Graphs in Machine Learning

Michal Valko
INRIA Lille - Nord Europe, France

Last Lecture

- Scaling harmonic functions to millions of samples
- Online decision-making on graphs
- Graph bandits
- smoothness of rewards (preferences) on a given graph
- observability graphs
- side information

This Lecture

- Graph bandits and online non-stochastic rewards
- Observability graphs
- Side information
- Graph Sparsification
- Spectral Sparsification

Previous Lab Session

- 10. 3. 2015 by Daniele.Calandriello@inria.fr
- Content
- GraphLab
- Large-Scale Graph Learning
- Short written report (graded, each lab around 5\% of grade)
- Questions to Daniele.Calandriello@inria.fr
- Deadline: 24. 3. 2015 (today)
- http://researchers.lille.inria.fr/~calandri/ta/graphs/td3_handout.pdf

Final Class projects

- time and formatting description on the class website
- grade: report + short presentation of the team
- deadlines
- 11. 4. 2015 final report (for all projects)
- 13. 4. 2015 afternoon, presentation in class (most projects)
- after 13. 4. 2015, remote presentations (other projects)
- project report: 5-10 pages in NIPS format
- presentation: around 20 minutes, everybody has to present
- can express preference for presentation time slot on the website
- explicitly state the contributions

Graph bandits: Side observations

Example 1: undirected observations

Graph bandits: Side observations

Example 1: Graph Representation

Graph bandits: Side observations

Example 2: Directed observation

Graph bandits: Side observations

Example 2

Graph bandits: Side observations

Learning setting
In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}
- Graph: disclosed
- Performance measure: Total expected regret

$$
R_{T}=\max _{i \in[N]} \mathbb{E}\left[\sum_{t=1}^{T}\left(\ell_{t, l_{t}}-\ell_{t, i}\right)\right]
$$

Graph bandits: Typical settings

Full Information setting

- Pick an action (e.g. action A)
- Observe losses of all actions
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{T})$

Bandit setting

- Pick an action (e.g. action A)
- Observe loss of a chosen action
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{N T})$
(E)

(F)

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know graph
- Clique decomposition (c cliques)
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{c T})$

Alon, Cesa-Bianchi, Gentile, Mansour

- No need to know graph
- Independence set of α actions
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Graph bandits: Side observation - Directed case

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Exp3-IX - Kocák et. al

- No need to know graph
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Reminder: Exp3 algorithms in general

- Compute weights using loss estimates $\hat{\ell}_{t, i}$.

$$
w_{t, i}=\exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s, i}\right)
$$

- Play action I_{t} such that

$$
\mathbb{P}\left(I_{t}=i\right)=p_{t, i}=\frac{w_{t, i}}{W_{t}}=\frac{w_{t, i}}{\sum_{j=1}^{N} w_{t, j}}
$$

- Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?

Bias variance tradeoff approaches

- Approach of Mixing
- Bias sampling distribution \mathbf{p}_{t} over actions
- $\mathbf{p}_{t}^{\prime}=(1-\gamma) \mathbf{p}_{t}+\gamma \mathbf{s}_{t}$ - mixed distribution
- \mathbf{s}_{t} - probability distribution which supports exploration
- Loss estimates $\hat{\ell}_{t, i}$ are unbiased
- Approach of Implicit eXploration (IX)
- Bias loss estimates $\hat{\ell}_{t, i}$
- Biased loss estimates \Longrightarrow biased weights
- Biased weights \Longrightarrow biased probability distribution
- No need for mixing

Is there a difference in a traditional non-graph case? Not much
Big difference in graph feedback case!

Graph bandits: Mannor and Shamir - ELP algorithm

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}-$ bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
\mathbf{s}_{t}=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]}\left(s_{t, j}+\sum_{k \in N_{t, j}} s_{t, k}\right)\right]=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]} q_{t, j}\right]
$$

- $q_{t, j}$ - probability that loss of j is observed according to \mathbf{s}_{t}
- Computation of \mathbf{s}_{t}
- Graph needs to be disclosed
- Solving simple linear program
- Needs to know graph before playing an action
- Graphs can be only undirected

Graph bandits: Alon, Cesa-Bianchi, Gentile, Mansour - Exp3-DOM

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}-$ bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
s_{t, i}= \begin{cases}\frac{1}{r} & \text { if } i \in R ;|R|=r \\ 0 & \text { otherwise }\end{cases}
$$

