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Last Lecture

I Inductive and transductive semi-supervised learning
I Manifold regularization
I Theory of Laplacian-based manifold methods
I Transductive learning stability based bounds
I SSL Learnability
I Online Semi-Supervised Learning
I Online incremental k-centers
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This Lecture

I Analysis of online SSL

I When does graph-based SSL provably help?

I Scaling harmonic functions to millions of samples

I Online decision-making on graphs

I Graph Bandits
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Previous Lab Session

I 24. 2. 2015 by Daniele.Calandriello@inria.fr
I Content

I Semi-supervised learning
I Graph quantization
I Online face recognizer
I Install OpenCV (if you still have problems contact Daniele)

I Short written report (graded, each lab around 5% of grade)
I Daniele: Use CHFS instead of SHFS (material updated)
I Questions to Daniele.Calandriello@inria.fr
I Deadline: 10. 3. 2015
I http://researchers.lille.inria.fr/~calandri/ta/graphs/td2_handout.pdf
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Next Lab Session

I 10. 3. 2015 by Daniele.Calandriello@inria.fr
I Content

I GraphLab
I Large-Scale Graph Learning

I AR1: Get the GraphLab license
I AR2: Install VirtualBox
I AR3: Download virtual machine (online very soon)
I Short written report (graded, each lab around 5% of grade)
I Questions to Daniele.Calandriello@inria.fr
I Deadline: 24. 3. 2015
I http://researchers.lille.inria.fr/~calandri/ta/graphs/td3_handout.pdf
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Final Class projects

I preferred option: you come up with the topic

I details and list of suggested topics on the class website

I theory/implementation/review or a combination

I one or two people per project (exceptionally three)

I grade: report + short presentation of the team

I Deadlines
I taking projects 17. 3. 2015 (recommended 10. 3. 2015)
I 11. 4. 2015 final report
I 13. 4. 2015 afternoon (tentative), presentation in class

http://researchers.lille.inria.fr/~valko/hp/serve?from=slides&what=mvaprojects
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Where we left off: Online SSL with Graphs
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Where we left off: Online SSL with Graphs

Video examples

http://www.bkveton.com/videos/Coffee.mp4

http://www.bkveton.com/videos/Ad.mp4

http://researchers.lille.inria.fr/~valko/hp/serve.php?

what=publications/kveton2009nipsdemo.adaptation.mov

http://researchers.lille.inria.fr/~valko/hp/serve.php?

what=publications/kveton2009nipsdemo.officespace.mov

http://bcove.me/a2derjeh
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SSL with Graphs: Some experimental results
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SSL with Graphs: Some experimental results
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Online SSL with Graphs: Analysis

What can we guarantee?

Three sources of error
I generalization error — if all data: (`?t − yt)

2

I online error — data only incrementally: (`ot [t]− `?t )
2

I quantization error — memory limitation: (`qt [t]− `ot [t])2

All together:

1
n

n∑
t=1

(`qt [t]−yt)
2≤ 9

2n

n∑
t=1

(`?t −yt)
2+ 9

2n

n∑
t=1

(`ot [t]−`?t )
2+ 9

2n

n∑
t=1

(`qt [t]−`ot [t])2

Since for any a, b, c, d ∈ [−1, 1]:

(a − b)2 ≤ 9
2
[
(a − c)2 + (c − d)2 + (d − b)2]
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Online SSL with Graphs: Analysis
Bounding transduction error (`?t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(`?) ≤ R̂(`?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1 −√cu√cu

λM(L) + γg
γ2

g + 1

]
holds with the probability of 1 − δ, where

R(`?) =
1
n
∑

t
(`?t − yt)

2 and R̂(`?) =
1
nl

∑
t∈l

(`?t − yt)
2

How should we set γg? Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.
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Online SSL with Graphs: Analysis
Bounding online error (`ot [t]− `?t )

2

Idea: If L and Lo are regularized, then HFSs get closer together.
since they get closer to zero

Recall ` = (C−1Q + I)−1y, where Q = L + γg I
and also v ∈ Rn×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM (A)‖v‖2

‖`‖2 ≤ ‖y‖2
λm(C−1Q + I) =

‖y‖2
λm(Q)
λM(C) + 1

≤
√nl

γg + 1

Difference between offline and online solutions:

(`ot [t]− `?t )
2 ≤ ‖`o[t]− `?‖2

∞ ≤ ‖`o[t]− `?‖2
2 ≤

(
2√nl
γg + 1

)2

Again, how should we set γg ? If we want O
(

n−1/2
)

? Then γg = Ω
(

n1/4
)
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

How are the quantized and full solution different?

`? = min
`∈Rn

(`− y)TC(`− y) + `TQ`

In Q! Qo (online) vs. Qq (quantized)

We have: `o = (C−1Qo + I)−1y vs. `q = (C−1Qq + I)−1y

Let Zq = C−1Qq + I and Zo = C−1Qo + I.

