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Last Lecture

I Analysis of online SSL

I Analysis of quantization error

I When does graph-based SSL provably help?
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This Lecture

I Scaling harmonic functions to millions of samples

I Online decision-making on graphs

I Graph bandits
I smoothness of rewards (preferences) on a given graph
I observability graphs
I side information
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Previous Lab Session

I 10. 3. 2015 by Daniele.Calandriello@inria.fr
I Content

I GraphLab
I Large-Scale Graph Learning

I Short written report (graded, each lab around 5% of grade)
I Questions to Daniele.Calandriello@inria.fr
I Deadline: 24. 3. 2015
I http://researchers.lille.inria.fr/~calandri/ta/graphs/td3_handout.pdf
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Final Class projects

I preferred option: you come up with the topic

I details and list of suggested topics on the class website

I theory/implementation/review or a combination

I one or two people per project (exceptionally three)

I grade: report + short presentation of the team

I Deadlines
I taking projects 17. 3. 2015 - today
I 11. 4. 2015 final report
I 13. 4. 2015 afternoon, presentation in class

http://researchers.lille.inria.fr/~valko/hp/mvaprojects
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Ph.D. position in Lille and Amsterdam
PhD position in Theoretical Machine Learning is offered at
Inria Lille. Possibility of a joint PhD with CWI, Amsterdam.
Lille is 1h away from Paris, 34min from Brussels, 1h30 from
London and 2h30 from Amsterdam, all by (fast) train. (And
Amsterdam is in Amsterdam.)

The topic is to explore which regularities are “learnable” from data.
Specifically, the focus is on the problem of forecasting, that is, predicting
the probabilities of future outcomes of a series of events given the past.
The question to be addressed is: under which assumptions on the
stochastic mechanism generating the data is it possible to construct a
consistent forecaster?

The student will be advised by Daniil.Ryabko@in-
ria.fr, to whom all inquiries should be directed. The
topic is highly mathematical. Please do not apply if
you don’t like proving theorems.

Michal Valko – Graphs in Machine Learning Lecture 6 - 6/48



Scaling SSL with Graphs to Millions

Semi-supervised learning with graphs

f? = min
f∈Rn

(f − y)TC(f − y) + fTLf

Let us see the same in eigenbasis of L = UΛUT, i.e., f = Uα

α? = min
α∈Rn

(Uα− y)TC(Uα− y) +αTΛα

What is the problem with scalability?

Diagonalization of n × n matrix

What can we do? Let’s take only first k eigenvectors f = Uα!
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Scaling SSL with Graphs to Millions
U is now a n × k matrix

α? = min
α∈Rn

(Uα− y)TC(Uα− y) +αTΛα

Closed form solution is (Λ+ UTCU)α = UTCy

What is the size of this system of equation now?

k × k! Cool! Any problem with this approach?

Getting L = UΛUT is a n × n system :(

Let’s see what happens when n→∞!
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Scaling SSL with Graphs to Millions

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions
What happens to L when n→∞?

We have data xi ∈ R sampled from p (x).

When n→∞, instead of f we consider functions F (x).

Instead of L we define Lp - weighted smoothness operator

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2)dx1x2

with W (x1, x2) =
exp
(
−‖x1−x2‖2)

2σ2

L defined the eigenvectors of increasing smoothness.

What defines Lp? Eigenfunctions!
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Scaling SSL with Graphs to Millions

Lp (F ) = 1
2

∫
(F (x1)− F (x2))

2 W (x1, x2)p (x1) p (x2) dx1x2

First eigenfunction

Φ1 = arg min
F :
∫

F 2(x)p(x)D(x) dx=1
Lp (F )

where D (x) =
∫

x2
W (x, x2) p (x2)dx2

What is the solution? Φ1 (x) = 1 because Lp (1) = 0

How to define Φ2? Same constraining to be orthogonal to Φ1∫
F (x)Φ1 (x) p (x)D(x)dx = 0
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Scaling SSL with Graphs to Millions
Eigenfunctions of Lp

Φ3 as before, orthogonal to Φ1 and Φ2 etc.

