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Last Lecture

» Inductive and transductive semi-supervised learning
» Manifold regularization

» Theory of Laplacian-based manifold methods

» Transductive learning stability based bounds

» SSL Learnability

» Online Semi-Supervised Learning

» Online incremental k-centers
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This Lecture

v

Analysis of online SSL

v

When does graph-based SSL provably help?

v

Scaling harmonic functions to millions of samples

v

Online decision-making on graphs

v

Graph Bandits
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Previous Lab Session

> 24. 2. 2015 by Daniele.Calandriello@inria.fr
» Content

» Semi-supervised learning

» Graph quantization

» Online face recognizer

» Install OpenCV (if you still have problems contact Daniele)
» Short written report (graded, each lab around 5% of grade)
» Daniele: Use CHFS instead of SHFS (material updated)
» Questions to Daniele.Calandriello®@inria.fr
» Deadline: 10. 3. 2015

P nttp://researchers.lille.inria.fr/~calandri/ta/graphs/td2_handout.pdf

. Cbreia—
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Next Lab Session

» 10. 3. 2015 by Daniele.Calandriello@inria.fr
» Content

» GraphlLab
» Large-Scale Graph Learning

» AR1: Get the GraphLab license

» AR2: Install VirtualBox

» AR3: Download virtual machine (online very soon)

» Short written report (graded, each lab around 5% of grade)
> Questions to Daniele.Calandriello@inria.fr

» Deadline: 24. 3. 2015

P nttp://researchers.lille.inria.fr/~calandri/ta/graphs/td3_handout.pdf
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Final Class projects
» preferred option: you come up with the topic
> details and list of suggested topics on the class website
» theory/implementation/review or a combination
» one or two people per project (exceptionally three)
» grade: report + short presentation of the team
> Deadlines
» taking projects 17. 3. 2015 (recommended 10. 3. 2015)

» 11. 4. 2015 final report
» 13. 4. 2015 afternoon (tentative), presentation in class

http://researchers.lille.inria.fr/~valko/hp/serve?from=slides&what=mvaprojects
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Where we left off: Online SSL with Graphs
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Where we left off: Online SSL with Graphs
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Where we left off: Online SSL with Graphs

Video examples
http://www.bkveton.com/videos/Coffee.mp4
http://www.bkveton.com/videos/Ad.mp4

http://researchers.lille.inria.fr/~valko/hp/serve.php?
what=publications/kveton2009nipsdemo.adaptation.mov

http://researchers.lille.inria.fr/~valko/hp/serve.php?
what=publications/kveton2009nipsdemo.officespace.mov

http://bcove.me/a2derjeh
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SSL with Graphs: Some experimental results

* 8 people classification
* Making funny faces
* 4 faces/person are labeled

Our method
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SSL with Graphs: Some experimental results
¢ One person moves among various indoor locations
¢ 4 labeled examples of a person in the cubicle

Unlabeled Unlabeled

Unlabeled
Dataset VO Dataset VO
100 100 > <&
. . 9 %
5 95 2
s s 98
[ a0 »
g —O— NN classifier g a7
o 0SSB (all) o =—C— NN classifier
L] | [— 0SSB (half) ¥ 96 || —— Commercial solution
—O— Online HFS 1 —O— Online HFS
80 LI 95 as 1
70 75 80 85 90 95 100 70 75 80 85 90 95 100
Recall [%] Recall [%]

e

lbz/u&,

Online HFS outperforms OSSB (even when the

weak learners are chosen using future data) 20% of the computational cost

Online HFS yields better results than a commercial solution at
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SSL with Graphs: Some experimental results

* Logging in with faces
instead of password

* Able to learn and improve
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SSL with Graphs: Some experimental results

* 16 people log twice into a tablet PC at 10 locations
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4 labeled examples
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Online HFS yields better results than a commercial solution at 20% of
the computational cost
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Online SSL with Graphs: Analysis

What can we guarantee?

Three sources of error
» generalization error — if all data: (£} — y;)?
» online error — data only incrementally: (£7[t] — £})?
> quantization error — memory limitation:

All together:

n n n

B (Bl —x)? %Z Ve 5 S (- 6+ &

t=1 t=1 t=1

Since for any a, b, ¢, d € [-1,1]:
(a—b<2[(a—c)?+(c—d)*+ ]

. Crzia—~
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Online SSL with Graphs: Analysis

Bounding transduction error (£} — y;)?

If all labeled examples / are i.i.d., ¢, =1 and ¢; > ¢, then

RE) < RE)+ 5+ 2020 (5 4)

transductive error Ar(8,n;,8)

—l-\/i \/a)\l\/l( )+

B <
fyg+1 CU 7g+1

holds with the probability of 1 — §, where

RE) =23 (i~ and R(E) = St — o)

t tel

How should we set 75?7 vt &/ (5.06) o)) = 5= o (s /?)

— v = Q nite) for any o > 0.
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Online SSL with Graphs: Analysis

Bounding online error (£9[t] — £})?
Idea: If L and L° are regularized, then HFSs get closer together.

since they get closer to zero
Recall £ = (C_lQ + I)_ly, where Q = L + 7,

and also v € R"X1, A (A)[[v]l2 < [[Av]lz < A(A)lv]l2

lyll2 _ Ayl A

-1 _>\mQ -
©1Q+D) " =@ < e

lell2 < -

Difference between offline and online solutions:

2
(£2[t] — £3)% < [1€°[] — €15 < [|€°[e] — €13 < (v
Again, how should we set ~g7? If we want O (n 1/2>7 Then vz = Q (nl/’/‘>
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Online SSL with Graphs: Analysis

Bounding quantization error
How are the quantized and full solution different?