`q − `o = (Zq)−1y − (Zo)−1y = (ZqZo)−1(Zo − Zq)y
= (ZqZo)−1C−1(Qo − Qq)y
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

`q − `o = (Zq)−1y − (Zo)−1y = (ZqZo)−1(Zo − Zq)y
= (ZqZo)−1C−1(Qo − Qq)y

‖`q − `o‖2 ≤ λM(C−1)‖(Qq − Qo)y‖2
λm(Zq)λm(Zo)

|| · ||F and || · ||2 are compatible and yi is zero when unlabeled:

‖(Qq − Qo)y‖2 ≤ ‖Qq − Qo‖F · ‖y‖2 ≤
√nl‖Qq − Qo‖F

Furthermore, λm(Zo) ≥ λm(Qo)

λM(C)
+ 1 ≥ γg and λM(C−1) ≤ c−1

u

We get ‖`q − `o‖2 ≤
√nl
cuγ2

g
‖Qq − Qo‖F
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Online SSL with Graphs: Analysis

Bounding quantization error (`qt [t]−`ot [t])
2

The quantization error depends on ‖Qq − Qo‖F = ‖Lq − Lo‖F .
When can we keep ‖Lq − Lo‖F under control?

Charikar guaranteed distortion error of Rm/(m − 1)
For what kind of data {xi}i=1,...,n is the distortion small?

Assume manifold M
I all {xi}i≥1 lie on a smooth s-dimensional compact M
I with boundary of bounded geometry Def. 11 of Hein [HAL07]

I should not intersect itself
I should not fold back onto itself
I has finite volume V
I has finite surface area A
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

Bounding ‖Lq − Lo‖F when xi ∈ M

Consider k-sphere packing of radius r with centers contained in M.

What is the maximum volume of this packing?
kcsr s ≤ V + AcMr with cs , cM depending on dimension and M.

If k is large → r < injectivity radius of M [HAL07] and r < 1:

r < ((V + AcM) / (kcs))
1/s = O

(
k−1/s

)
r -packing is a 2r -covering:

Rm/(m−1) = max
i=1,...,n

‖xi −c‖2 = 2(1+ε)O
(

k−1/s
)
= O

(
k−1/s

)
But what about ‖Lq − Lo‖F ?
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

If similarity is M-Lipschitz, L is normalized, coij =
√

Do
iiDo

jj > cminn:

Lq
ij − Lo

ij =
Wq

ij
cqij

−
Wo

ij
coij

≤
Wq

ij − Wo
ij

cqij
+

Wq
ij(c

q
ij − coij )

coij c
q
ij

≤ 4MRm
(m − 1)cminn +

4M(nMRm)

((m − 1)cminn)2

= O
(

R
n

)
Finally, ‖Lq − Lo‖2

F ≤ n2O(R2/n2) = O(k−2/s).

Are the assumptions reasonable?
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Online SSL with Graphs: Analysis
Bounding quantization error (`qt [t]−`ot [t])

2

We showed ‖Lq − Lo‖2
F ≤ n2O(R2/n2) = O(k−2/s) = O(1).

1
n

n∑
t=1

(`qt [t]− `ot [t])2 ≤ nl
c2

uγ
4
g
‖Lq − Lo‖2

F ≤ nl
c2

uγ
4
g

This converges to zero at the rate of O(n−1/2) with γg = Ω(n1/8).

With properly setting γg , e.g., γg = Ω(n1/8), we can have:

1
n

n∑
t=1

(`qt [t]−yt)
2
= O

(
n−1/2

)

What does that mean?
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SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SSL?

Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:
I SL: does not know about M and only knows (xi , yi)

I SSL: perfect knowledge of M ≡ humongous amounts of xi

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf
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SSL with Graphs: What is behind it?
Set of learning problems:

P = ∪MPM = {p ∈ P|pX is uniform on M}

Michal Valko – Graphs in Machine Learning Lecture 6 - 23/29



SSL with Graphs: What is behind it?
Set of problems P = ∪MPM = {p ∈ P|pX is uniform on M}
Regression function mp = E [y |x ] when x ∈ M
Algorithm A and labeled examples z̄ = {zi}n

i=1 = {(xi , yi)}n
i=1

Minimax rate

R(n,P) = inf
A

sup
p∈P

Ez̄
[
‖A(z̄)− mp‖L2(pX)

]
Since P = ∪MPM

R(n,P) = inf
A

sup
M

sup
p∈PM

Ez̄
[
‖A(z̄)− mp‖L2(pX)

]
(SSL) When A is allowed to know M

Q(n,P) = sup
M

inf
A

sup
p∈PM

Ez̄
[
‖A(z̄)− mp‖L2(pX)

]
In which cases there is a gap between Q(n,P) and R(n,P)?
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SSL with Graphs: What is behind it?
Hypothesis space H: half of the circle as +1 and the rest as −1

Case 1: M is known to the learner (HM)

What is a VC dimension of HM? 2

Optimal rate Q(n,P) ≤ 2
√

3 log n
n
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SSL with Graphs: What is behind it?
Case 2: M is unknown to the learner

R(n,P) = inf
A

sup
p∈P

Ez̄
[
‖A(z̄)− mp‖L2(pX)

]
= Ω(1)

We consider 2d manifolds of the form

M = Loops ∪ Links ∪ C where C = ∪d
i=1Ci

Main idea: d segments in C , d − l with no data, 2l possible
choices for labels, which helps us to lower bound ‖A(z̄)−mp‖L2(pX)
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SSL with Graphs: What is behind it?

Knowing the manifold helps
I C1 and C4 are close
I C1 and C3 are far
I we also need: target function varies smoothly
I altogether: closeness on manifold → similarity in labels
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SSL with Graphs: What is behind it?

What does it mean to know M?

Different degrees of knowing M

I set membership oracle: x
?
∈ M

I approximate oracle
I knowing the harmonic functions on M
I knowing the Laplacian LM
I knowing eigenvalues and eigenfunctions
I topological invariants, e.g., dimension
I metric information: geodesic distance
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