How to define eigenvalues? λk = Lp (Φk)

Relationship to the discrete Laplacian
1
n2 fTLf = 1

2n2

∑
ij

Wij(fi − fj)2 −−−−→
n→∞

Lp (F )

Isn’t estimating eigenfunctions p (x) more difficult? Yes it is.

Are there some “easy” distributions?

Can we compute is numerically?

Michal Valko – Graphs in Machine Learning Lecture 6 - 12/48



Scaling SSL with Graphs to Millions
Eigenvectors

Eigenfunctions
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Scaling SSL with Graphs to Millions
Factorized data distribution What if

p (s) = p (s1) p (s2) . . . p (sd)

In general this is not true. But we can rotate data with s = Rx.

Treating each factor individually
pk

def
= marginal distribution of sk

Φi (sk)
def
= eigenfunction of Lpk with eigenvalue λi

Then: Φi (s) = Φi (sk) is eigenfunction of Lp with λi
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Scaling SSL with Graphs to Millions
How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [FWT09] for eigenfunctions skip
I Find R such that s = Rx
I For each “independent” sk approximate p(sk)

I Given p(sk) numerically solve for eigensystem of Lpk(
D̃− PW̃P

)
g = λPD̂g (generalized eigensystem)

g - vector of length B ≡ number of bins
P - density at discrete points
D̃ - diagonal sum of PW̃P
D̂ - diagonal sum of PW̃

I Order eigenfunctions by increasing eigenvalues

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions

Numerical 1D Eigenfunctions

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Scaling SSL with Graphs to Millions
Computational complexity for n × d dataset

Typical harmonic approach
one diagonalization of n × n system

Numerical eigenfunctions with B bins and k eigenvectors
d eigenvector problems of B × B(

D̃− PW̃P
)

g = λPD̂g

one k × k least squares problem

(Λ+ UTCU)α = UTCy

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors, . . .

When d is not too big then n can be in millions!
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Scaling SSL with Graphs to Millions

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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Online Decision Making on Graphs
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Online Decision Making on Graphs: Smoothness

I Sequential decision making in structured settings
I we are asked to pick a node (or a few nodes) in a graph
I the graph encodes some structural property of the setting
I goal: maximize the sum of the outcomes
I application: recommender systems

I Exploiting smoothness
I fixed graph
I iid outcomes
I neighboring nodes have similar outcomes

Michal Valko – Graphs in Machine Learning Lecture 6 - 20/48



Online Decision Making on Graphs

Movie recommendation: (in each time step)
I Recommend movies to a single user.
I Good prediction after a few steps (T�N).

Goal:
I Maximize overall reward (sum of ratings).

Assumptions:
I Unknown reward function f : V (G)→ R.
I Function f is smooth on a graph.
I Neighboring movies ⇒ similar preferences.
I Similar preferences 6⇒ neighboring movies.

The Shaw
shank Redem

ptio
n (1994)

The Godfather
(1972)

The Godfather:
Part II (1974)

The Dark
Knight (2008)

Pulp Ficti
on (1994)

The Good, the Bad and the Ugly (1966)

Schindler’s
List (1993)

12 Angry Men (1957)

The Lord of the Rings: The Return of the King (2003)

Fight Club (1999)

The Lord of the Rings: The Fellowship of the Ring (2001)

Star Wars: Episode V - The Empire Strikes Back (1980)

Inception (2010)

Forrest Gump (1994)

One Flew Over the Cuckoo’s Nest (1975)

The Lord of the Rings: The Two Towers (2002)

Goodfellas (1990)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)

It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)
Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1
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Recap: Smooth graph functions

I f = (f1, . . . , fN)T: Vector of function values.
I Let L = QΛQT be the eigendecomposition of the Laplacian.

I Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I α∗: Unique vector such that Qα∗ = f Note: QTf = α∗

SG(f) = fTLf = fTQΛQTf = α∗TΛα∗ = ‖α∗‖2
Λ =

N∑
i=1

λi(α
∗
i )

2

Smoothness and regularization: Small value of

(a) SG(f) (b) Λ norm of α∗ (c) α∗
i for large λi
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Online Learning Setting - Bandit Problem
Learning setting for a bandit algorithm π

I In each time t step choose a node π(t).
I the π(t)-th row xπ(t) of the matrix Q corresponds to the arm π(t).
I Obtain noisy reward rt = xT

π(t)α
∗ + εt . Note: xT

π(t)α
∗ = fπ(t)

I εt is R-sub-Gaussian noise. ∀ξ ∈ R, E[eξεt ] ≤ exp
(
ξ2R2/2

)
I Minimize cumulative regret

RT = T max
a

(xT
aα

∗)−
T∑

t=1
xT
π(t)α

∗.