- R - dominating set of r elements
- \mathbf{s}_{t} - uniform distribution over R
- Needs to know graph beforehand
- Graphs can be directed

Graph bandits: Comparison of loss estimates

Typical algorithms - loss estimates

$$
\hat{\ell}_{t, i}= \begin{cases}\ell_{t, i} / o_{t, i} & \text { if } \ell_{t, i} \text { is observed } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}
$$

Exp3-IX - loss estimates

$$
\begin{aligned}
\hat{\ell}_{t, i}= & \begin{cases}\ell_{t, i} /\left(o_{t, i}+\gamma\right) & \text { if } \ell_{t, i} \text { is observed } \\
0 & \text { otherwise. }\end{cases} \\
& \mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}+\gamma} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}-\ell_{t, i} \frac{\gamma}{o_{t, i}+\gamma} \leq \ell_{t, i}
\end{aligned}
$$

No mixing!

Analysis of Exp3 algorithms in general

- Evolution of W_{t+1} / W_{t}

$$
\frac{1}{\eta} \log \frac{W_{t+1}}{W_{t}} \leq \frac{1}{\eta} \log \left(1-\eta \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}+\frac{\eta^{2}}{2} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right),
$$

$$
\sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i} \leq\left[\frac{\log W_{t}}{\eta}-\frac{\log W_{t+1}}{\eta}\right]+\frac{\eta}{2} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}
$$

- Taking expectation and summing over time

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right]-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right] \leq \mathbb{E}\left[\frac{\log N}{\eta}\right]+\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right]
$$

Graph bandits: Regret bound of Exp3-IX

$$
\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right]}_{A}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right]}_{B} \leq \mathbb{E}\left[\frac{\log N}{\eta}\right]+\underbrace{\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right]}_{C}
$$

Lower bound of \mathbf{A} (using definition of loss estimates)

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right] \geq \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \ell_{t, i}\right]-\mathbb{E}\left[\gamma \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

Lower bound of B (optimistic loss estimates: $\mathbb{E}[\hat{\ell}]<\mathbb{E}[\ell]$)

$$
-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right] \geq-\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t, k}\right]
$$

Upper bound of C (using definition of loss estimates)

$$
\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right] \leq \mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

Graph bandits: Regret bound of Exp3-IX

Upper bound on regret Exp3-IX

$$
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

$$
R_{T} \approx \mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]}\right)
$$

Graph bandits: Regret bound of Exp3-IX

Graph lemma

- Graph G with $V(G)=\{1, \ldots, N\}$
- d_{i}^{-}- in-degree of vertex i
- α - independence set of G
- Turán's Theorem + induction

$$
\sum_{i=1}^{N} \frac{1}{1+d_{i}^{-}} \leq 2 \alpha \log \left(1+\frac{N}{\alpha}\right)
$$

Graph bandits: Regret bound of Exp3-IX

Discretization

$$
\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}=\sum_{i=1}^{N} \frac{p_{t, i}}{p_{t, i}+\sum_{j \in N_{i}^{-}} p_{t, j}+\gamma} \leq \sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}+2
$$

Note: we set $M=\left\lceil N^{2} / \gamma\right\rceil$

$$
\sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}
$$

Graph bandits: Regret bound of Exp3-IX

$$
\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}=\sum_{i=1}^{N} \sum_{k \in C_{i}} \frac{1}{1+d_{k}^{-}} \leq 2 \alpha \log \left(1+\frac{M+N}{\alpha}\right)
$$

Example: let $M=10$

Exp3-IX regret bound

$$
\begin{gathered}
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2 \alpha_{t} \log \left(1+\frac{\left\lceil N^{2} / \gamma\right\rceil+N}{\alpha_{t}}\right)+2\right] \\
R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \log (N)})
\end{gathered}
$$

Next step

Generalization of the setting to combinatorial actions

Graph bandits: Complex actions

Example: Multiple Ads

- Display 4 ads (more than 1) and observe losses

- Play m out of N actions
- Observe losses of all neighbors of played actions

Graph bandits: Complex actions

Example: New feeds

Graph bandits: Complex actions

Example: New feeds

Graph bandits: Complex actions

Example: New feeds

Graph bandits: Complex actions

Example: New feeds

Graph bandits: Complex actions

Example: New feeds

- Play m out of N nodes (combinatorial structure)
- Obtain losses of all played nodes
- Observe losses of all neighbors of played nodes

