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Previous Lecture

» Manifold learning with Laplacian Eigenmaps
» Semi-Supervised Learning

» Why and when it helps?
» Self-training
» Semi-supervised SVMs

» Graph-based semi-supervised learning

» SSL with MinCuts

» Gaussian random fields and harmonic solution
» Regularization of harmonic solution

» Soft-harmonic solution
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This Lecture

» Inductive and transductive semi-supervised learning
» Manifold regularization

» Theory of Laplacian-based manifold methods

» Transductive learning stability based bounds

» SSL Learnability

» Online Semi-Supervised Learning

» Online incremental k-centers

. brezia~
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Previous Lab Session

» 3. 2. 2015 by Daniele.Calandriello@inria.fr
» Content
» Graph Construction
» Test sensitivity to parameters: o, k,
» Spectral Clustering
» Spectral Clustering vs. k-means
» Image Segmentation
» Short written report (graded, each lab around 5% of grade)
» Questions to Daniele.Calandriello®@inria.fr
> Deadline: 17. 2. 2015 Today!

P http://researchers.lille. inria.fr/~calandri/ta/graphs/td1_handout.pdf
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Next Lab Session

> 24. 2. 2015 by Daniele.Calandriello@inria.fr
» Content
» Semi-supervised learning
» Graph quantization
» Online face recognizer
» 3 volunteers (Linux, Max, Windows)
> Install OpenCV (instructions: few days before the lab)
» record a video with faces
» Short written report (graded, each lab around 5% of grade)
» Questions to Daniele.Calandriello@inria.fr
» Deadline: 10. 3. 2015

P http://researchers.lille.inria.fr/~calandri/ta/graphs/td2_handout.pdf

. Crzia—~
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Final Class projects

» preferred option: you come up with the topic

> list of suggested topics from March

» theory/implementation/review or a combination

> one or two people per project (exceptionally three)
» grade: report + short presentation of the team

» deadlines soon
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Advanced Learning for Text and Graph Data
Time: Wednesdays 8h30-11h30 — 4 lectures and 3 Labs
Place: Polytechnique / Amphi Sauvy
Lecturer 1: Michalis Vazirgiannis (Polytechnique)
Lecturer 2: Yassine Faihe (Hewlett-Packard - Vertica)

ALTeGraD and Graphs in ML run in parallel

The two graph courses are coordinated to be complementary.

Some of covered graph topics not covered in this course
Ranking algorithms and measures (Kendal Tau, NDCG)
Advanced graph generators

Community mining, advanced graph clustering

Graph degeneracy (k-core & extensions)

Privacy in graph mining

vV VvV VvYyVvVvyy

http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/
contenus-/advanced-learning-for-text-and-graph-data-altegrad--239506.

kjsp?RH=1242430202531
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Where we left off
Semi-supervised learning with graphs:

min wij ( O+ A
f(E{il}""""” Z Iy — Vi )

Regularized harmonic Solution:
fu = (Luu + ’Ygl)il (WU/f/)
Unconstrained regularization in general:

* H o T o
F = min (f —y)'C(f —y) +
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.
They are transductive.

What if a new point X, 4,41 arrives? i caiicd out-of sample extension
Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X — R
Allow f(x;) # yi. (Why? To deal with noise.

Solution: Manifold Regularization

. Clreia—
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SSL with Graphs: Manifold Regularization

General (S)SL objective:

n

min > V(xiyyi f(xi) + A

i
Want to control f, also for the out-of-sample data, i.e., everywhere.
= Xof "LF + g / f(x)?dx
xeX
For general kernels:
ny
min Z V(xi,yi, f(xi)) + A1 + A2

feEHK ;
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SSL with Graphs: Manifold Regularization

ny

f*:argminZV(x,-,y,-./f)—i-)\l + Ao

fEHK i

Representer Theorem for Manifold Regularization
The minimizer f* has a finite expansion of the form

nj+ny

F(x) = > aik(x,x;)

i=1
V(Xv.)/7 f) = (y - f(x))2
LapRLS Laplacian Regularized Least Squares
V(x,y,f) = max (0,1 — yf (x))

LapSVM Laplacian Support Vector Machines
. lrzia—
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SSL with Graphs: Laplacian SVMs

f* = argmin Z

feEHK

n

i

max (0,1 — yf (x)) + A1

+ X2

Allows us to learn a function in RKHS, i.e., RBF kernels.