Can’t we just use linear bandits?
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Online Decision Making on Graphs: Smoothness
I Linear bandit algorithms

I LinUCB (Li et al., 2010)
I Regret bound ≈ D

√
T ln T

I LinearTS (Agrawal and Goyal, 2013)
I Regret bound ≈ D

√
T ln N

Note: D is ambient dimension, in our case N, length of xi .
Number of actions, e.g., all possible movies → HUGE!

I Spectral bandit algorithms
I SpectralUCB

I Regret bound ≈ d
√

T ln T
I Operations per step: D2N

I SpectralTS
I Regret bound ≈ d

√
T ln N

I Operations per step: D2 + DN

Note: d is effective dimension, usually much smaller than D.
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Effective dimension
I Effective dimension: Largest d such that

(d − 1)λd ≤
T

log(1 + T/λ)
.

I Function of time horizon and graph properties
I λi : i-th smallest eigenvalue of Λ.
I λ: Regularization parameter of the algorithm.

Properties:
I d is small when the coefficients λi grow rapidly above time.
I d is related to the number of “non-negligible” dimensions.
I Usually d is much smaller than D in real world graphs.
I Can be computed beforehand.
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Effective dimension vs. Ambient dimension
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Note: In our setting T < N = D.
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UCB style algorithms: Estimate
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UCB style algorithms: Sample
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UCB style algorithms: Estimate . . .
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SpectralUCB

1: Input:
2: N, T , {ΛL,Q}, λ, δ, R, C L
3: Run:
4: Λ← ΛL + λI
5: d ← max{d : (d − 1)λd ≤ T/ ln(1 + T/λ)}
6: for t = 1 to T do
7: Update the basis coefficients α̂:
8: Xt ← [xπ(1), . . . , xπ(t−1)]

T

9: r← [r1, . . . , rt−1]
T

10: Vt ← XtXT
t + Λ

11: α̂t ← V−1
t XT

t r
12: ct ← 2R

√
d ln(1 + t/λ) + 2 ln(1/δ) + C

13: π(t)← arg maxa

(
xT

a α̂+ ct‖xa‖V−1
t

)
14: Observe the reward rt

15: end for
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SpectralUCB: Synthetic experiment
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SpectralUCB: Real world experiment
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SpectralUCB
LinUCB
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SpectralUCB: Regret Bound

I d : Effective dimension.
I λ: Minimal eigenvalue of Λ = ΛL + λI.
I C : Smoothness upper bound, ‖α∗‖Λ ≤ C .
I xT

i α
∗ ∈ [−1, 1] for all i .

The cumulative regret RT of SpectralUCB is with probability 1− δ
bounded as

RT ≤

(
8R
√

d ln λ+ T
λ

+ 2 ln 1
δ
+ 4C + 4

)√
dT ln λ+ T

λ
.

RT ≈ d
√

T ln T
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SpectralUCB: Regret Bound
I Derivation of the confidence ellipsoid for α̂ with probability 1− δ.

I Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

|xT(α̂−α∗)| ≤ ‖x‖V−1
t

(
R
√

2 ln
(

|Vt |1/2

δ|Λ|1/2

)
+ C

)
I Regret in one time step: rt = xT

∗α
∗ − xT

π(t)α
∗ ≤ 2ct‖xπ(t)‖V−1

t

I Cumulative regret:

RT =
T∑

t=1
rt ≤

√√√√T
T∑

t=1
r2
t ≤ 2( cT + 1)

√
2T ln |VT |

|Λ|

I Upperbound for ln(|Vt |/|Λ|)

ln |Vt |
|Λ|
≤ ln |VT |

|Λ|
≤ 2d ln

(
λ+ T

λ

)
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SpectralUCB: Regret Bound
Sylvester’s determinant theorem:

|A + xxT| = |A||I + A−1xxT| = |A|(1 + xTA−1x)

