

Graphs in Machine Learning

Michal Valko

INRIA Lille - Nord Europe, France

Partially based on material by: Mikhail Belkin, Branislav Kveton

February 17, 2015 MVA 2014/2015

Previous Lecture

- Manifold learning with Laplacian Eigenmaps
- Semi-Supervised Learning
 - Why and when it helps?
 - Self-training
 - Semi-supervised SVMs
- Graph-based semi-supervised learning
- SSL with MinCuts
- Gaussian random fields and harmonic solution
- Regularization of harmonic solution
- Soft-harmonic solution

This Lecture

- Inductive and transductive semi-supervised learning
- Manifold regularization
- Theory of Laplacian-based manifold methods
- Transductive learning stability based bounds
- SSL Learnability
- Online Semi-Supervised Learning
- Online incremental k-centers

Previous Lab Session

- 3. 2. 2015 by Daniele.Calandriello@inria.fr
- Content
 - Graph Construction
 - ▶ Test sensitivity to parameters: σ , k, ε
 - Spectral Clustering
 - Spectral Clustering vs. k-means
 - Image Segmentation
- ► Short written report (graded, each lab around 5% of grade)
- Questions to Daniele.Calandriello@inria.fr
- Deadline: 17. 2. 2015 Today!
- http://researchers.lille.inria.fr/~calandri/ta/graphs/td1_handout.pdf

Next Lab Session

- ▶ 24. 2. 2015 by Daniele.Calandriello@inria.fr
- Content
 - Semi-supervised learning
 - Graph quantization
 - Online face recognizer
 - 3 volunteers (Linux, Max, Windows)
 - Install OpenCV (instructions: few days before the lab)
 - record a video with faces
- ▶ Short written report (graded, each lab around 5% of grade)
- Questions to Daniele.Calandriello@inria.fr
- Deadline: 10. 3. 2015
- http://researchers.lille.inria.fr/~calandri/ta/graphs/td2_handout.pdf

Final Class projects

- preferred option: you come up with the topic
- ▶ list of suggested topics from March
- theory/implementation/review or a combination
- one or two people per project (exceptionally three)
- ▶ grade: report + short presentation of the team
- deadlines soon

Advanced Learning for Text and Graph Data

Time: Wednesdays 8h30-11h30 — 4 lectures and 3 Labs

Place: Polytechnique / Amphi Sauvy

Lecturer 1: Michalis Vazirgiannis (Polytechnique)

Lecturer 2: Yassine Faihe (Hewlett-Packard - Vertica)

ALTeGraD and Graphs in ML run in parallel

The two graph courses are coordinated to be complementary.

Some of covered graph topics not covered in this course

- Ranking algorithms and measures (Kendal Tau, NDCG)
- Advanced graph generators
- Community mining, advanced graph clustering
- Graph degeneracy (k-core & extensions)
- Privacy in graph mining

http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/contenus-/advanced-learning-for-text-and-graph-data-altegrad--239506.

kjsp?RH=1242430202531

Where we left off

Semi-supervised learning with graphs:

$$\min_{f(\in \{\pm 1\}^{n_l+n_u})} (\infty) \sum_{i=1}^{n_l} w_{ij} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Regularized harmonic Solution:

$$\mathbf{f}_{u} = (\mathbf{L}_{uu} + \gamma_{\mathbf{g}} \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_{l})$$

Unconstrained regularization in general:

$$\mathbf{f}^{\star} = \min_{\mathbf{f} \subset \mathbb{D}_n} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{f}$$

SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.

They are transductive.

What if a new point $\mathbf{x}_{n_l+n_u+1}$ arrives?

also called out-of-sample extension

Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: $f: \mathcal{X} \mapsto \mathbb{R}$

Allow $f(\mathbf{x}_i) \neq y_i$. Why? To deal with noise.