SVM Laplacian SVM Laplacian SVM
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SSL with Graphs: Laplacian SVMs

SVM Laplacian SVM Laplacian SVM
2 2 2
T ™ T T M
#o Sgo  °“gpe #o Sg°  °“gpo o Hgo  “gp°
ﬁ @, o a}? ﬁ B, Sho a? ° nﬁu ?ﬁ? 'Y a}?

£

£

5

|
.

ol
o

ol ﬁ’% T o %

-1 0 1 2 -1 0 1 2 -1 0 1 2
Y, = 0.03125 4 =0 Y, = 0.03125 ¥ = 0.01 Y, =0.03125 y =1
SVM Transductive SVM Laplacian SVM
25 25 25
2 2 2
1.5 1.5 1.5
1 af 9 1 of 2 1 o g0
05| &¥ g & oo 05| 8% g P ool 05 &F ﬁt’ °s
o %o g dle s oLSe e e of L% e e o
gy, E Rl Ny
05 8 L2 | o5 BASH | o5 & g
-1 -1 -1
-15 -15 -1.5
-1 0 1 2 -1 0 1 2 -1 0 1 2

Michal Valk Graphs in Machine Learning Lecture 5 - 13/41



SSL with Graphs: Laplacian SVMs

n

*= argmianax (0,1 —yf(x))+ A1 + X2

fEHK i

Hyc is nice and expressive.
Can there be a problem with certain Hx?
We look for f only in Hg.

If it is simple (e.g., linear) minimization of f'Lf can perform badly.

Con5|der again this 2D data and linear K.

1, = 1.000 1,= 0200 1, =0.040

H N o o
H N o o
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SSL with Graphs: Laplacian SVMs

Linear IC = functions with slope a3 and intercept as.
n
min > V(F.xi i) +
1
For this simple case we can write down fTLf explicitly.
1 2
= 3wl — )
i7j

1
=5 > wi(aa(xin — xj1) + 02(xi2 — x12))?
i

_ 0‘1 )2
= WU Xj1 — le 2 Wl_/ Xj2 — XJ2

A=218.351 A=218.351
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SSL with Graphs: Laplacian SVMs

2D data and linear K objective

ny
C?RIOZ Z V(faxivyi) +

i

Setting \* = ()\1 + %):
n
O?R'(SZ Z V(fvxiayi) +
The only influence of unlabeled data is through A\*.

The same value of the objective as for supervised learning for some
A without the unlabeled data! This is not good.

. Crzia—~
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SSL with Graphs: Laplacian SVMs

MR for 2D data and linear K only changes the slope

1
=
T
L3
£
-
1, = 26.000 14=5.000 14=1.000 74=0.200 1,=0.040
What would we like to see?
y =25.000 y =5.000 y =1.000 y =0.200 y =0.040
g9 g9 g g9 9
] 1 1
5 0l 0l.
£ -1 A
-
5 -5

5 -10

We use the unlabeled data before optimizing Hy!
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SSL with Graphs: Max-Margin Graph Cuts

Let’s take the confident data and use them as true!

F* = mi V(f, i, sgn(£; dlF:
Jmin %; (F,xi, sgn(7)) + Y[ Flik

t = in £7(L )¢
s arg min £7(L + 7¢l)
st. b=y foralli=1,....n

Wait, but this is what we did not like in self-training!

Will we get into the same trouble?

Representer theorem still cool:
FFx)= Y afK(xi,x)
| [ >e

. brezia~
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SSL with Graphs: Generalization Bounds
Why iS thIS not a Witchcraft? We take GC as an example. MR or HFS are similar
What kind of guarantees we want?

