Graphs in Machine Learning

Michal Valko
INRIA Lille - Nord Europe, France

Previous Lecture

- Manifold learning with Laplacian Eigenmaps
- Semi-Supervised Learning
- Why and when it helps?
- Self-training
- Semi-supervised SVMs
- Graph-based semi-supervised learning
- SSL with MinCuts
- Gaussian random fields and harmonic solution
- Regularization of harmonic solution
- Soft-harmonic solution

This Lecture

- Inductive and transductive semi-supervised learning
- Manifold regularization
- Theory of Laplacian-based manifold methods
- Transductive learning stability based bounds
- SSL Learnability
- Online Semi-Supervised Learning
- Online incremental k-centers

Previous Lab Session

- 3. 2. 2015 by Daniele.Calandriello@inria.fr
- Content
- Graph Construction
- Test sensitivity to parameters: σ, k, ε
- Spectral Clustering
- Spectral Clustering vs. k-means
- Image Segmentation
- Short written report (graded, each lab around 5\% of grade)
- Questions to Daniele.Calandriello@inria.fr
- Deadline: 17. 2. 2015 Today!
- http://researchers.lille.inria.fr/~calandri/ta/graphs/td1_handout.pdf

Next Lab Session

- 24. 2. 2015 by Daniele.Calandriello@inria.fr
- Content
- Semi-supervised learning
- Graph quantization
- Online face recognizer
- 3 volunteers (Linux, Max, Windows)
- Install OpenCV (instructions: few days before the lab)
- record a video with faces
- Short written report (graded, each lab around 5\% of grade)
- Questions to Daniele.Calandriello@inria.fr
- Deadline: 10. 3. 2015
- http://researchers.lille.inria.fr/~calandri/ta/graphs/td2_handout.pdf

Final Class projects

- preferred option: you come up with the topic
- list of suggested topics from March
- theory/implementation/review or a combination
- one or two people per project (exceptionally three)
- grade: report + short presentation of the team
- deadlines soon

Advanced Learning for Text and Graph Data

Time: Wednesdays 8h30-11h30-4 lectures and 3 Labs
Place: Polytechnique / Amphi Sauvy
Lecturer 1: Michalis Vazirgiannis (Polytechnique)
Lecturer 2: Yassine Faihe (Hewlett-Packard - Vertica)
ALTeGraD and Graphs in ML run in parallel The two graph courses are coordinated to be complementary.
Some of covered graph topics not covered in this course

- Ranking algorithms and measures (Kendal Tau, NDCG)
- Advanced graph generators
- Community mining, advanced graph clustering
- Graph degeneracy (k-core \& extensions)
- Privacy in graph mining

```
http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/
contenus-/advanced-learning-for-text-and-graph-data-altegrad--239506.
```


Where we left off

Semi-supervised learning with graphs:

$$
\min _{f\left(\in\{ \pm 1\}^{n^{n}+n_{u}}\right)}(\infty) \sum_{i=1}^{n_{1}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{1}+n_{u}}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

Regularized harmonic Solution:

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mid \mathbf{f}_{l}\right)
$$

Unconstrained regularization in general:

$$
\mathbf{f}^{\star}=\min _{\mathbf{f} \in \mathbb{R}^{n}}(\mathbf{f}-\mathbf{y})^{\top} \mathbf{C}(\mathbf{f}-\mathbf{y})+\mathrm{f}^{\top} \mathbf{Q f}
$$

SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.
They are transductive.
What if a new point $\mathbf{x}_{n_{l}+n_{u}+1}$ arrives?
Option 1) Add it to the graph and recompute HFS.
Option 2) Make the algorithms inductive!
Allow to be defined everywhere: $f: \mathcal{X} \mapsto \mathbb{R}$
Allow $f\left(\mathbf{x}_{i}\right) \neq y_{i}$. Why? To deal with noise.
Solution: Manifold Regularization

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$
\min _{f} \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(f)
$$

Want to control f, also for the out-of-sample data, i.e., everywhere.

$$
\Omega(f)=\lambda_{2} \mathbf{f}^{\top} \mathbf{L f}+\lambda_{1} \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^{2} \mathrm{~d} x
$$

For general kernels:

$$
\min _{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda_{1}\|f\|_{\mathcal{K}}+\lambda_{2} \mathrm{f}^{\top} \operatorname{Lf}
$$

