
March 24, 2015 MVA 2014/2015

Graphs in Machine Learning
Michal Valko
INRIA Lille - Nord Europe, France

Partially based on material by: Tomáš Kocák, Nikhil Srivastava, Yiannis Koutis, Joshua Batson, Daniel Spielman

Last Lecture

I Scaling harmonic functions to millions of samples

I Online decision-making on graphs

I Graph bandits
I smoothness of rewards (preferences) on a given graph
I observability graphs
I side information

Michal Valko – Graphs in Machine Learning Lecture 8 - 2/59

This Lecture

I Graph bandits and online non-stochastic rewards

I Observability graphs

I Side information

I Graph Sparsification

I Spectral Sparsification

Michal Valko – Graphs in Machine Learning Lecture 8 - 3/59

Previous Lab Session

I 10. 3. 2015 by Daniele.Calandriello@inria.fr
I Content

I GraphLab
I Large-Scale Graph Learning

I Short written report (graded, each lab around 5% of grade)
I Questions to Daniele.Calandriello@inria.fr
I Deadline: 24. 3. 2015 (today)
I http://researchers.lille.inria.fr/~calandri/ta/graphs/td3_handout.pdf

Michal Valko – Graphs in Machine Learning Lecture 8 - 4/59

mailto:Daniele.Calandriello@inria.fr
mailto:Daniele.Calandriello@inria.fr
http://researchers.lille.inria.fr/~calandri/ta/graphs/td3_handout.pdf

Final Class projects

I time and formatting description on the class website
I grade: report + short presentation of the team
I deadlines

I 11. 4. 2015 final report (for all projects)
I 13. 4. 2015 afternoon, presentation in class (most projects)
I after 13. 4. 2015, remote presentations (other projects)

I project report: 5 - 10 pages in NIPS format
I presentation: around 20 minutes, everybody has to present
I can express preference for presentation time slot on the

website
I explicitly state the contributions

http://researchers.lille.inria.fr/~valko/hp/mvaprojects

Michal Valko – Graphs in Machine Learning Lecture 8 - 5/59

http://researchers.lille.inria.fr/~valko/hp/mvaprojects

Graph bandits: Side observations

Example 1: undirected observations

Michal Valko – Graphs in Machine Learning Lecture 8 - 6/59

Graph bandits: Side observations

Example 1: Graph Representation

A B

C

DE

F

Michal Valko – Graphs in Machine Learning Lecture 8 - 7/59

Graph bandits: Side observations
Example 2: Directed observation

Michal Valko – Graphs in Machine Learning Lecture 8 - 8/59

Graph bandits: Side observations

Example 2

A B

C

DE

F

Michal Valko – Graphs in Machine Learning Lecture 8 - 9/59

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I Undirected / Directed
I Disclosed / Not disclosed

I Learner:
I Plays action It ∈ [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I Graph: disclosed
I Performance measure: Total expected regret

RT = max
i∈[N]

E

[T∑
t=1

(`t,It − `t,i)

]
Michal Valko – Graphs in Machine Learning Lecture 8 - 10/59

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = Õ(

√
T)

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = Õ(

√
NT)

A B

C

DE

F

A B

C

DE

F

Michal Valko – Graphs in Machine Learning Lecture 8 - 11/59

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know graph
I Clique decomposition (c cliques)

I RT = Õ(
√

cT)

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know graph
I Independence set of α actions
I RT = Õ(

√
αT)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning Lecture 8 - 12/59

Graph bandits: Side observation - Directed case
Side observation (Directed case)

I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = Õ(

√
αT)

Exp3-IX - Kocák et. al
I No need to know graph
I RT = Õ(

√
αT)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning Lecture 8 - 13/59

Reminder: Exp3 algorithms in general

I Compute weights using loss estimates ˆ̀t,i .

wt,i = exp
(
−η

t−1∑
s=1

ˆ̀s,i

)

I Play action It such that

P(It = i) = pt,i =
wt,i
Wt

=
wt,i∑N
j=1 wt,j

I Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?