Graph bandits: Complex actions

- Play action $\mathbf{V}_{t} \in S \subset\{0,1\}^{N},\|\mathbf{v}\|_{1} \leq m$ from all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_{t}^{\top} \ell_{t}$
- Observe additional losses according to the graph

Graph bandits: FPL-IX algorithm

- Draw perturbation $Z_{t, i} \sim \operatorname{Exp}(1)$ for all $i \in[N]$
- Play "the best" action \mathbf{V}_{t} according to total loss estimate $\widehat{\mathbf{L}}_{t-1}$ and perturbation \mathbf{Z}_{t}

$$
\mathbf{V}_{t}=\underset{\mathbf{v} \in \mathcal{S}}{\arg \min } \mathbf{v}^{\top}\left(\eta_{t} \widehat{\mathbf{L}}_{t-1}-\mathbf{Z}_{t}\right)
$$

- Compute loss estimates

$$
\hat{\ell}_{t, i}=\ell_{t, i} K_{t, i} \mathbb{1}\left\{\ell_{t, i} \text { is observed }\right\}
$$

- $K_{t, i}$: geometric random variable with

$$
\mathbb{E}\left[K_{t, i}\right]=\frac{1}{o_{t, i}+\left(1-o_{t, i}\right) \gamma}
$$

Graph bandits: Complex actions

FPL-IX - regret bound

$$
R_{T}=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\bar{\alpha} T}\right)
$$

Graph bandits: Stochastic Rewards

Can we do better if the losses/rewards are stochastic?

Yes, we can!

UCB-N - Follow UCB and update the estimates with extra info.
UCB-MaxN - Follow UCB, but pick the empirically best node in the clique of the node UCB would pick.

UCB-LP - linear approximation to the dominating set
http://www.auai.org/uai2012/papers/236.pdf
http://newslab.ece.ohio-state.edu/~buccapat/mabSigfinal.pdf
Known bounds in terms of cliques and dominating sets.

Graph bandits: Side Observation Summary

- Implicit eXploration idea
- Algorithm for simple actions - Exp3-IX
- Using implicit exploration idea
- Same regret bound as previous algorithm
- No need to know graph before an action is played
- Computationally efficient
- Combinatorial setting with side observations
- Algorithm for combinatorial setting - FPL-IX
- Extensions (open questions)
- No need to know graph after an action is played
- Stochastic side observations - Random graph models
- Exploiting the communities
- Stochastic losses

Graph bandits: Very hot topic!

Last paper on arxiv: Fri, 20 Mar 2015 17:21:12 GMT Extensions: Noga Alon et al. (2015) Beyond bandits

Figure 1: Examples of feedback graphs: (a) full feedback, (b) bandit feedback, (c) loopless clique, (d) apple tasting, (e) revealing action, (f) a clique minus a self-loop and another edge.

Complete characterization: Bártok et al. (2014)

Graph Sparsification

Goal: Get graph G and find sparse H

Why could we want to get H ? smaller, faster to work with
What properties should we want from H ?

Graph Sparsification: What is sparse?

What does sparse graph mean?

- average degree <10 is pretty sparse
- for billion nodes even 100 should be ok
- in general: average degree < polylog n

Are all edges important?
in a tree - sure, in a dense graph perhaps not
But real-world graphs are sparse, why care?
graphs that arise inside algorithms, similarity graphs,
Alternative to sparsification?
example: local computation

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff $\forall S \subset V$, sum of edges on δS remains $\delta S=$ edges leaving S

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!
Why did they care? faster mincut/maxflow
Recall what is cut: $\operatorname{cut}_{G}(S)=\sum_{i \in S, j \in \bar{S}} w_{i, j}$
Define G and H are ($1 \pm \varepsilon$)-cut similar when $\forall S$

$$
(1-\varepsilon) \operatorname{cut}_{H}(S) \leq \operatorname{cut}_{G}(S) \leq(1+\varepsilon) \operatorname{cut}_{H}(S)
$$

Is this always possible? Benczúr and Karger (1996): Yes!
$\forall \varepsilon \exists(1+\varepsilon)$-cut similar \widetilde{G} with $\mathcal{O}\left(n \log n / \varepsilon^{2}\right)$ edges s.t. $E_{H} \subseteq E$ and computable in $\mathcal{O}\left(m \log ^{3} n+m \log n / \varepsilon^{2}\right)$ time n nodes, m edges

