\mathsf{T}}$: graph function
- Let $\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
 - Columns of Q are eigenvectors of L.
 - Columns of **Q** form a basis.
- α : Unique vector such that $\mathbf{Q}\alpha = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \alpha$

Smoothness of a graph function $S_G(\mathbf{f})$

$$S_G(\mathbf{f}) = \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^n \lambda_i \alpha_i^2$$

Smoothness and regularization: Small value of

(a) $S_G(\mathbf{f})$ (b) $\mathbf{\Lambda}$ norm of $\mathbf{\alpha}^*$ (c) α_i^* for large λ_i

Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^n \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

Spectral coordinate of eigenvector \mathbf{v}_k : $\mathbf{Q}^{\mathsf{T}}\mathbf{v}_k = \mathbf{e}_k$

$$S_G(\mathbf{v}_k) = \mathbf{v}_k^{\mathsf{T}} \mathsf{L} \mathbf{v}_k = \mathbf{v}_k^{\mathsf{T}} \mathsf{Q} \mathsf{A} \mathsf{Q}^{\mathsf{T}} \mathbf{v}_k = \mathbf{e}_k^{\mathsf{T}} \mathsf{A} \mathbf{e}_k = \|\mathbf{e}_k\|_{\mathsf{A}}^2 = \sum_{i=1}^n \lambda_i (\mathbf{e}_k)_i^2 = \lambda_k$$

The smoothness of k-th eigenvector is the k-th eigenvalue.

Laplacian of the Complete Graph K_n

What is the eigenspectrum of L_{κ_n} ?

$$\mathbf{L}_{K_n} = \begin{pmatrix} n-1 & -1 & -1 & -1 & -1 \\ -1 & n-1 & -1 & -1 & -1 \\ -1 & -1 & n-1 & -1 & -1 \\ -1 & -1 & -1 & n-1 & -1 \\ -1 & -1 & -1 & -1 & n-1 \end{pmatrix}$$

From before: we know that $(0, \mathbf{1}_n)$ is an eigenpair.

If $\mathbf{v} \neq \mathbf{0}_n$ and $\mathbf{v} \perp \mathbf{1}_n \implies \sum_i \mathbf{v}_i = 0$. To get the other eigenvalues, we compute $(\mathbf{L}_{K_n} \mathbf{v})_1$ and divide by \mathbf{v}_1 (wlog $\mathbf{v}_1 \neq 0$). $(\mathbf{L}_{K_n} \mathbf{v})_1 = (n-1)\mathbf{v}_1 - \sum_{i=2}^n \mathbf{v}_i = n\mathbf{v}_1$.

What are the remaining eigenvalues/vectors?

Normalized Laplacians

$$\begin{split} \mathbf{L}_{un} &= \mathbf{D} - \mathbf{W} \\ \mathbf{L}_{sym} &= \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2} \\ \mathbf{L}_{rw} &= \mathbf{D}^{-1} \mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{W} \end{split}$$

$$\mathbf{f}^{\mathsf{T}}\mathbf{L}_{sym}\mathbf{f} = \frac{1}{2}\sum_{i,j\leq n} w_{i,j} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}}\right)^2$$

 (λ, \mathbf{u}) is an eigenpair for \mathbf{L}_{rw} iff $(\lambda, \mathbf{D}^{1/2}\mathbf{u})$ is an eigenpair for \mathbf{L}_{sym}

Normalized Laplacians

 L_{sym} and L_{rw} are PSD with non-negative real eigenvalues $0 = \lambda_1 \le \lambda_2 \le \lambda_3 \le \dots \le \lambda_n$

 (λ, \mathbf{u}) is an eigenpair for \mathbf{L}_{rw} iff (λ, \mathbf{u}) solve the generalized eigenproblem $\mathbf{L}\mathbf{u} = \lambda \mathbf{D}\mathbf{u}$.

 $(0, \mathbf{1}_n)$ is an eigenpair for \mathbf{L}_{rw} .

 $(0, \mathbf{D}^{1/2} \mathbf{1}_n)$ is an eigenpair for \mathbf{L}_{sym} .

Multiplicity of eigenvalue 0 of L_{rw} or L_{sym} equals to the number of connected components.

Laplacian and Random Walks on Undirected Graphs

- stochastic process: vertex-to-vertex jumping
- transition probability $v_i \rightarrow v_j$ is $p_{ij} = w_{ij}/d_i$

•
$$d_i \stackrel{\text{def}}{=} \sum_j w_{ij}$$

- ► transition matrix $\mathbf{P} = (p_{ij})_{ij} = \mathbf{D}^{-1}\mathbf{W}$ (notice $\mathbf{L}_{rw} = \mathbf{I} \mathbf{P}$)
- if G is connected and non-bipartite → unique stationary distribution π = (π₁, π₂, π₃,..., π_n) where π_i = d_i/vol(V)
 vol(G) = vol(V) = vol(W) ^{def} = ∑_i d_i = ∑_{i,j} w_{ij}

•
$$\pi = \frac{\mathbf{1}^{\mathsf{T}} \mathbf{W}}{\operatorname{vol}(\mathbf{W})}$$
 verifies $\pi \mathbf{P} = \pi$ as:

$$\pi \mathbf{P} = \frac{\mathbf{1}^{\mathsf{T}} \mathbf{W} \mathbf{P}}{\operatorname{vol}(\mathbf{W})} = \frac{\mathbf{1}^{\mathsf{T}} \mathbf{D} \mathbf{P}}{\operatorname{vol}(\mathbf{W})} = \frac{\mathbf{1}^{\mathsf{T}} \mathbf{D} \mathbf{D}^{-1} \mathbf{W}}{\operatorname{vol}(\mathbf{W})} = \frac{\mathbf{1}^{\mathsf{T}} \mathbf{W}}{\operatorname{vol}(\mathbf{W})} = \pi$$

SequeL – Inria Lille

MVA 2015/2016

Michal Valko michal.valko@inria.fr sequel.lille.inria.fr