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Last Lecture

» Scaling harmonic functions to millions of samples
» Online decision-making on graphs

» Graph bandits

» smoothness of rewards (preferences) on a given graph
» observability graphs
> side information
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This Lecture

v

Graph bandits and online non-stochastic rewards

v

Observability graphs

Side information

v

v

Graph Sparsification

v

Spectral Sparsification
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Previous Lab Session

» 10. 3. 2015 by Daniele.Calandriello@inria.fr
» Content
» Graphlab
» Large-Scale Graph Learning
» Short written report (graded, each lab around 5% of grade)

v

Questions to Daniele.Calandriello@inria.fr
Deadline: 24. 3. 2015 (today)

v

P nttp://researchers.lille.inria.fr/~calandri/ta/graphs/td3_handout.pdf
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Final Class projects

» time and formatting description on the class website

» grade: report + short presentation of the team

» deadlines

» 11. 4. 2015 final report (for all projects)
» 13. 4. 2015 afternoon, presentation in class (most projects)
» after 13. 4. 2015, remote presentations (other projects)

» project report: 5 - 10 pages in NIPS format
> presentation: around 20 minutes, everybody has to present

> can express preference for presentation time slot on the
website

» explicitly state the contributions

http://researchers.lille.inria.fr/~valko/hp/mvaprojects
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Graph bandits: Side observations

Example 1: undirected observations
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Graph bandits: Side observations

Example 1: Graph Representation
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Graph bandits: Side observations

Example 2: Directed observation
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Graph bandits: Side observations

Example 2
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Graph bandits: Side observations
Learning setting

In each timestept=1,..., T

» Environment (adversary):

» Privately assigns losses to actions
» Generates an observation graph
» Undirected / Directed
> Disclosed / Not disclosed

> Learner:
» Plays action /; € [N]
» Obtain loss ¢, ;, of action played
» Observe losses of neighbors of /;
» Graph: disclosed

> Performance measure: Total expected regret

;
Rt = E Loy, — Uy
T = max lZ( eh — L, )1

t=1

Michal Valko — Graphs in Machine Learning
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Graph bandits: Typical settings

Full Information setting Bandit setting
> Pick an action (e.g. action A) > Pick an action (e.g. action A)
> Observe losses of all actions > Observe loss of a chosen action
» Rr=0(/T) > Rr = O(VNT)
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Graph bandits: Side observation - Undirected case

Side observation (Undirected case)

> Pick an action (e.g. action A)

> Observe losses of neighbors
Mannor and Shamir (ELP algorithm)

> Need to know graph

> Clique decomposition (c cliques)

> Ry = O(VeT)
Alon, Cesa-Bianchi, Gentile, Mansour

> No need to know graph

» Independence set of a actions

> Rr = O(VaT)
. lrzia—
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Graph bandits: Side observation - Directed case

Side observation (Directed case)
> Pick an action (e.g. action A)

> Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
» Exp3-DOM
> Need to know graph
> Need to find dominating set
> Rr =0(VaT)
Exp3-1X - Kocak et. al
> No need to know graph

> Rr =O(VaT)
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Reminder: Exp3 algorithms in general

» Compute weights using loss estimates &7;.
= exp ( 77265 ,)

> Play action /; such that
Wt i Wt i

P(ly = i) = psi = Wt = 2:N7W
j=1 Wt,j

> Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?
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Bias variance tradeoff approaches

» Approach of Mixing

» Bias sampling distribution p, over actions

> p; = (1 — v)p: + st — mixed distribution

> s; — probability distribution which supports exploration
» Loss estimates [l,- are unbiased

> Approach of Implicit eXploration (IX)

» Bias loss estimates /; ;

> Biased loss estimates — biased weights
> Biased weights = biased probability distribution

» No need for mixing

Is there a difference in a traditional non-graph case? Not much

Big difference in graph feedback case!
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Graph bandits: Mannor and Shamir - ELP algorithm

> ]E[l%;] = {;; — unbiased loss estimates

> pr;= (1L —7)pti+ st — bias by mixing

> s; = {st1, ..., SN} — probability distribution over the action set
St = argmax | min | s;; + Z Stk = arg max {min qw}
st JEIN] KEN, . st JEIN]
3J

> g:; — probability that loss of j is observed according to s;

v

Computation of s;
» Graph needs to be disclosed
» Solving simple linear program

v

Needs to know graph before playing an action
Graphs can be only undirected

v
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Graph bandits: Alon, Cesa-Bianchi, Gentile,
Mansour - Exp3-DOM

» K[/, ;] = {:; — unbiased loss estimates
> P;,i = (1 —¥)p¢,i + yst,; — bias by mixing

> s; = {s¢1, ..., St,n} — probability distribution over the action set

_ % ifieR; |R|l=r j
0 otherwise.