Goal:
I Upperbound determinant |A + xxT| for ‖x‖2 ≤ 1
I Upperbound xTA−1x

xTA−1x = xTQΛ−1QTx = yTΛ−1y =
N∑

i=1
λ−1

i y2
i

I ‖y‖2 ≤ 1.
I y is a canonical vector.
I x = Qy is an eigenvector of A.
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SpectralUCB: Regret Bound
Corollary: Determinant |VT | of VT = Λ+

∑T
t=1 xtxT

t is
maximized when all xt are aligned with axes.

|VT | ≤ max∑
ti=T

∏
(λi + ti)

ln |VT |
|Λ|
≤ max∑

ti=T

∑
ln
(

1 +
ti
λi

)
ln |VT |
|Λ|
≤

d∑
i=1

ln
(

1 +
T
λ

)
+

N∑
i=d+1

ln
(

1 +
ti

λd+1

)
≤ d ln

(
1 +

T
λ

)
+

T
λd+1

≤ 2d ln
(

1 +
T
λ

)
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SpectralUCB: Improving the running time

I Reduced basis: We only need first few eigenvectors.
I Getting J eigenvectors: O(Jm log m) time for m edges
I Computationally less expensive, comparable performance.
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SpectralUCB: How to make it even faster?

I UCB-style algorithms need to (re)-compute UCBs every t

I Can be a problem for large set of arms → D2N → N3

I Optimistic (UCB) approach vs. Thompson Sampling
I Play the arm maximizing probability of being the best

I Sample µ̃ from the distribution N (µ̂, v 2B−1)
I Play arm which maximizes bTµ̃ and observe reward

I Compute posterior distribution according to reward received

I Only requires D2 + DN → N2 per step update
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Thomson Sampling: Estimate

α̂

α∗
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Thomson Sampling: Sample

α̂

α∗

α̃
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Thomson Sampling: Estimate

α̂

α∗
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Thomson Sampling: Sample

α̂

α∗

α̃
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Thomson Sampling: Estimate . . .

α̂ α∗
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SpectralTS for Graphs

1: Input:
2: N, T , {ΛL,Q}, λ, δ, R, C
3: Initialization:
4: v = R

√
6d log((λ+ T )/δλ) + C

5: α̂ = 0N
6: f = 0N
7: V = ΛL + λIN
8: Run:
9: for t = 1 to T do

10: Sample α̃ ∼ N (α̂, v 2V−1)
11: π(t)← arg maxa xT

a α̃
12: Observe a noisy reward r(t) = xT

π(t)α
∗ + εt

13: f ← f + xπ(t)r(t)
14: Update V← V + xπ(t)xT

π(t)
15: Update α̂← V−1f
16: end for
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SpectralTS: Regret bound
I d : Effective dimension.
I λ: Minimal eigenvalue of Λ = ΛL + λI.
I C : Smoothness upper bound, ‖α∗‖Λ ≤ C .
I xT

i α
∗ ∈ [−1, 1] for all i .

The cumulative regret RT of SpectralTS is with probability 1− δ
bounded as

RT ≤
11g
p

√
4 + 4λ

λ
dT log

λ+ T
λ

+
1
T

+
g
p

(
11
√
λ

+ 2
)√

2T log
2
δ
,

where p = 1/(4e
√
π) and

g =
√

4 log TN
(

R

√
6d log

(
λ+ T
δλ

)
+ C

)
+ R

√
2d log

(
(λ+ T )T 2

δλ

)
+ C .

RT ≈ d
√

T log N
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SpectralTS: Analysis sketch

Divide arms into two groups

I ∆i = bT
∗µ− bT

i µ ≤ g‖bi‖B−1
t

arm i is unsaturated

I ∆i = bT
∗µ− bT

i µ > g‖bi‖B−1
t

arm i is saturated

Saturated arm
I Small standard deviation → accurate regret estimate.
I High regret on playing the arm → Low probability of picking

Unsaturated arm
I Low regret bounded by a factor of standard deviation
I High probability of picking

Michal Valko – Graphs in Machine Learning Lecture 6 - 40/48



SpectralTS: Analysis sketch
I Confidence ellipsoid for estimate µ̂ of µ (with probability 1 − δ/T 2)

I Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

|bT
i µ̂− bT

i µ| ≤
(

R

√
2 d log

(
(λ+ T )T 2

δλ

)
+ C

)
‖bi‖B−1

t
= `‖bi‖B−1

t

I The key result coming from spectral properties of Bt .

log
|Bt |
|Λ|

≤ 2d log
(

1 +
T
λ

)

I Concentration of sample µ̃ around mean µ̂ (with probability 1 − 1/T 2)

I Using concentration inequality for Gaussian random variable.

|bT
i µ̃− bT

i µ̂| ≤
(

R

√
6d log

(
λ+ T
δλ

)
+ C

)
‖bi‖B−1

t

√
4 log(TN) = v‖bi‖B−1

t

√
4 log(TN)
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SpectralTS: Analysis sketch
Define regret′(t) = regret(t) · 1{|bT

i µ̂(t)− bT
i µ| ≤ `‖bi‖B−1

t
}

regret′(t) ≤ 11g
p ‖ba(t)‖B−1

t
+

1
T 2

Super-martingale (i.e. E[Yt − Yt−1|Ft−1] ≤ 0)

Xt = regret′(t)− 11g
p ‖ba(t)‖B−1

t
− 1

T 2

Yt =
t∑

w=1
Xw .

(Yt ; t = 0, . . . ,T ) is a super-martingale process w.r.t. history Ft .

Azuma-Hoeffding inequality for super-martingale, w. p. 1− δ/2:
T∑

t=1
regret′(t) ≤ 11g

p

T∑
t=1
‖ba(t)‖B−1

t
+

1
T +

g
p

(
11√
λ
+ 2
)√

2T ln 2
δ
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Spectral Bandits: Synthetic experiment
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Spectral Bandits: Real world experiment
MovieLens dataset of 6k users who rated one million movies.
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Spectral Bandits Summary

I Spectral bandit setting (smooth graph functions).
I SpectralUCB

I Regret bound ≈ d
√

T ln T
I SpectralTS

I Regret bound ≈ d
√

T ln N
I Computationally more efficient.

I SpectralEliminator
I Regret bound ≈

√
dT ln T

I Better upper, empirically does not seem to work well (yet)
I Bounds scale with effective dimension d � D.
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SpectralEliminator: Pseudocode
Input:

N : the number of nodes, T : the number of pulls
{ΛL,Q} spectral basis of L
λ : regularization parameter
β, {tj}J

j parameters of the elimination and phases
A1 ← {x1, . . . , xK}.
for j = 1 to J do

Vtj ← γΛL + λI
for t = tj to min(tj+1 − 1,T ) do

Play xt ∈ Aj with the largest width to observe rt :
xt ← arg maxx∈Aj ‖x‖V−1

t
Vt+1 ← Vt + xtxT

t
end for
Eliminate the arms that are not promising:
α̂t ← V−1

t [xtj , . . . , xt ][rtj , . . . , rt ]
T

Aj+1 ←
{

x ∈ Aj , 〈α̂t , x〉+‖x‖V−1
t

β ≥ maxx∈Aj

[
〈α̂t , x〉−‖x‖V−1

t
β
]}

end for

Michal Valko – Graphs in Machine Learning Lecture 6 - 46/48



SpectralEliminator: Analysis

SpectralEliminator
I Divide time into sets (t1 = 1 ≤ t2 ≤ . . . ) to introduce

independence for Azuma-Hoeffding inequality and observe
RT ≤

∑J
j=0(tj+1 − tj)

[
〈x∗ − xt , α̂j〉+ (‖x∗‖V−1

j
+ ‖xt‖V−1

j
)β
]

I Bound 〈x∗ − xt , α̂j〉 for each phase
I No bad arms: 〈x∗ − xt , α̂j〉 ≤ (‖x∗‖V−1

j
+ ‖xt‖V−1

j
)β

I By algorithm: ‖x‖2V−1
j
≤ 1

tj−tj−1

∑tj
s=tj−1+1 ‖xs‖2V−1

s−1

I
∑tj

s=tj−1+1 min
(

1, ‖xs‖2V−1
s−1

)
≤ log |Vj |

|Λ|
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