Michal Valko – Graphs in Machine Learning Lecture 8 - 14/59

Bias variance tradeoff approaches
I Approach of Mixing

I Bias sampling distribution pt over actions
I p′

t = (1 − γ)pt + γst – mixed distribution
I st – probability distribution which supports exploration

I Loss estimates ˆ̀t,i are unbiased

I Approach of Implicit eXploration (IX)
I Bias loss estimates ˆ̀t,i

I Biased loss estimates =⇒ biased weights
I Biased weights =⇒ biased probability distribution

I No need for mixing

Is there a difference in a traditional non-graph case? Not much

Big difference in graph feedback case!

Michal Valko – Graphs in Machine Learning Lecture 8 - 15/59

Graph bandits: Mannor and Shamir - ELP algorithm
I E[ˆ̀t,i] = `t,i – unbiased loss estimates
I p′

t,i = (1− γ)pt,i + γst,i – bias by mixing
I st = {st,1, . . . , st,N} – probability distribution over the action set

st = arg max
st

min
j∈[N]

st,j +
∑

k∈Nt,j

st,k

 = arg max
st

[
min
j∈[N]

qt,j

]

I qt,j – probability that loss of j is observed according to st

I Computation of st
I Graph needs to be disclosed
I Solving simple linear program

I Needs to know graph before playing an action
I Graphs can be only undirected

Michal Valko – Graphs in Machine Learning Lecture 8 - 16/59

Graph bandits: Alon, Cesa-Bianchi, Gentile,
Mansour - Exp3-DOM

I E[ˆ̀t,i] = `t,i – unbiased loss estimates
I p′

t,i = (1− γ)pt,i + γst,i – bias by mixing
I st = {st,1, . . . , st,N} – probability distribution over the action set

st,i =

{
1
r if i ∈ R; |R| = r
0 otherwise.

I R – dominating set of r elements
I st – uniform distribution over R
I Needs to know graph beforehand
I Graphs can be directed

A B

C

DE

F

Michal Valko – Graphs in Machine Learning Lecture 8 - 17/59

Graph bandits: Comparison of loss estimates
Typical algorithms - loss estimates

ˆ̀t,i =

{
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i] =
`t,i
ot,i

ot,i + 0(1− ot,i) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

{
`t,i/(ot,i + γ) if `t,i is observed

0 otherwise.

E[ˆ̀t,i] =
`t,i

ot,i + γ
ot,i + 0(1− ot,i) = `t,i − `t,i

γ

ot,i + γ
≤ `t,i

No mixing!

Michal Valko – Graphs in Machine Learning Lecture 8 - 18/59

Analysis of Exp3 algorithms in general

I Evolution of Wt+1/Wt

1
η

log Wt+1
Wt

≤ 1
η

log
(

1− η

N∑
i=1

pt,i ˆ̀t,i +
η2

2

N∑
i=1

pt,i(ˆ̀t,i)
2

)
,

N∑
i=1

pt,i ˆ̀t,i ≤
[

log Wt
η
− log Wt+1

η

]
+

η

2

N∑
i=1

pt,i(ˆ̀t,i)
2

I Taking expectation and summing over time

E

[T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
−E

[T∑
t=1

ˆ̀t,k

]
≤ E

[
log N
η

]
+E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]

Michal Valko – Graphs in Machine Learning Lecture 8 - 19/59

Graph bandits: Regret bound of Exp3-IX

E

[T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
︸ ︷︷ ︸

A

− E

[T∑
t=1

ˆ̀t,k

]
︸ ︷︷ ︸

B

≤ E
[

log N
η

]
+ E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]
︸ ︷︷ ︸

C

Lower bound of A (using definition of loss estimates)

E

[T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
≥ E

[T∑
t=1

N∑
i=1

pt,i`t,i

]
− E

[
γ

T∑
t=1

N∑
i=1

pt,i

ot,i + γ

]

Lower bound of B (optimistic loss estimates: E[ˆ̀] < E[`])