Graph Sparsification: What is good sparse?

$$
H=d \text {-regular (random) }
$$

How many edges?

$$
\left|E_{G}\right|=\mathcal{O}\left(n^{2}\right) \quad\left|E_{H}\right|=\mathcal{O}(d n)
$$

Graph Sparsification: What is good sparse?

$$
H=d \text {-regular (random) }
$$

What are the cut weights for any S ?

$$
\begin{gathered}
w_{G}(\delta S)=|S| \cdot|\bar{S}| \quad w_{H}(\delta S) \approx \frac{d}{n} \cdot|S| \cdot|\bar{S}| \\
\forall S \subset V: \frac{w_{G}(\delta S)}{w_{H}(\delta S)} \approx \frac{n}{d}
\end{gathered}
$$

Could be large :(
What to do?

Graph Sparsification: What is good sparse?

$$
H=d \text {-regular (random) }
$$

What are the cut weights for any S ?

$$
\begin{gathered}
w_{G}(\delta S)=|S| \cdot|\bar{S}| \quad w_{H}(\delta S) \approx \frac{d}{n} \cdot \frac{n}{d} \cdot|S| \cdot|\bar{S}| \\
\forall S \subset V: \frac{w_{G}(\delta S)}{w_{H}(\delta S)} \approx 1
\end{gathered}
$$

Benczúr \& Karger: Can find such H quickly for any G !

Graph Sparsification: What is good sparse?

Recall if $\mathbf{f} \in\{0,1\}^{n}$ represents S then $\mathbf{f}^{\top} \mathbf{L}_{G} \mathbf{f}=\operatorname{cut}_{G}(S)$

$$
(1-\varepsilon) \operatorname{cut}_{H}(S) \leq \operatorname{cut}_{G}(S) \leq(1+\varepsilon) \operatorname{cut}_{H}(S)
$$

becomes

$$
(1-\varepsilon) \mathbf{f}^{\top} \mathbf{L}_{H} \mathbf{f} \leq \mathbf{f}^{\top} \mathbf{L}_{G} \mathbf{f} \leq(1+\varepsilon) \mathbf{f}^{\top} \mathbf{L}_{H} \mathbf{f}
$$

If we ask this only for $\mathbf{f} \in\{0,1\}^{n} \rightarrow(1+\varepsilon)$-cut similar combinatorial Benczúr \& Karger (1996)
If we ask this for all $\mathbf{f} \in \mathbb{R}^{n} \rightarrow(1+\varepsilon)$-spectrally similar
Spielman \& Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Spectral Graph Sparsification

Reason 1: Spectral sparsification is helps when solving $\mathbf{L}_{G} \mathbf{x}=\mathbf{y}$
When a sparse H is spectrally similar to G then $\mathbf{x}^{\top} \mathbf{L}_{G} \mathbf{x} \approx \mathbf{x}^{\top} \mathbf{L}_{H} \mathbf{x}$

Gaussian Elimination $\mathcal{O}\left(n^{3}\right)$
Fast Matrix Multiplication $\mathcal{O}\left(n^{2.37}\right)$
Spielman \& Teng (2004) $\mathcal{O}\left(m \log ^{30} n\right)$
Koutis, Miller, and Peng (2010) $\mathcal{O}(m \log n)$

Spectral Graph Sparsification

Reason 2: Spectral sparsification preserves eigenvalues!
Rayleigh-Ritz gives:

$$
\lambda_{\text {min }}=\min \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} \quad \text { and } \quad \lambda_{\max }=\max \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}
$$

What can we say about $\lambda_{i}(G)$ and $\lambda_{i}(H)$?

$$
(1-\varepsilon) \mathbf{f}^{\top} \mathbf{L}_{G} \mathbf{f} \leq \mathbf{f}^{\top} \mathbf{L}_{H} \mathbf{f} \leq(1+\varepsilon) \mathbf{f}^{\top} \mathbf{L}_{G} \mathbf{f}
$$

Eigenvalues are approximated well!

$$
(1-\varepsilon) \lambda_{i}(G) \leq \lambda_{i}(H) \leq(1+\varepsilon) \lambda_{i}(G)
$$

Other properties too: random walks, colorings, spanning trees, ...