> R — dominating set of r elements
» s; — uniform distribution over R
> Needs to know graph beforehand

> Graphs can be directed
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Graph bandits: Comparison of loss estimates
Typical algorithms - loss estimates

éti:

)

5 Leifot,i if £;; is observed
0 otherwise.

IE[El’l]— o Otl+0(1_ot1)_£t1

t,i

Exp3-1X - loss estimates

/.= Cei/(ori +7) if ¢, ; is observed
"o otherwise.
E[éti]: et?i Oti+0(1_oti):€ti_£tiLSgti
U0ty ’ T oty T

No mixing!
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Analysis of Exp3 algorithms in general

> Evolution of W;y1/W,;

N i=1

N

~ log W, log W,
E pt,i£t,i§|: SBT3 t+1] 772 Ptz
i=1

n

» Taking expectation and summing over time

Michal Valko — Graphs in Machine Learning

1 W, 1]2 N
—log Vi/-:l |°g (1 - 772 Pt, /Et: 5 ,z:; Pt,i(ft,i)2> )
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Graph bandits: Regret bound of Exp3-1X

Lower bound of B (optimistic loss estimates: E[{] < E[¢])

el

Upper bound of C (using definition of loss estimates)

T T N
gtzzpf,(et,z]gE[ZtZZ o7

|
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Graph bandits: Regret bound of Exp3-1X

Upper bound on regret Exp3-1X

logN /7 ’ L e
Rr< 2=+ (249) 3By P
! n 2 ; — Orit+ Y

|

N
Pt,i

= Onit 7

t=1

=
Rr~0O (J logN ) E
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Graph bandits: Regret bound of Exp3-1X

Graph lemma

v

Graph G with V(G) ={1, ..., N}
> d. — in-degree of vertex |

1

» « — independence set of G

v

Turan's Theorem + induction

1 N
< 2al 14+ —
Zl+d__aog<+a>
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Graph bandits: Regret bound of Exp3-1X

Discretization
1
NN SN 20 B
0 ' U ' U 1
N p N p N 1’5
t,i t,i t,i
L : < = J — 4+ 2
— o+ ; P+ Xjen- Prit 7 ; Pr.i+ jen- Pr

Note: we set M = [N?/v]

N

Z Pe,i

i=1 Pt,i + ZjENr Pt.j
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Graph bandits: Regret bound of Exp3-1X

N

Mpy i ( M-I—N)
<2alog |1+
Z MBei+ > sen- Mpe,j Zzler -

=1 =1 ke

Example: let M =10

<
<
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Exp3-1X regret bound

-
log N N? N
R < £+ <ﬂ+7)ZE [2oztlog <1+%) +2}
n 2 P Qi

Rr=0 ( aTlog(N))

Next step

Generalization of the setting to combinatorial actions
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Graph bandits: Complex actions
Example: Multiple Ads

[Adm] [Ado4] [Ad07] [Adm] [AdIBJ [Adw]
() (M) () () () ()
() () () (M) () ()

» Display 4 ads (more than 1) and observe losses

» Play m out of N actions

> Observe losses of all neighbors of played actions

. Clreia—
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Graph bandits: Complex actions
Example: New feeds

usery

usery

e s
news feed; news feeds news feeds

contenty contents
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Graph bandits: Complex actions
Example: New feeds

usery  users

usery

e s |
news feed; news feeds news feeds

contenty contents
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Graph bandits: Complex actions
Example: New feeds

usery  users  uUSers

e s |
news feed; news feeds news feeds

contenty contents
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Graph bandits: Complex actions
Example: New feeds

usery  users  uUSers usery, users

e | (Loeefecs vond s |
news feed; news feeds news feeds

contenty contents
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Graph bandits: Complex actions

Example: New feeds

usery  users  uUSers usery,

usery

contenty
o 4
€21 €22 €23

usery
news feeds news feeds .

contenty contents

news feed;

» Play m out of N nodes (combinatorial structure)
» Obtain losses of all played nodes

> Observe losses of all neighbors of played nodes

Graphs in Machine Learning Lecture 8 - 27/59



Graph bandits: Complex actions

» Play action V; € S C {0, 1}V, |lv]s < mfromallve S

> Obtain losses V€,

> Observe additional losses according to the graph
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Graph bandits: FPL-IX algorithm
> Draw perturbation Z;; ~ Exp(1) for all i € [N]
» Play “the best” action V; according to total loss estimate Et_l
and perturbation Z,

V;=argminv' (nttt,l — Zt)
vesS

» Compute loss estimates

~

Ui =€ iKe i1{l;; is observed}

> K. geometric random variable with

1
or,i + (1 — ori)y

E[K:i] =

-
brzia—
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Graph bandits: Complex actions

FPL-IX - regret bound
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Graph bandits: Stochastic Rewards
Can we do better if the losses/rewards are stochastic?