* T . T
E—ég]ann(E y)'C(£—y)+£'Q¢

In Q! Q° (online) vs. Q% (quantized)
We have: £° = (C71Q° 4+ )7ty vs. £4 = (C1Q4 + 1)1y
Let Z4=C Q%+ 1and Z°=C'Q° + 1.
e -0 = (29 y — (2°)ly = (292°)7H(Z° - 2%y

= (292°)7'C7HQ° - QY)y

. brezia~
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Online SSL with Graphs: Analysis

Bounding quantization error
e = (29 y - (29) Yy = (292°) (2 - 29y
= (292°) '@ - @Yy
Am(CH(Q - Q%)yl
Am(ZO)Aym(Z°)

[| - |lF and || - || are compatible and y; is zero when unlabeled:

Q" = Q%)yll2 < 1Q% = Q[ - llyll2 < v [|Q% — Q%I

€% = €°]]2 <

Am(Q°)
Am(C)

Furthermore, \p,(Z°) > +1>7, and Ay(CY) <t

u

n
We get 16— £ < Y Q0 — Q|
cuZ
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Online SSL with Graphs: Analysis

Bounding quantization error

The quantization error depends on ||Q% — Q°||r = ||[LY — L°||£.
When can we keep ||[LY — L°||r under control?

Charikar guaranteed distortion error of Rm/(m — 1)

For what kind of data {x;}i=1,.n is the distortion small?

Assume manifold M

» all {xj}i>1 lie on a smooth s-dimensional compact M

» with boundary of bounded geometry Def. 11 of Hein [HALO7]
» should not intersect itself

should not fold back onto itself

has finite volume V

has finite surface area A

v vy
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Online SSL with Graphs: Analysis

Bounding quantization error
Bounding ||LY — L°||r when x; € M
Consider k-sphere packing of radius r with centers contained in M.

What is the maximum volume of this packing?
kesr® < V 4+ Acypr with cg, caq depending on dimension and M.

If k is large — r < injectivity radius of M [HALO7] and r < 1:
r< (V4 Acn) / (kes))Y* = O (k*1/5>

r-packing is a 2r-covering:

Rm/(m—1) = max [x;—c] =2(1+2)0 (k—l/S) 0 (k—l/S)

But what about [[LY — L°||£?
.&’zua,
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Online SSL with Graphs: Analysis

Bounding quantization error

If similarity is M-Lipschitz, L is normalized, c,-‘j? = D‘,?,D;?j > Crminh:
q o
1o Wi W
ij [/ o
Cj ci
q a¢.9
- Wij — W‘,j N WU(CU — c,‘j)
— q o4
€ €ijCij
4MRm 4M(nMRm)

= (m—1Dcminn ~ ((m— 1)cminn)?

(2

LY — L)% < n?O(R?/n?) = O(k=?/%).

Finally, |
Are the assumptions reasonable?

. Clreia—
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Online SSL with Graphs: Analysis

Bounding quantization error

We showed ||L9 — L°||%2 < n?O(R?/n?) = O(k=%/%) = O(1).

1 — n; ny
=3 (] - e21e])? < Ld— L2 < —
nt:1( t[] t[]) C37§|| ||F 32

This converges to zero at the rate of O(n~1/2) with v, = Q(n%/?).

With properly setting v, e.g., 7 = Q(n'/8), we can have:

LS (@l = 0 (n177)
t=1

What does that mean?
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SSL with Graphs: What is behind it?

Why and when it helps?
Can we guarantee benefit of SSL over SSL?

Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:

» SL: does not know about M and only knows (x;, y;)

» SSL: perfect knowledge of M = humongous amounts of x;

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf

. brezia~
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SSL with Graphs: What is behind it?
Set of learning problems:

P =UpmPusm = {p € P|px is uniform on M}

+1

M, M,
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SSL with Graphs: What is behind it?

Set of problems P = UpPrq = {p € P|px is uniform on M}
Regression function m, = E [y |x] when x € M

Algorithm A and labeled examples z = {z;}7_; = {(x;, yi)}/_;
Minimax rate

R(n,P) = ir)\f sup [ [||A(2) — mpHL2(px)]
peEP

Since P = Up P

R(n,P) = ir)\f sup Es [HA(Z) — mpHB(px)]
PEP M

(SSL) When A is allowed to know M
Q(n,P) = inf sup E; [IIA(Z) = mpll2(py)]

A pePrm

In which cases there is a gap between Q(n,P) and R(n,P)?
. Creia—
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SSL with Graphs: What is behind it?
Hypothesis space #: half of the circle as +1 and the rest as —1

-1

M, M,

Case 1: M is known to the learner (H )

What is a VC dimension of H? 2

Optimal rate Q(n,P) < 24/ 3Ic;gn

. Crzia—~
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SSL with Graphs: What is behind it?

Case 2: M is unknown to the learner

R(n,P) = ir)\f sup E; [||A(2) — mpHL2(px)] =Q(1)
peP

We consider 29 manifolds of the form

M = Loops U Links U C where C = U,('l:1 G

Loops (A) Loops (A)

Main idea: d segments in C, d — / with no data, 2/ possible
choices for labels, which helps us to lower bound [|A(Z) — mp||2(py)

. Crzia—~
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SSL with Graphs: What is behind it?

Loops (A) Loops (A)
~

Links

Links

Knowing the manifold helps
» C; and (4 are close
» (; and G5 are far
> we also need: target function varies smoothly

» altogether: closeness on manifold — similarity in labels

-
brzia—
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SSL with Graphs: What is behind it?

What does it mean to know M7?

Different degrees of knowing M

>

set membership oracle: x é M
approximate oracle

knowing the harmonic functions on M
knowing the Laplacian £ 4

knowing eigenvalues and eigenfunctions
topological invariants, e.g., dimension

metric information: geodesic distance
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