Spectral Graph Sparsification: Example

$$
H=\text { fat } d \text {-regular (random) }
$$

We wanted: $\forall S \subset V: \frac{w_{G}(\delta S)}{w_{H}(\delta S)}=\frac{\mathbf{x}_{S}^{\top} \mathbf{L}_{G} \mathbf{x}_{S}}{\mathbf{x}_{S}^{\top} \mathbf{L}_{H} \mathbf{x}_{S}} \approx 1 \pm \varepsilon$
Now we need: $\forall \mathbf{x}: \frac{\mathbf{x}^{\top} \mathbf{L}_{G} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{L}_{H} \mathbf{x}} \approx 1 \pm \varepsilon$
To satisfy the condition: $d=\frac{1}{\varepsilon^{2}}$

Spectral Graph Sparsification

How to sparsify electrically? Given \mathbf{L}_{G} find $\mathbf{L}_{H} \ldots$

...such that $\quad \mathbf{x}^{\top} \mathbf{L}_{G} \mathbf{x} \leq \mathbf{x}^{\top} \mathbf{L}_{H} \mathbf{x} \leq \kappa \cdot \mathbf{x}^{\top} \mathbf{L}_{G} \mathbf{x}$
... we can also write $\quad \mathbf{L}_{G} \preceq \mathbf{L}_{H} \preceq \kappa \cdot \mathbf{L}_{G}$

Spectral Graph Sparsification

Let us consider unweighted graphs: $w_{i j} \in\{0,1\}$

We look for a subgraph H

$$
\mathbf{L}_{H}=\sum_{e \in E} s_{e} \mathbf{b}_{e} \mathbf{b}_{e}^{\top} \quad \text { where } s_{e} \text { is a new weight of edge e }
$$

Spectral Graph Sparsification

We want $\quad \mathbf{L}_{G} \preceq \mathbf{L}_{H} \preceq \kappa \cdot \mathbf{L}_{G}$

That is, given $\mathbf{L}_{G}=\sum_{e \in E} \mathbf{b}_{e} \mathbf{b}_{e}^{\top}$ find s, s.t. $\mathbf{L}_{G} \preceq \sum_{e \in E} s_{e} \mathbf{b}_{e} \mathbf{b}_{e}^{\top} \preceq \kappa \cdot \mathbf{L}_{G}$
Forget \mathbf{L}, given $\mathbf{V}=\sum_{e \in E} \mathbf{v}_{e} \mathbf{v}_{e}^{\top}$ find s, s.t. $\mathbf{V} \preceq \sum_{e \in E} s_{e} \mathbf{v}_{e} \mathbf{v}_{e}^{\top} \preceq \kappa \cdot \mathbf{V}$
Same as, given $\mathbf{I}=\sum_{e \in E} \mathbf{v}_{e} \mathbf{v}_{e}^{\top}$ find \mathbf{s}, s.t. $\mathbf{I} \preceq \sum_{e \in E} s_{e} \mathbf{v}_{e} \mathbf{v}_{e}^{\top} \preceq \kappa \cdot \mathbf{I}$
How to get it? $\mathbf{v}_{e}^{\prime} \leftarrow \mathbf{V}^{-1 / 2} \mathbf{v}_{e}$

$$
\text { Then } \sum_{e \in E} s_{e} \mathbf{v}_{e}^{\prime}\left(\mathbf{v}_{e}^{\prime}\right)^{\top} \approx \mathbf{I} \Longleftrightarrow \sum_{e \in E} \mathbf{v}_{e} \mathbf{v}_{e}^{\top} \approx \mathbf{V}
$$

Spectral Graph Sparsification: Intuition

How does $\sum_{e \in E} \mathbf{v}_{e} \mathbf{v}_{e}^{\top}=\mathbf{I}$ look like geometrically?

Decomposition of identity: $\forall \mathbf{u}$ (unit vector): $\sum_{e \in E} \mathbf{u}^{\top} \mathbf{v}_{e}=\mathbf{I}$ moment ellipse is a sphere

Spectral Graph Sparsification: Intuition

What are we doing by choosing H ?

We take a subset of these $\mathbf{e}_{e} s$ and scale them!

Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

Spectral Graph Sparsification: Intuition

Example: What happens with K_{n} ?
K_{n} graph

$\sum_{e \in E} \mathbf{b}_{e} \mathbf{b}_{e}^{\top}=\mathbf{L}_{G}$

$\sum_{e \in E} \mathbf{v}_{e} \mathbf{v}_{e}^{\top}=\mathbf{I}$

It is already isotropic! (looks like a sphere)
rescaling $\mathbf{v}_{e}=\mathbf{L}^{-1 / 2} \mathbf{b}_{e}$ does not change the shape
https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?
K_{n} graph
$\sum_{e \in E} \mathbf{b}_{e} \mathbf{b}_{e}^{\top}=\mathbf{L}_{G}$

$\sum_{e \in E} \mathbf{v}_{e} \mathbf{v}_{e}^{\top}=\mathbf{I}$

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important
rescaling reveals the vectors that are critical
https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What it this rescaling $\mathbf{v}_{e}=\mathbf{L}_{G}^{-1 / 2} \mathbf{b}_{e}$ doing to the norm?

$$
\left\|\mathbf{v}_{e}\right\|^{2}=\left\|\mathbf{L}_{G}^{-1 / 2} \mathbf{b}_{e}\right\|^{2}=\mathbf{b}_{e}^{\top} \mathbf{L}_{G}^{-1} \mathbf{b}_{e}=R_{\mathrm{eff}}(e)
$$

reminder $R_{\text {eff }}(e)$ is the potential difference between the nodes when injecting a unit current
In other words: $\quad R_{\text {eff }}(e)$ is related to the edge importance!
Electrical intuition: We want to find an electrically similar H and the importance of the edge is its effective resistance $R_{\text {eff }}(e)$.

Edges with higher $R_{\text {eff }}$ are more electrically significant!

Spectral Graph Sparsification

Todo: Given $\mathbf{I}=\sum_{e} \mathbf{v}_{e} \mathbf{v}_{e}^{\top}$, find a sparse reweighing.
Randomized algorithm that finds \mathbf{s} :

- Sample $n \log n / \varepsilon^{2}$ with replacement $p_{i} \propto\left\|\mathbf{v}_{e}\right\|^{2}$ (resistances)
- Reweigh: $s_{i}=1 / p_{i}$ (to be unbiased)

Does this work?

Matrix Chernoff Bound Rudelson (1999)

$$
1-\varepsilon \prec \lambda\left(\sum_{e} s_{e} \mathbf{v}_{e} \mathbf{v}_{e}^{\top}\right) \prec 1+\varepsilon
$$

What is the the biggest problem here? Getting the $p_{i} s$!

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

$$
\mathbf{L}_{G}=\sum_{e} \mathbf{b}_{e} \mathbf{b}_{e}^{\top}=\mathbf{B}^{\top} \mathbf{B} \quad\left(\mathbf{B} \text { has } \mathbf{b}_{e}^{\top} \mathrm{s} \text { in rows }-m \times n \text { matrix }\right)
$$

$$
\begin{aligned}
\left\|\mathbf{v}_{e}\right\|^{2}=p_{i} & =\mathbf{b}_{e}^{\top} \mathbf{L}_{G}^{-1} \mathbf{b}_{e} \\
& =\mathbf{b}_{e}^{\top} \mathbf{L}_{G}^{-1} \mathbf{B}^{\top} \mathbf{B L}_{G}^{-1} \mathbf{b}_{e} \\
& =\left\|\mathbf{B L}_{G}^{-1}\left(\delta_{i}-\delta_{j}\right)\right\|^{2}
\end{aligned}
$$

What does that mean?
It is a embedding of the distance (squared)!

Spectral Graph Sparsification

How to find a distance between the colums of a matrix BL_{G}^{-1} ?

$$
R_{\text {eff }}(i j)=\left\|\mathbf{B L}_{G}^{-1}\left(\delta_{i}-\delta_{j}\right)\right\|^{2}
$$

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification

How to find a distance between the colums of a matrix BL_{G}^{-1} ?
We never compute $\mathbf{B L}_{G}^{-1}$ we compute $\mathbf{Q B L}{ }_{G}^{-1}$!
Johnson-Lindenstrauss: The distances are approximately preserved.
We take random $\mathbf{Q}_{\log n \times m}$ and set $\mathbf{Z}=\mathbf{Q B L}{ }_{G}^{-1}$

We solve $\mathcal{O}(\log n)$ (smaller) random linear systems!

Michal Valko

michal.valko@inria.fr