We may want to bound the risk

Rp(f) = Epgx) [£(f (%), y (x))]

for some loss, e.g., 0/1 loss

L(y',y)=1{sgn(y")#y}

What makes sense to bound Rp(f) with?

empirical risk + error terms
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SSL with Graphs: Generalization Bounds

True risk vs. empirical risk

Ro(F) = 23 (5 - y)?
D (f* 1 * 2
Re(F) = + (5 )

We look for the bound in the form

Rp(f*) < Rp(f*) + errors

errors = transductive + inductive

Michal Valko — Graphs in Machine Learning
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SSL with Graphs: Generalization Bounds

Bounding inductive error (using classical SLT tools)

With probability 1 — 7, using Equations 3.15 and 3.24 [Vap95]
ZE ), yi) + Ag(h, 1)

= number of samples , h = VC dimension of the class

A(hyn,n) = h(In(2n/h) + 1) — In(1/4)

How to bound L(f(x;),yi)? For any y; € {—1,1} and ¢r

L(F(xi), yi) < L(F(xi),sgn(£7)) + (6 — vi)*.

. Cbreia—
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SSL with Graphs: Generalization Bounds

Bounding transductive error (using stability analysis)

http://www.cs.nyu.edu/~mohri/pub/str.pdf

How to bound (£* — y;)??

Bounding (¢ — y;)? for hard case difficult — we bound soft HFS:
£°=min (£—y)'C(£—y)+£'QL
LeRN

Closed form solution

= (clQ+1) "y

. Crzia—~
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SSL with Graphs: Generalization Bounds

Bounding transductive error

* . T . T
E—gg]er},(E y)'C(L—y)+£'Q¢

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point.

Ci=C;'Q+land Co =C,'Q+1
What is the maximal difference in the solutions?
05— =Coly, —Citya

=CMy2—y1)— (G —¢C Y
=C M y2—y1) - (CTH[(Ct M) Q] ) n

Note that v € R"XL, X (A)[|v]l2 < [[Av]2 < Ay(A)lIv]2
||£* E*H ”y2 y1H2 + Am(Q)HCIl - C£1|’2 ’ ||y1||2
m(CZ) /\m(c2)/\m(cl)

. brezia~
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SSL with Graphs: Generalization Bounds

Bounding transductive error

* _ T
E—Fg]ann(Z y)'C(l—y)+£'Qe

||£* e*” _ ”y2 y1”2 + )‘M(Q)HCIl — Cgl”2 ’ ||y1||2
Am(C2) Am(C2)Am(C1)

Using Am(C) > /\’"((83 +1

||£§_ *H _ ”y2 —Y1||2 )‘M(Q)Hc_l — _1”2 ||y1||2
o )‘m(Q) )\m Q
Am(Cr1) +1 ()\ (( )) + 1) ()\M((C )) + 1)

. Crzia—~
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SSL with Graphs: Generalization Bounds

Bounding transductive error

e g ly2 = yill2 , Am(Q)IC;! — €52 - llyall2
= |65 — £1]]2 =

AM((gl)) +1 <;\I\I/7((g2)) + 1> (;\/\'/ln((gl)) + 1)

Now let us plug in the values for our problem.

Take g =1and ¢ > ¢, . We have |y;| <1and || < 1.

o \/> Cu AM(Q)
B_2[m(Q +1+r Cu (m(Q)+1)2

Qisreg. L: Apn(Q) = Am(L) + 75 and An(Q) = Am(L) + 7,

X \/7 \/EAM(L) + Vg

B <
'yg+1 VCu 'yg+1

. Cbreia—
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SSL with Graphs: Generalization Bounds
Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf

By the generalization bound of Belkin [BMNO04]

21In(2/0)
n

RE(€) < RN(€)+ B+ (mpB +4)

/

transductive error Ar(8,n;,8)

—i-\/i \/a/\M()"‘Wg

’Vg + 1 CU ’yg + 1
holds with probability 1 — §, where

REE) = 3000~

p <2

RE() = *zw 9

iel
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SSL with Graphs: Generalization Bounds
Bounding transductive error

21In(2/0)

RY(€*) < RY(E*)+ B+ (B +4)

transductive error Ar(8,n,,6)

1—\5/\/\/1( )+ e
g+1ij Ve 2+l

Does the bound say anything useful?

g <2

1) The error is controlled.

_1
2) Practical when error A7(/3, nj, ) decreases at rate O(n, ?).