SSL with Graphs: Manifold Regularization

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\right)+\lambda_{1}\|f\|_{\mathcal{K}}+\lambda_{2} f^{\top} \operatorname{Lf}
$$

Representer Theorem for Manifold Regularization

The minimizer f^{\star} has a finite expansion of the form

$$
f^{\star}(\mathbf{x})=\sum_{i=1}^{n_{l}+n_{u}} \alpha_{i} \mathcal{K}\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

$$
V(x, y, f)=(y-f(\mathbf{x}))^{2}
$$

LapRLS Laplacian Regularized Least Squares

$$
V(\mathbf{x}, y, f)=\max (0,1-y f(\mathbf{x}))
$$

LapSVM Laplacian Support Vector Machines

SSL with Graphs: Laplacian SVMs

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} \max (0,1-y f(\mathbf{x}))+\lambda_{1}\|f\|_{\mathcal{K}}+\lambda_{2} f^{\top} \operatorname{Lf}
$$

Allows us to learn a function in RKHS, i.e., RBF kernels.

SSL with Graphs: Laplacian SVMs

SSL with Graphs: Laplacian SVMs

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} \max (0,1-y f(\mathbf{x}))+\lambda_{1}\|f\|_{\mathcal{K}}+\lambda_{2} f^{\top} \operatorname{Lf}
$$

$\mathcal{H}_{\mathcal{K}}$ is nice and expressive.
Can there be a problem with certain $\mathcal{H}_{\mathcal{K}}$?
We look for f only in $\mathcal{H}_{\mathcal{K}}$.
If it is simple (e.g., linear) minimization of \mathbf{f}^{\top} Lf can perform badly.
Consider again this 2D data and linear \mathcal{K}.

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{\mathrm{g}}=0.200
$$

SSL with Graphs: Laplacian SVMs

Linear $\mathcal{K} \equiv$ functions with slope α_{1} and intercept α_{2}.

$$
\min _{\alpha_{1}, \alpha_{2}} \sum_{i}^{n_{1}} V\left(f, \mathbf{x}_{i}, y_{i}\right)+\lambda_{1}\left[\alpha_{1}^{2}+\alpha_{2}^{2}\right]+\lambda_{2} \mathbf{f}^{\top} \operatorname{Lf}
$$

For this simple case we can write down \mathbf{f}^{\top} Lf explicitly.

$$
\begin{aligned}
\mathrm{f}^{\top} \mathrm{Lf} & =\frac{1}{2} \sum_{i, j} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2} \\
& =\frac{1}{2} \sum_{i, j} w_{i j}\left(\alpha_{1}\left(\mathbf{x}_{i 1}-\mathbf{x}_{j 1}\right)+\alpha_{2}\left(\mathbf{x}_{i 2}-\mathbf{x}_{j 2}\right)\right)^{2} \\
& =\frac{\alpha_{1}^{2}}{2} \underbrace{\sum_{i, j} w_{i j}\left(\mathbf{x}_{i 1}-\mathbf{x}_{j 1}\right)^{2}}_{\Delta=218.351}+\frac{\alpha_{2}^{2}}{2} \underbrace{\sum_{i, j} w_{i j}\left(\mathbf{x}_{i 2}-\mathbf{x}_{j 2}\right)^{2}}_{\Delta=218.351}
\end{aligned}
$$

SSL with Graphs: Laplacian SVMs

2D data and linear \mathcal{K} objective

$$
\min _{\alpha_{1}, \alpha_{2}} \sum_{i}^{n_{I}} V\left(f, \mathbf{x}_{i}, y_{i}\right)+\left(\lambda_{1}+\frac{\lambda_{2} \Delta}{2}\right)\left[\alpha_{1}^{2}+\alpha_{2}^{2}\right]
$$

Setting $\lambda^{\star}=\left(\lambda_{1}+\frac{\gamma_{2} \Delta}{2}\right)$:

$$
\min _{\alpha_{1}, \alpha_{2}} \sum_{i}^{n_{1}} V\left(f, \mathbf{x}_{i}, y_{i}\right)+\lambda^{\star}\left[\alpha_{1}^{2}+\alpha_{2}^{2}\right]
$$

The only influence of unlabeled data is through λ^{\star}.

The same value of the objective as for supervised learning for some λ without the unlabeled data! This is not good.