Solution: Manifold Regularization

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$\min_{f} \sum_{i}^{n_{l}} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda \Omega(f)$$

Want to control f, also for the out-of-sample data, i.e., everywhere.

$$\Omega(f) = \lambda_2 \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f} + \lambda_1 \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^2 \, \mathrm{d}\mathbf{x}$$

For general kernels:

$$\min_{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{l}} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda_{1} \| \mathbf{f} \|_{\mathcal{K}} + \lambda_{2} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

SSL with Graphs: Manifold Regularization

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_l} V\left(\mathbf{x}_i, y_i, f\right) + \lambda_1 \|f\|_{\mathcal{K}} + \lambda_2 \mathbf{f}^\mathsf{T} \mathsf{L} \mathbf{f}$$

Representer Theorem for Manifold Regularization

The minimizer f^* has a **finite** expansion of the form

$$f^{\star}(\mathbf{x}) = \sum_{i=1}^{n_i + n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(\mathbf{x}, y, f) = (y - f(\mathbf{x}))^{2}$$

LapRLS Laplacian Regularized Least Squares

$$V(\mathbf{x}, y, f) = \max(0, 1 - yf(\mathbf{x}))$$

LapSVM Laplacian Support Vector Machines

$$f^{\star} = \operatorname*{arg\,min}_{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{l}} \max\left(0, 1 - yf\left(\mathbf{x}\right)\right) + \lambda_{1} \|f\|_{\mathcal{K}} + \lambda_{2} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

Allows us to learn a function in RKHS, i.e., RBF kernels.

$$f^{\star} = \operatorname*{arg\,min}_{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{l}} \max\left(0, 1 - yf\left(\mathbf{x}\right)\right) + \lambda_{1} \|f\|_{\mathcal{K}} + \lambda_{2} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

 $\mathcal{H}_{\mathcal{K}}$ is nice and expressive.

Can there be a problem with certain $\mathcal{H}_{\mathcal{K}}$?

We look for f only in $\mathcal{H}_{\mathcal{K}}$.

If it is simple (e.g., linear) minimization of f^TLf can perform badly.

Consider again this 2D data and linear K.

Linear $K \equiv$ functions with slope α_1 and intercept α_2 .

$$\min_{\alpha_1,\alpha_2} \sum_{i}^{n_l} V(f, \mathbf{x}_i, y_i) + \lambda_1 \left[\alpha_1^2 + \alpha_2^2 \right] + \lambda_2 \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f}$$

For this simple case we can write down $f^T L f$ explicitly.

$$\mathbf{f}^{\mathsf{T}} \mathsf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

$$= \frac{1}{2} \sum_{i,j} w_{ij} (\alpha_1 (\mathbf{x}_{i1} - \mathbf{x}_{j1}) + \alpha_2 (\mathbf{x}_{i2} - \mathbf{x}_{j2}))^2$$

$$= \frac{\alpha_1^2}{2} \sum_{i,j} w_{ij} (\mathbf{x}_{i1} - \mathbf{x}_{j1})^2 + \frac{\alpha_2^2}{2} \sum_{i,j} w_{ij} (\mathbf{x}_{i2} - \mathbf{x}_{j2})^2$$

$$= \frac{\alpha_2^2}{2} \sum_{i,j} w_{ij} (\mathbf{x}_{i1} - \mathbf{x}_{j1})^2 + \frac{\alpha_2^2}{2} \sum_{i,j} w_{ij} (\mathbf{x}_{i2} - \mathbf{x}_{j2})^2$$

2D data and linear K objective

$$\min_{\alpha_1,\alpha_2} \sum_{i}^{n_l} V(f, \mathbf{x}_i, y_i) + \left(\lambda_1 + \frac{\lambda_2 \Delta}{2}\right) \left[\alpha_1^2 + \alpha_2^2\right]$$

Setting
$$\lambda^\star = \left(\lambda_1 + \frac{\gamma_2 \Delta}{2}\right)$$
:

$$\min_{\alpha_1,\alpha_2} \sum_{i}^{n_l} V(f, \mathbf{x}_i, y_i) + \lambda^* [\alpha_1^2 + \alpha_2^2]$$

The only influence of unlabeled data is through λ^{\star} .

The same value of the objective as for supervised learning for some λ without the unlabeled data! This is not good.

MR for 2D data and linear K only changes the slope

We use the unlabeled data **before** optimizing $\mathcal{H}_{\mathcal{K}}!$

SSL with Graphs: Max-Margin Graph Cuts

Let's take the confident data and use them as true!

$$\begin{split} f^{\star} &= \min_{f \in \mathcal{H}_{\mathcal{K}}} \quad \sum_{i: |\boldsymbol{\ell}_{i}^{\star}| \geq \varepsilon} V(f, \mathbf{x}_{i}, \operatorname{sgn}(\boldsymbol{\ell}_{i}^{\star})) + \gamma \|f\|_{\mathcal{K}}^{2} \\ &\text{s.t.} \quad \boldsymbol{\ell}^{\star} = \arg\min_{\boldsymbol{\ell} \in \mathbb{R}^{n}} \boldsymbol{\ell}^{\mathsf{T}}(\mathbf{L} + \gamma_{g}\mathbf{I})\boldsymbol{\ell} \\ &\text{s.t.} \quad \boldsymbol{\ell}_{i} = y_{i} \text{ for all } i = 1, \dots, n_{I} \end{split}$$

Wait, but this is what we did not like in self-training!