−E

[T∑
t=1

ˆ̀t,k

]
≥ −E

[T∑
t=1

`t,k

]
Upper bound of C (using definition of loss estimates)

E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]
≤ E

[
η

2

T∑
t=1

N∑
i=1

pt,i

ot,i + γ

]

Michal Valko – Graphs in Machine Learning Lecture 8 - 20/59

Graph bandits: Regret bound of Exp3-IX

Upper bound on regret Exp3-IX

RT ≤
log N
η

+
(η

2 + γ
) T∑

t=1
E

[N∑
i=1

pt,i
ot,i + γ

]

RT ≈ O

√√√√log N

T∑
t=1

E

[N∑
i=1

pt,i
ot,i + γ

]

Michal Valko – Graphs in Machine Learning Lecture 8 - 21/59

Graph bandits: Regret bound of Exp3-IX

Graph lemma

I Graph G with V (G) = {1, . . . , N}
I d−

i – in-degree of vertex i
I α – independence set of G
I Turán’s Theorem + induction

N∑
i=1

1
1 + d−

i
≤ 2α log

(
1 +

N
α

)

Michal Valko – Graphs in Machine Learning Lecture 8 - 22/59

Graph bandits: Regret bound of Exp3-IX

Discretization

p1 p̂1 p2 p̂2

0 1

1
M

N∑
i=1

pt,i
ot,i + γ

=
N∑

i=1

pt,i
pt,i +

∑
j∈N−

i
pt,j + γ

≤
N∑

i=1

p̂t,i
p̂t,i +

∑
j∈N−

i
p̂t,j

+ 2

Note: we set M = dN2/γe

N∑
i=1

p̂t,i
p̂t,i +

∑
j∈N−

i
p̂t,j

Michal Valko – Graphs in Machine Learning Lecture 8 - 23/59

Graph bandits: Regret bound of Exp3-IX

N∑
i=1

Mp̂t,i
Mp̂t,i +

∑
j∈N−

i
Mp̂t,j

=
N∑

i=1

∑
k∈Ci

1
1 + d−

k
≤ 2α log

(
1 +

M + N
α

)

Example: let M = 10

0.1 0.2

0.1

0.10.3

0.2

1 2

1

13

2

Michal Valko – Graphs in Machine Learning Lecture 8 - 24/59

Exp3-IX regret bound

RT ≤
log N
η

+
(η

2 + γ
) T∑

t=1
E
[
2αt log

(
1 +
dN2/γe+ N

αt

)
+ 2
]

RT = Õ
(√

αT log(N)
)

Next step
Generalization of the setting to combinatorial actions

Michal Valko – Graphs in Machine Learning Lecture 8 - 25/59

Graph bandits: Complex actions
Example: Multiple Ads

Ad01

Ad02

Ad03

Ad04

Ad05

Ad06

Ad07

Ad08

Ad09

Ad10

Ad11

Ad12

Ad13

Ad14

Ad15

Ad16

Ad17

Ad18

I Display 4 ads (more than 1) and observe losses

I Play m out of N actions
I Observe losses of all neighbors of played actions

Michal Valko – Graphs in Machine Learning Lecture 8 - 26/59

Graph bandits: Complex actions
Example: New feeds

content1 content2

e
1
,1

e
1,2

e
1,3

user1

news feed1 news feed2 news feed3
user1

content2
e1,1 e1,2 e1,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Michal Valko – Graphs in Machine Learning Lecture 8 - 27/59

Graph bandits: Complex actions
Example: New feeds

content1 content2

user1 user2

news feed1 news feed2 news feed3
user1

user2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Michal Valko – Graphs in Machine Learning Lecture 8 - 27/59

Graph bandits: Complex actions
Example: New feeds

content1 content2

user1 user2 user3

news feed1 news feed2 news feed3
user1

user2

user3

content2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Michal Valko – Graphs in Machine Learning Lecture 8 - 27/59