SSL with Graphs: Laplacian SVMs

MR for 2D data and linear \mathcal{K} only changes the slope

What would we like to see?

$$
\gamma_{\mathrm{g}}=5.000
$$

$$
\gamma_{g}=1.000
$$

$$
\gamma_{g}=0.200
$$

$$
\gamma_{\mathrm{g}}=0.040
$$

We use the unlabeled data before optimizing $\mathcal{H}_{\mathcal{K}}$!

SSL with Graphs: Max-Margin Graph Cuts

Let's take the confident data and use them as true!

$$
\begin{aligned}
f^{\star}=\min _{f \in \mathcal{H}_{\mathcal{K}}} & \sum_{i: \mid \ell_{\ell^{\star} \mid \geq \varepsilon}} V\left(f, \mathbf{x}_{i}, \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+\gamma\|f\|_{\mathcal{K}}^{2} \\
\text { s.t. } & \ell^{\star}=\arg \min _{\ell \in \mathbb{R}^{n}} \ell^{\top}\left(\mathbf{L}+\gamma_{g} \mathbf{I}\right) \ell \\
& \text { s.t. } \ell_{i}=y_{i} \text { for all } i=1, \ldots, n_{l}
\end{aligned}
$$

Wait, but this is what we did not like in self-training!

Will we get into the same trouble?
Representer theorem still cool:

$$
f^{\star}(\mathbf{x})=\sum_{i:\left|f_{i}^{\star}\right| \geq \varepsilon} \alpha_{i}^{\star} \mathcal{K}\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

SSL with Graphs: Generalization Bounds

Why is this not a witchcraft? We take GC as an example. MR or HFS are similar.

What kind of guarantees we want?

We may want to bound the risk

$$
R_{P}(f)=\mathbb{E}_{P(\mathbf{x})}[\mathcal{L}(f(\mathbf{x}), y(\mathbf{x}))]
$$

for some loss, e.g., $0 / 1$ loss

$$
\mathcal{L}\left(y^{\prime}, y\right)=\mathbb{1}\left\{\operatorname{sgn}\left(y^{\prime}\right) \neq y\right\}
$$

What makes sense to bound $R_{P}(f)$ with?

empirical risk + error terms

SSL with Graphs: Generalization Bounds

True risk vs. empirical risk

$$
\begin{aligned}
& R_{P}\left(\mathbf{f}^{\star}\right)=\frac{1}{n} \sum_{i}\left(f_{i}^{\star}-y_{i}\right)^{2} \\
& \widehat{R}_{P}\left(\mathbf{f}^{\star}\right)=\frac{1}{n_{l}} \sum_{i \in I}\left(f_{i}^{\star}-y_{i}\right)^{2}
\end{aligned}
$$

We look for the bound in the form

$$
\begin{aligned}
& R_{P}\left(\mathbf{f}^{\star}\right) \leq \widehat{R}_{P}\left(\mathbf{f}^{\star}\right)+\text { errors } \\
& \text { errors }=\text { transductive }+ \text { inductive }
\end{aligned}
$$

SSL with Graphs: Generalization Bounds

Bounding inductive error (using classical SLT tools)
With probability $1-\eta$, using Equations 3.15 and 3.24 [Vap95]

$$
R_{P}(f) \leq \frac{1}{n} \sum_{i} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)+\Delta_{l}(h, n, \eta)
$$

$n \equiv$ number of samples, $h \equiv$ VC dimension of the class

$$
\Delta_{l}(h, n, \eta)=\frac{h(\ln (2 n / h)+1)-\ln (\eta / 4)}{n}
$$

How to bound $\mathcal{L}\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)$? For any $y_{i} \in\{-1,1\}$ and ℓ_{i}^{\star}

$$
\mathcal{L}\left(f\left(\mathbf{x}_{i}\right), y_{i}\right) \leq \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+\left(\ell_{i}^{\star}-y_{i}\right)^{2} .
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error (using stability analysis)

How to bound $\left(\ell_{i}^{\star}-y_{i}\right)^{2}$?
Bounding $\left(\ell_{i}^{\star}-y_{i}\right)^{2}$ for hard case difficult \rightarrow we bound soft HFS:

$$
\ell^{\star}=\min _{\ell \in \mathbb{R}^{n}}(\ell-\mathbf{y})^{\top} \mathbf{C}(\ell-\mathbf{y})+\ell^{\top} \mathbf{Q} \ell
$$