Will we get into the same trouble?

Representer theorem still cool:

$$f^{\star}(\mathbf{x}) = \sum_{i:|f_{i}^{\star}| \geq \varepsilon} \alpha_{i}^{\star} \mathcal{K}(\mathbf{x}_{i}, \mathbf{x})$$

Why is this not a witchcraft? We take GC as an example. MR or HFS are similar.

What kind of guarantees we want?

We may want to bound the risk

$$R_{P}(f) = \mathbb{E}_{P(\mathbf{x})} \left[\mathcal{L} \left(f \left(\mathbf{x} \right), y \left(\mathbf{x} \right) \right) \right]$$

for some loss, e.g., 0/1 loss

$$\mathcal{L}(y',y) = \mathbb{1}\{\operatorname{sgn}(y') \neq y\}$$

What makes sense to bound $R_P(f)$ with?

empirical risk + error terms

True risk vs. empirical risk

$$R_P(\mathbf{f}^*) = \frac{1}{n} \sum_i (f_i^* - y_i)^2$$

$$\widehat{R}_P(\mathbf{f}^*) = \frac{1}{n_I} \sum_{i \in I} (f_i^* - y_i)^2$$

We look for the bound in the form

$$R_P(\mathbf{f}^*) \leq \widehat{R}_P(\mathbf{f}^*) + \text{errors}$$

errors = transductive + inductive

Bounding inductive error (using classical SLT tools)

With probability $1 - \eta$, using Equations 3.15 and 3.24 [Vap95]

$$R_P(f) \leq \frac{1}{n} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) + \Delta_I(\mathbf{h}, \mathbf{n}, \eta).$$

 $n \equiv$ number of samples, $h \equiv VC$ dimension of the class

$$\Delta_I(h,n,\eta) = \frac{h(\ln(2n/h)+1) - \ln(\eta/4)}{n}$$

How to bound $\mathcal{L}(f(\mathbf{x}_i), y_i)$? For any $y_i \in \{-1, 1\}$ and ℓ_i^*

$$\mathcal{L}(f(\mathbf{x}_i), y_i) \leq \mathcal{L}(f(\mathbf{x}_i), \operatorname{sgn}(\ell_i^*)) + (\ell_i^* - y_i)^2.$$

Bounding transductive error (using stability analysis)

http://www.cs.nyu.edu/~mohri/pub/str.pdf

How to bound $(\ell_i^* - y_i)^2$?

Bounding $(\ell_i^{\star} - y_i)^2$ for hard case difficult \rightarrow we bound soft HFS:

$$oldsymbol{\ell}^\star = \min_{oldsymbol{\ell} \in \mathbb{R}^n} \, (oldsymbol{\ell} - \mathbf{y})^\mathsf{T} \mathbf{C} (oldsymbol{\ell} - \mathbf{y}) + oldsymbol{\ell}^\mathsf{T} \mathbf{Q} oldsymbol{\ell}$$

Closed form solution

$$\ell^\star = \left(\mathbf{C}^{-1}\mathbf{Q} + \mathbf{I} \right)^{-1}\mathbf{y}$$

Bounding transductive error

$$oldsymbol{\ell}^\star = \min_{oldsymbol{\ell} \in \mathbb{R}^n} \, (oldsymbol{\ell} - \mathbf{y})^\mathsf{T} \mathbf{C} (oldsymbol{\ell} - \mathbf{y}) + oldsymbol{\ell}^\mathsf{T} \mathbf{Q} oldsymbol{\ell}$$

Think about stability of this solution.