3
Achieved when 3=0(1/n;). That is, vz =Q(n}).

We have an idea how to set 7,!

. bezia~
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SSL with Graphs: Generalization Bounds

Combining inductive 4 transductive error

With probability 1 — (5 + 4).

Rp(f) < = Zc i), sgn(0r)) +

RP (‘8*) + AT(/Bv n/75) + A/(hv n777)
We need to account for . With probability 1 — (n + ¢).

2en, n
n

Z L(f(x;),sgn(¢7)) +

|€*|>5

RY(£%) + Ar(B, m, 8) + Ay(h, n,m)

Michal Valko — Graphs in Machine Learning
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SSL with Graphs: LapSVMs and MM Graph Cuts

Linear MR

Linear GC

MR for 2D data and linear KC only changes the slope

;
0
B
5
1, = 25.000 1, =5.000 14 = 1.000 7,=0.200 1,=0.040
MMGC for 2D data and linear K works as we want
v =25.000 v =5.000 v =1.000 v =0.200 v =0.040
g9 g9 g g9 g9
1 1
0 0
1 R
5 -5
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic K is also not so good

Cubic GC
h Lo a

Cubic MR
h Lo o

5 -

v =25.000
g9
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SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF K

RBF GC
S Lo o

RBF MR
[ NN
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SSL with Graphs

(b) Harmonic function predictions

Graph-based SSL is obviously sensitive to graph construction!
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Online SSL with Graphs

Offline learning setup
Given {x;}7_; from R? and {y;}/_,, with n; < n, find it
(transductive) or find f predicting y well beyond that (inductive).

ssseeBRr” illllll‘lllllllllll
- E

< $

Online learning setup
At the beginning: {x;,y;}7_, from R9
At time t:

receive X;

predict y;

-
bezia—
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Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3:  Update L;
4:  Infer labels

f, = (Luu + A/gl)_l (Wulfl)

5. Predict y; = sgn (f, (1))
6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?

. brezia~
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Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with WY weights.
Each centroids represents several others.
Diagonal V = multiplicity. We have V;; copies of centroid i.

Can we compute it compactly? Compact harmonic solution.
04 = (LY, + vz V) 'WLe  where W9 = VW1V
Proof? Using electric circuits.

Why do we keep the multiplicities?

. brezia~
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2:  k number of representative nodes
3: Initialization
4: 'V matrix of multiplicities with 1 on diagonal
5. while new unlabeled example x; comes do
6: Add x; to graph G
.
8
9

if # nodes > k then
quantize G
. endif
10:  Update L; of G(VWYV)
11:  Infer labels
12:  Predict yr = sgn (f, (t))
13: end while

. brezia~
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Online SSL with Graphs: Graph Quantization

An idea: incremental k-centers
Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to k centers C; = {cj,ca,. ..} with

v

Distance cj,c; € C; is at least > R

» For each new x;, distance to some c; € C; is less than R.
» |G| < k
» if not possible, R is doubled

. brezia~

Michal Valko — Graphs in Machine Learning Lecture 5 - 37/41



Online SSL with Graphs: Graph Quantization

? :b 2 99, o




Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization

Doubling algorithm [Cha+-97]
To reduce growth of R, we use R = m x R, with m>1

C; is changing. How far can x be from some c?

R R 11
R++2+-..:R(1++2+-~-> = —
m m m m

Guarantees: (1 + £)-approximation algorithm.

Why not incremental k-means?
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Online SSL with Graphs: Graph Quantization

Online k-centers
1: an unlabeled x;, a set of centroids C;_1, multiplicities v;_1
2: if (|Ci—1| = k + 1) then
3: R+ mR

4 greedily repartition C;_; into C; such that:

5 no two vertices in C; are closer than R

6: for any ¢; € Gy exists ¢; € C; such that d(c;,c;) < R
7 update v; to reflect the new partitioning

8: else

9: Ct < Ct—l

10: Vi ¢ Vi1

11: end if

12: if x; is closer than R to any c; € C; then
130 ve(i) = ve(i) + 1

14: else

15: w(|G|+1)« 1

16: end if

. Cbreia—
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