Closed form solution

$$
\ell^{\star}=\left(\mathbf{C}^{-1} \mathbf{Q}+\mathbf{I}\right)^{-1} \mathbf{y}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\ell^{\star}=\min _{\ell \in \mathbb{R}^{n}}(\ell-\mathbf{y})^{\top} \mathbf{C}(\ell-\mathbf{y})+\ell^{\top} \mathbf{Q} \ell
$$

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point. $\mathcal{C}_{1}=\mathbf{C}_{1}^{-1} \mathbf{Q}+\mathbf{I}$ and $\mathcal{C}_{2}=\mathbf{C}_{2}^{-1} \mathbf{Q}+\mathbf{I}$

What is the maximal difference in the solutions?

$$
\begin{aligned}
\ell_{2}^{\star}-\ell_{1}^{\star} & =\mathcal{C}_{2}^{-1} \mathbf{y}_{2}-\mathcal{C}_{1}^{-1} \mathbf{y}_{1} \\
& =\mathcal{C}_{2}^{-1}\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)-\left(\mathcal{C}_{2}^{-1}-\mathcal{C}_{1}^{-1}\right) \mathbf{y}_{1} \\
& =\mathcal{C}_{2}^{-1}\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right)-\left(\mathcal{C}_{1}^{-1}\left[\left(\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right) \mathbf{Q}\right] \mathcal{C}_{2}^{-1}\right) \mathbf{y}_{1}
\end{aligned}
$$

Note that $\mathbf{v} \in \mathbb{R}^{n \times 1}, \lambda_{m}(A)\|\mathbf{v}\|_{2} \leq\|A v\|_{2} \leq \lambda_{M}(A)\|\mathbf{v}\|_{2}$

$$
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{2}=\frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right)}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right) \lambda_{m}\left(\mathcal{C}_{1}\right)}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\begin{gathered}
\ell^{\star}=\min _{\ell \in \mathbb{R}^{n}}(\boldsymbol{\ell}-\mathbf{y})^{\top} \mathbf{C}(\boldsymbol{\ell}-\mathbf{y})+\ell^{\top} \mathbf{Q} \ell \\
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{2}=\frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right)}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\lambda_{m}\left(\mathcal{C}_{2}\right) \lambda_{m}\left(\mathcal{C}_{1}\right)}
\end{gathered}
$$

Using $\lambda_{m}(\mathcal{C}) \geq \frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C})}+1$

$$
\left\|\ell_{2}^{\star}-\ell_{1}^{\star}\right\|_{2}=\frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{2}\right)}+1\right)\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1\right)}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\beta=\left\|\boldsymbol{\ell}_{2}^{\star}-\boldsymbol{\ell}_{1}^{\star}\right\|_{2}=\frac{\left\|\mathbf{y}_{2}-\mathbf{y}_{1}\right\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1}+\frac{\lambda_{M}(\mathbf{Q})\left\|\mathbf{C}_{1}^{-1}-\mathbf{C}_{2}^{-1}\right\|_{2} \cdot\left\|\mathbf{y}_{1}\right\|_{2}}{\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{2}\right)}+1\right)\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}\left(\mathbf{C}_{1}\right)}+1\right)}
$$

Now let us plug in the values for our problem.
Take $c_{I}=1$ and $c_{I}>c_{u}$. We have $\left|y_{i}\right| \leq 1$ and $\left|\ell_{i}^{\star}\right| \leq 1$.

$$
\beta=2\left[\frac{\sqrt{2}}{\lambda_{m}(\mathbf{Q})+1}+\sqrt{2 n_{l}} \frac{1-\sqrt{c_{u}}}{\sqrt{c_{u}}} \frac{\lambda_{M}(\mathbf{Q})}{\left(\lambda_{m}(\mathbf{Q})+1\right)^{2}}\right]
$$

\mathbf{Q} is reg. $\mathbf{L}: \lambda_{m}(\mathbf{Q})=\lambda_{m}(\mathbf{L})+\gamma_{g}$ and $\lambda_{M}(\mathbf{Q})=\lambda_{M}(\mathbf{L})+\gamma_{g}$

$$
\beta \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-\sqrt{c_{u}}}{\sqrt{c_{u}}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
$$