Yes, we can!

UCB-N - Follow UCB and update the estimates with extra info.

UCB-MaxN - Follow UCB, but pick the empirically best node in
the clique of the node UCB would pick.

UCB-LP - linear approximation to the dominating set

http://www.auai.org/uai2012/papers/236.pdf

http://newslab.ece.ohio-state.edu/~buccapat/mabSigfinal.pdf

Known bounds in terms of cliques and dominating sets.

-
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Graph bandits: Side Observation Summary

» Implicit eXploration idea

v

Algorithm for simple actions - Exp3-1X

Using implicit exploration idea

Same regret bound as previous algorithm

No need to know graph before an action is played
Computationally efficient

vV vy vy

» Combinatorial setting with side observations

v

Algorithm for combinatorial setting - FPL-IX

v

Extensions (open questions)

» No need to know graph after an action is played
» Stochastic side observations - Random graph models
» Exploiting the communities

» Stochastic losses

. lrezia~
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Graph bandits: Very hot topic!
Last paper on arxiv: Fri, 20 Mar 2015 17:21:12 GMT
Extensions: Noga Alon et al. (2015) Beyond bandits

Figure 1: Examples of feedback graphs: (a) full feedback, (b) bandit feedback, (c) loopless
clique, (d) apple tasting, (e) revealing action, (f) a clique minus a self-loop and another edge.

5 Complete characterization: Bartok et al. (2014)
. lrezia—
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Graph Sparsification

Goal: Get graph G and find sparse H

G H ©—o
o

Why could we want to get H? smaller, faster to work with

What properties should we want from H?

. brezia~
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Graph Sparsification: What is sparse?

What does sparse graph mean?
> average degree < 10 is pretty sparse
» for billion nodes even 100 should be ok

> in general: average degree < polylogn

Are all edges important?

in a tree — sure, in a dense graph perhaps not

But real-world graphs are sparse, why care?

graphs that arise inside algorithms, similarity graphs,

Alternative to sparsification?

example: local computation ...

. Cbreia—
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Graph Sparsification: What is good sparse?
Good sparse by Benczir and Karger (1996) = cut preserving!

~ ~
\ \

69 68

H approximates G well iff VS C V, sum of edges on §S remains

8S = edges leaving S
https://math.berkeley.edu/~nikhil/

. Cbreia—
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Graph Sparsification: What is good sparse?

Good sparse by Benczir and Karger (1996) = cut preserving!
Why did they care? faster mincut/maxflow
Recall what is cut: cutg(S) =3 cs jc5 Wil
Define G and H are (1 -+ =)-cut similar when VS
(1 —&)cuty(S) < cutg(S) < (14 e)cuty(S)

Is this always possible? ~ Benczir and Karger (1996): Yes!

Ve 3 (1 + €)-cut similar G with O(nlog n/e?) edges s.t. Ey C E
and computable in O(mlog>® n 4 mlog n/e?) time n nodes, m cdes

. Cbreia—
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)

How many edges?

|Ec| = O(n?) |En| = O(dn)
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Graph Sparsification: What is good sparse?
G=K, H = d-regular (random)

What are the cut weights for any S?

wg(8S) = |S| - [S| wh(6S) ~ 2 -15]-|S]
 wg(dS) n
vVScV: wir(65) ~

Could be large :( What to do?
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)

What are the cut weights for any 57

we(5S) =S| -S| wy(6S) ~ 2. 5. 1S|-|S|
 wg(8S)
VScV: wir(65) ~1

Benczir & Karger: Can find such H quickly for any G!
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Graph Sparsification: What is good sparse?

Recall if f € {0,1}" represents S then f'Lsf = cutg(S)
(1 —¢)cuty(S) < cutg(S) < (1+¢)cuty(S)
becomes

(1—)fTLyf < FTLGF < (1 +o)f Lyf

If we ask this only for f € {0,1}” — (1 + ¢)-cut similar combinatorial

Benczir & Karger (1996)

If we ask this for all f € R” — (1 + ¢)-spectrally similar

Spielman & Teng (2004)

Spectral sparsifiers are stronger!

but checking for spectral similarity is easier

. lrezia~
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Spectral Graph Sparsification

Reason 1: Spectral sparsification is helps when solving Lgx =y
When a sparse H is spectrally similar to G then x"Lgx =~ x"Lyx

Gaussian Elimination O(
Fast Matrix Multiplication O(
Spielman & Teng (2004) O(mlog® n)
Koutis, Miller, and Peng (2010) O(mlog n)
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Spectral Graph Sparsification
Reason 2: Spectral sparsification preserves eigenvalues!
Rayleigh-Ritz gives:

xTLx xTLx
and  Apmax = max

Amin = Min
xTx

What can we say about \;(G) and \;(H)?