Graph bandits: Complex actions
Example: New feeds

content1 content2

user1 user2 user3 userm

news feed1 news feed2 news feed3
user1

user2

user3

user4

content2

content2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

em,1 em,2 em,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Michal Valko – Graphs in Machine Learning Lecture 8 - 27/59

Graph bandits: Complex actions
Example: New feeds

content1 content2

user1 user2 user3 userm

news feed1 news feed2 news feed3
user1

user2

user3

user4

content2

content2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

em,1 em,2 em,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Michal Valko – Graphs in Machine Learning Lecture 8 - 27/59

Graph bandits: Complex actions

A B C

DEF

G H I

JKL

I Play action Vt ∈ S ⊂ {0, 1}N , ‖v‖1 ≤ m from all v ∈ S
I Obtain losses VT

t `t

I Observe additional losses according to the graph

Michal Valko – Graphs in Machine Learning Lecture 8 - 28/59

Graph bandits: FPL-IX algorithm
I Draw perturbation Zt,i ∼ Exp(1) for all i ∈ [N]

I Play “the best” action Vt according to total loss estimate L̂t−1
and perturbation Zt

Vt = arg min
v∈S

vT
(
ηt L̂t−1 − Zt

)
I Compute loss estimates

ˆ̀t,i = `t,iKt,i1{`t,i is observed}

I Kt,i : geometric random variable with

E [Kt,i] =
1

ot,i + (1− ot,i)γ

Michal Valko – Graphs in Machine Learning Lecture 8 - 29/59

Graph bandits: Complex actions

FPL-IX - regret bound

RT = Õ

m3/2

√√√√ T∑
t=1

αt

 = Õ
(

m3/2√αT
)

Michal Valko – Graphs in Machine Learning Lecture 8 - 30/59

Graph bandits: Stochastic Rewards

Can we do better if the losses/rewards are stochastic?

Yes, we can!

UCB-N - Follow UCB and update the estimates with extra info.

UCB-MaxN - Follow UCB, but pick the empirically best node in
the clique of the node UCB would pick.

UCB-LP - linear approximation to the dominating set

http://www.auai.org/uai2012/papers/236.pdf

http://newslab.ece.ohio-state.edu/~buccapat/mabSigfinal.pdf

Known bounds in terms of cliques and dominating sets.

Michal Valko – Graphs in Machine Learning Lecture 8 - 31/59

http://www.auai.org/uai2012/papers/236.pdf
http://newslab.ece.ohio-state.edu/~buccapat/mabSigfinal.pdf

Graph bandits: Side Observation Summary

I Implicit eXploration idea
I Algorithm for simple actions - Exp3-IX

I Using implicit exploration idea
I Same regret bound as previous algorithm
I No need to know graph before an action is played
I Computationally efficient

I Combinatorial setting with side observations
I Algorithm for combinatorial setting - FPL-IX
I Extensions (open questions)

I No need to know graph after an action is played
I Stochastic side observations - Random graph models
I Exploiting the communities

I Stochastic losses

Michal Valko – Graphs in Machine Learning Lecture 8 - 32/59

Graph bandits: Very hot topic!
Last paper on arxiv: Fri, 20 Mar 2015 17:21:12 GMT
Extensions: Noga Alon et al. (2015) Beyond bandits

Complete characterization: Bártok et al. (2014)
Michal Valko – Graphs in Machine Learning Lecture 8 - 33/59

Graph Sparsification

Goal: Get graph G and find sparse H

Why could we want to get H? smaller, faster to work with

What properties should we want from H?

Michal Valko – Graphs in Machine Learning Lecture 8 - 35/59

Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not

But real-world graphs are sparse, why care?
graphs that arise inside algorithms, similarity graphs, . . .

Alternative to sparsification?
example: local computation . . .

Michal Valko – Graphs in Machine Learning Lecture 8 - 36/59

Graph Sparsification: What is good sparse?
Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 37/59

https://math.berkeley.edu/~nikhil/

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is cut: cutG(S) =
∑

i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning Lecture 8 - 38/59

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)

Michal Valko – Graphs in Machine Learning Lecture 8 - 39/59

Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈

n
d

Could be large :(What to do?