Invía

SSL with Graphs: Generalization Bounds

Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf
By the generalization bound of Belkin [BMN04]

$$
\begin{aligned}
R_{P}^{w}\left(\ell^{\star}\right) & \leq \widehat{R}_{P}^{w}\left(\ell^{\star}\right)+\underbrace{\beta+\sqrt{\frac{2 \ln (2 / \delta)}{n_{l}}}\left(n_{l} \beta+4\right)}_{\text {transductive error } \Delta_{T}\left(\beta, n_{l}, \delta\right)} \\
\beta & \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-\sqrt{c_{u}}}{\sqrt{c_{u}}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
\end{aligned}
$$

holds with probability $1-\delta$, where

$$
\begin{aligned}
& R_{P}^{w}\left(\ell^{\star}\right)=\frac{1}{n} \sum_{i}\left(\ell_{i}^{\star}-y_{i}\right)^{2} \\
& \widehat{R}_{P}^{w}\left(\ell^{\star}\right)=\frac{1}{n_{l}} \sum_{i \in I}\left(\ell_{i}^{\star}-y_{i}\right)^{2} .
\end{aligned}
$$

SSL with Graphs: Generalization Bounds

Bounding transductive error

$$
\begin{aligned}
R_{P}^{W}\left(\ell^{\star}\right) & \leq \widehat{R}_{P}^{W}\left(\ell^{\star}\right)+\underbrace{\beta+\sqrt{\frac{2 \ln (2 / \delta)}{n_{l}}}\left(n_{l} \beta+4\right)}_{\text {transductive error } \Delta_{T}\left(\beta, n_{l}, \delta\right)} \\
\beta & \leq 2\left[\frac{\sqrt{2}}{\gamma_{g}+1}+\sqrt{2 n_{l}} \frac{1-\sqrt{c_{u}}}{\sqrt{c_{u}}} \frac{\lambda_{M}(\mathbf{L})+\gamma_{g}}{\gamma_{g}^{2}+1}\right]
\end{aligned}
$$

Does the bound say anything useful?

1) The error is controlled.
2) Practical when error $\Delta_{T}\left(\beta, n_{l}, \delta\right)$ decreases at rate $O\left(n_{l}^{-\frac{1}{2}}\right)$.

Achieved when $\beta=O\left(1 / n_{l}\right)$. That is, $\gamma_{g}=\Omega\left(n_{l}^{\frac{3}{2}}\right)$.
We have an idea how to set γ_{g} !

SSL with Graphs: Generalization Bounds

Combining inductive + transductive error
With probability $1-(\eta+\delta)$.

$$
\begin{aligned}
R_{P}(f) \leq & \frac{1}{n} \sum_{i} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+ \\
& \widehat{R}_{P}^{w}\left(\ell^{\star}\right)+\Delta_{T}\left(\beta, n_{l}, \delta\right)+\Delta_{l}(h, n, \eta)
\end{aligned}
$$

We need to account for ε. With probability $1-(\eta+\delta)$.

$$
\begin{aligned}
R_{P}(f) \leq & \frac{1}{n} \sum_{i:\left|\left|\widehat{i}_{i}^{*}\right| \geq \varepsilon\right.} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \operatorname{sgn}\left(\ell_{i}^{\star}\right)\right)+\frac{2 \varepsilon n_{\varepsilon}}{n}+ \\
& \widehat{R}_{P}^{w}\left(\ell^{\star}\right)+\Delta_{T}\left(\beta, n_{l}, \delta\right)+\Delta_{l}(h, n, \eta)
\end{aligned}
$$

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and linear \mathcal{K} only changes the slope

MMGC for 2D data and linear \mathcal{K} works as we want

$$
\gamma_{\mathrm{g}}=25.000
$$

$$
\gamma_{\mathrm{g}}=5.000
$$

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{\mathrm{g}}=0.200
$$

$$
\gamma_{\mathrm{g}}=0.040
$$

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic \mathcal{K} is also not so good

SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF \mathcal{K}

SSL with Graphs

Graph-based SSL is obviously sensitive to graph construction!

Online SSL with Graphs

Offline learning setup

Given $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ from \mathbb{R}^{d} and $\left\{y_{i}\right\}_{i=1}^{n_{l}}$, with $n_{l} \ll n$, find $\left\{y_{i}\right\}_{i=n_{l}+1}^{n}$ (transductive) or find f predicting y well beyond that (inductive).

Online learning setup
At the beginning: $\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n_{l}}$ from \mathbb{R}^{d}
At time t :
receive \mathbf{x}_{t} predict y_{t}

Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example \mathbf{x}_{t} comes do
2: Add \mathbf{x}_{t} to graph $G(\mathbf{W})$
3: Update \mathbf{L}_{t}
4: Infer labels

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mathbf{f}_{l}\right)
$$

5: \quad Predict $\hat{y}_{t}=\operatorname{sgn}\left(\mathbf{f}_{u}(t)\right)$
6: end while

What is wrong with this solution?
The cost and memory of the operations.
What can we do?