(1 —e)fTLaf <fLyf < (14 2)f Lgf
Eigenvalues are approximated well!

(1 —2)Ai(G) < Xi(H) < (14 2)Xi(G)

Other properties too: random walks, colorings, spanning trees, ...

. brezia~
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Spectral Graph Sparsification: Example

G=K, H = fat d-regular (random)

.
L
We wanted: VS C V : we(95) = X526%S 1+e
WH((55) XgLHXS

x"L¢ex

Now we need: Vx : ~1l4¢

xTLyx

To satisfy the condition: d = ;15
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Spectral Graph Sparsification
How to sparsify electrically? Given Lg find Ly ...

..such that x'Lgx < x'Lyx < k-x'Lgx

...we can also write Lg=<Ly=<k-Lg

https://math.berkeley.edu/~nikhil/

. brezia~
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Spectral Graph Sparsification

Let us consider unweighted graphs: w; € {0,1}

LG_ZW,J,J_ZL,J_Za—a) = beb]

jeE ijeE ecE

H :Il:> nuu

Lg . Ly

We look for a subgraph H

Ly = Zsebeb; where s, is a new weight of edge e
ecE

What s is good?  sparse!  Why would we want a subgraph?

. Cbreia—
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Spectral Graph Sparsification
We want Lg <Ly =<&k-L¢

That is, given Lg = Y bcb find s, s.t. Lg < ) sebebl < k- Lg
ecE ecE

Forget L, given V = Z"e"g find s, s.t. V < ZSeVeVZ <Kk-V
ecE ecE

Same as, given | = E vev, find s, s.t. 1 < g SeVevy X k- |
ecE ecE

How to get it? v, « V~1/2y,

Then Y cpsevi(Vl) Rl <= > pvevirc V

multiplying by V1/2 on both sides

. Clreia—
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Spectral Graph Sparsification: Intuition

How does » .. vevi = | look like geometrically?

Decomposition of identity: Vu (unit vector): Y u've = I
moment ellipse is a sphere

https://math.berkeley.edu/~nikhil/

. brezia~
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

[ 0~(n) vectors in R" }

SeVe

N o — -

We take a subset of these e.s and scale them!

https://math.berkeley.edu/~nikhil/

. Crzia—~
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!

the blue eigenvalues are between 1 and &
https://math.berkeley.edu/~nikhil/

. lrezia~
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?

K, graph Y ecebebl = Lg Y oeceVeve = |
/’-\\ /f_\\
/ \ / \
I 1 I 1
% / | /
’ A ’
\N_, \\_’

It is already isotropic! (looks like a sphere)

. /2
rescaling ve = L L “be does not change the shape

https://math.berkeley.edu/~nikhil/

. brezia~
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

T T
K, graph Y ecebebl =Lg YeceVeve = |
—
/ \ - -
1 \ 4 \\
| \ 4 i
I
B B . | )
S \ \ ,
\ ] \\ _-
\ /

The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/

. lrezia~
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = L(_;l/zbe doing to the norm?

2 _ =2 12 — pT1 -1p —
Ivel|” = [[Lg " "bel|” = bel g be = Refi(e)
reminder Reg(e) is the potential difference between the nodes when injecting a unit current

In other words:  Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Ref(e€).

Edges with higher R are more electrically significant!

. brezia~
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Spectral Graph Sparsification
Todo: Given | =) _v.v], find a sparse reweighing.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o< ||ve||? (resistances)

» Reweigh: s; = 1/p; (to be unbiased)

Does this work?

Matrix Chernoff Bound Rudelson (1999)

1—5-<A<Zsevevl) <1+e¢
e

finer bounds now available

What is the the biggest problem here? Getting the p;s!

. brezia~
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Spectral Graph Sparsification

We want to make this algorithm fast.

How can we compute the effective resistances?
L = Zbebl =B'B (B has bls in rows — m x n matrix)
e

Ivell® = pi = biL'be
=b.L;'B"BL.'b.
= [IBLG (6; — 6;)II>

What does that mean?

It is a embedding of the distance (squared)!
. Creia—
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Spectral Graph Sparsification

How to find a distance between the colums of a matrix BLgl?
Rere(if) = [|BLZ (8; — )12

BL-15, Random Q QBL-'5,

BL™'6; /7%% L§;

Rlog n

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification

How to find a distance between the colums of a matrix BLEI?

We never compute BLE1 we compute QBLgll
Johnson-Lindenstrauss: The distances are approximately preserved.

We take random Qjog nxm and set Z = QBLE:l

(logn xm) (m xn) (logn x n)

o ey R

We solve O(log n) (smaller) random linear systems!
. &’Z"&’a/~
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