Michal Valko – Graphs in Machine Learning Lecture 8 - 40/59

Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈ 1

Benczúr & Karger: Can find such H quickly for any G!

Michal Valko – Graphs in Machine Learning Lecture 8 - 41/59

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning Lecture 8 - 42/59

Spectral Graph Sparsification

Reason 1: Spectral sparsification is helps when solving LGx = y

When a sparse H is spectrally similar to G then xTLGx ≈ xTLHx

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

Michal Valko – Graphs in Machine Learning Lecture 8 - 43/59

Spectral Graph Sparsification
Reason 2: Spectral sparsification preserves eigenvalues!

Rayleigh-Ritz gives:

λmin = min xTLx
xTx and λmax = max xTLx

xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Other properties too: random walks, colorings, spanning trees, . . .

Michal Valko – Graphs in Machine Learning Lecture 8 - 44/59

Spectral Graph Sparsification: Example
G = Kn H = fat d-regular (random)

We wanted: ∀S ⊂ V :
wG(δS)
wH(δS) =

xT
SLGxS

xT
SLHxS

≈ 1± ε

Now we need: ∀x :
xTLGx
xTLHx ≈ 1± ε

To satisfy the condition: d = 1
ε2

Michal Valko – Graphs in Machine Learning Lecture 8 - 45/59

Spectral Graph Sparsification
How to sparsify electrically? Given LG find LH . . .

. . . such that xTLGx ≤ xTLHx ≤ κ · xTLGx

. . . we can also write LG � LH � κ · LG

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 46/59

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification

Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

What s is good? sparse! Why would we want a subgraph?

Michal Valko – Graphs in Machine Learning Lecture 8 - 47/59

Spectral Graph Sparsification

We want LG � LH � κ · LG

That is, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ · LG

Forget L, given V =
∑
e∈E

vevT
e find s, s.t. V �

∑
e∈E

sevevT
e � κ · V

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? v′e ← V−1/2ve

Then
∑

e∈E sev′e(v′e)T ≈ I ⇐⇒
∑

e∈E vevT
e ≈ V

multiplying by V1/2 on both sides

Michal Valko – Graphs in Machine Learning Lecture 8 - 48/59

Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

Decomposition of identity: ∀u (unit vector):
∑

e∈E uTve = I
moment ellipse is a sphere

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 49/59

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

We take a subset of these ees and scale them!

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 50/59

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 51/59

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 52/59

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 53/59

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 = ‖L−1/2
G be‖2 = bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning Lecture 8 - 54/59

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighing.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Matrix Chernoff Bound Rudelson (1999)

1− ε ≺ λ

(∑
e

sevevT
e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pis!

Michal Valko – Graphs in Machine Learning Lecture 8 - 55/59

Spectral Graph Sparsification
We want to make this algorithm fast.

How can we compute the effective resistances?

LG =
∑

e
bebT

e = BTB (B has bT
es in rows – m × n matrix)

‖ve‖2 = pi = bT
eL−1

G be

= bT
eL−1

G BTBL−1
G be

= ‖BL−1
G (δi − δj)‖2

What does that mean?

It is a embedding of the distance (squared)!

Michal Valko – Graphs in Machine Learning Lecture 8 - 56/59

Spectral Graph Sparsification
How to find a distance between the colums of a matrix BL−1

G ?

Reff(ij) = ‖BL−1
G (δi − δj)‖2

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning Lecture 8 - 57/59

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification
How to find a distance between the colums of a matrix BL−1

G ?

We never compute BL−1
G we compute QBL−1

G !

Johnson-Lindenstrauss: The distances are approximately preserved.

We take random Qlog n×m and set Z = QBL−1
G

We solve O(log n) (smaller) random linear systems!

Michal Valko – Graphs in Machine Learning Lecture 8 - 58/59

Michal Valko
michal.valko@inria.fr

sequel.lille.inria.fr
SequeL – INRIA Lille

MVA 2014/2015