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with $\tilde{\mathbf{W}}^{q}$ weights.
Each centroids represents several others.
Diagonal $\mathbf{V} \equiv$ multiplicity. We have $\mathbf{V}_{i i}$ copies of centroid i.
Can we compute it compactly? Compact harmonic solution.

$$
\boldsymbol{\ell}^{\mathrm{q}}=\left(\mathbf{L}_{u u}^{\mathrm{q}}+\gamma_{g} V\right)^{-1} \mathbf{W}_{u l}^{\mathrm{q}} \boldsymbol{\ell}_{\boldsymbol{l}} \quad \text { where } \quad \mathbf{W}^{\mathrm{q}}=V \tilde{\mathbf{W}}^{\mathrm{q}} V
$$

Proof? Using electric circuits.

Why do we keep the multiplicities?

Online SSL with Graphs

Online HFS with Graph Quantization

1: Input

2: $\quad k$ number of representative nodes
3: Initialization
4: $\quad \mathrm{V}$ matrix of multiplicities with 1 on diagonal
5: while new unlabeled example \mathbf{x}_{t} comes do
6: \quad Add \mathbf{x}_{t} to graph G
7: if \# nodes $>k$ then
8: \quad quantize G
9: end if
10: Update \mathbf{L}_{t} of $G(\mathbf{V W V})$
11: Infer labels
12: \quad Predict $\widehat{y}_{t}=\operatorname{sgn}\left(\mathbf{f}_{u}(t)\right)$
13: end while
Cinía

Online SSL with Graphs: Graph Quantization

An idea: incremental k-centers
Doubling algorithm of Charikar et al. [Cha+97]
Keeps up to k centers $C_{t}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots\right\}$ with

- Distance $\mathbf{c}_{i}, \mathbf{c}_{j} \in C_{t}$ is at least $\geq R$
- For each new \mathbf{x}_{t}, distance to some $\mathbf{c}_{i} \in C_{t}$ is less than R.
- $\left|C_{t}\right| \leq k$
- if not possible, R is doubled

Online SSL with Graphs: Graph Quantization

Online SSL with Graphs: Graph Quantization

Online SSL with Graphs: Graph Quantization

Inria

Online SSL with Graphs: Graph Quantization

Online SSL with Graphs: Graph Quantization

Doubling algorithm [Cha+97]
To reduce growth of R, we use $R=m \times R$, with $m \geq 1$
C_{t} is changing. How far can \mathbf{x} be from some \mathbf{c} ?

$$
R+\frac{R}{m}+\frac{R}{m^{2}}+\cdots=R\left(1+\frac{1}{m}+\frac{1}{m^{2}}+\cdots\right)=\frac{R m}{m-1}
$$

Guarantees: $(1+\varepsilon)$-approximation algorithm.
Why not incremental k-means?

Online SSL with Graphs: Graph Quantization

Online k-centers
1: an unlabeled \mathbf{x}_{t}, a set of centroids C_{t-1}, multiplicities \mathbf{v}_{t-1}
2: if $\left(\left|C_{t-1}\right|=k+1\right)$ then
3: $\quad R \leftarrow m R$
4: greedily repartition C_{t-1} into C_{t} such that:
5: \quad no two vertices in C_{t} are closer than R
6: \quad for any $\mathbf{c}_{i} \in C_{t-1}$ exists $\mathbf{c}_{j} \in C_{t}$ such that $d\left(\mathbf{c}_{i}, \mathbf{c}_{j}\right)<R$
7: update \mathbf{v}_{t} to reflect the new partitioning
8: else
9: $\quad C_{t} \leftarrow C_{t-1}$
10: $\quad \mathbf{v}_{t} \leftarrow \mathbf{v}_{t-1}$
11: end if
12: if \mathbf{x}_{t} is closer than R to any $\mathbf{c}_{i} \in C_{t}$ then
13: $\quad \mathbf{v}_{t}(i) \leftarrow \mathbf{v}_{t}(i)+1$
14: else
15: $\quad \mathbf{v}_{t}\left(\left|C_{t}\right|+1\right) \leftarrow 1$
16: end if

Michal Valko

michal.valko@inria.fr