Consider two datasets differing in exactly one labeled point.

$$\mathcal{C}_1 = \mathbf{C}_1^{-1}\mathbf{Q} + \mathbf{I}$$
 and $\mathcal{C}_2 = \mathbf{C}_2^{-1}\mathbf{Q} + \mathbf{I}$

What is the maximal difference in the solutions?

$$\begin{split} \boldsymbol{\ell}_2^{\star} - \boldsymbol{\ell}_1^{\star} &= \mathcal{C}_2^{-1} \mathbf{y}_2 - \mathcal{C}_1^{-1} \mathbf{y}_1 \\ &= \mathcal{C}_2^{-1} (\mathbf{y}_2 - \mathbf{y}_1) - \left(\mathcal{C}_2^{-1} - \mathcal{C}_1^{-1} \right) \mathbf{y}_1 \\ &= \mathcal{C}_2^{-1} (\mathbf{y}_2 - \mathbf{y}_1) - \left(\mathcal{C}_1^{-1} \left[\left(\mathbf{C}_1^{-1} - \mathbf{C}_2^{-1} \right) \mathbf{Q} \right] \mathcal{C}_2^{-1} \right) \mathbf{y}_1 \end{split}$$

Note that $\mathbf{v} \in \mathbb{R}^{n \times 1}$, $\lambda_m(A) \|\mathbf{v}\|_2 \leq \|A\mathbf{v}\|_2 \leq \lambda_M(A) \|\mathbf{v}\|_2$

$$\|\boldsymbol{\ell}_{2}^{\star} - \boldsymbol{\ell}_{1}^{\star}\|_{2} = \frac{\|\mathbf{y}_{2} - \mathbf{y}_{1}\|_{2}}{\lambda_{m}(\mathcal{C}_{2})} + \frac{\lambda_{M}(\mathbf{Q})\|\mathbf{C}_{1}^{-1} - \mathbf{C}_{2}^{-1}\|_{2} \cdot \|\mathbf{y}_{1}\|_{2}}{\lambda_{m}(\mathcal{C}_{2})\lambda_{m}(\mathcal{C}_{1})}$$

Bounding transductive error

$$oldsymbol{\ell}^\star = \min_{oldsymbol{\ell} \in \mathbb{R}^n} \, (oldsymbol{\ell} - \mathbf{y})^\mathsf{T} \mathbf{C} (oldsymbol{\ell} - \mathbf{y}) + oldsymbol{\ell}^\mathsf{T} \mathbf{Q} oldsymbol{\ell}$$

$$\|\ell_2^{\star} - \ell_1^{\star}\|_2 = \frac{\|\mathbf{y}_2 - \mathbf{y}_1\|_2}{\lambda_m(\mathcal{C}_2)} + \frac{\lambda_M(\mathbf{Q})\|\mathbf{C}_1^{-1} - \mathbf{C}_2^{-1}\|_2 \cdot \|\mathbf{y}_1\|_2}{\lambda_m(\mathcal{C}_2)\lambda_m(\mathcal{C}_1)}$$

Using
$$\lambda_{\textit{m}}(\mathcal{C}) \geq \frac{\lambda_{\textit{m}}(\mathbf{Q})}{\lambda_{\textit{M}}(\mathbf{C})} + 1$$

$$\|\boldsymbol{\ell}_{2}^{\star} - \boldsymbol{\ell}_{1}^{\star}\|_{2} = \frac{\|\mathbf{y}_{2} - \mathbf{y}_{1}\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C}_{1})} + 1} + \frac{\lambda_{M}(\mathbf{Q})\|\mathbf{C}_{1}^{-1} - \mathbf{C}_{2}^{-1}\|_{2} \cdot \|\mathbf{y}_{1}\|_{2}}{\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C}_{2})} + 1\right)\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C}_{1})} + 1\right)}$$

Bounding transductive error

$$\beta = \|\boldsymbol{\ell}_{2}^{\star} - \boldsymbol{\ell}_{1}^{\star}\|_{2} = \frac{\|\mathbf{y}_{2} - \mathbf{y}_{1}\|_{2}}{\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C}_{1})} + 1} + \frac{\lambda_{M}(\mathbf{Q})\|\mathbf{C}_{1}^{-1} - \mathbf{C}_{2}^{-1}\|_{2} \cdot \|\mathbf{y}_{1}\|_{2}}{\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C}_{2})} + 1\right)\left(\frac{\lambda_{m}(\mathbf{Q})}{\lambda_{M}(\mathbf{C}_{1})} + 1\right)}$$

Now let us plug in the values for our problem.

Take $c_l = 1$ and $c_l > c_u$. We have $|y_i| \leq 1$ and $|\ell_i^{\star}| \leq 1$.

$$\beta = 2 \left[\frac{\sqrt{2}}{\lambda_m(\mathbf{Q}) + 1} + \sqrt{2n_l} \frac{1 - \sqrt{c_u}}{\sqrt{c_u}} \frac{\lambda_M(\mathbf{Q})}{(\lambda_m(\mathbf{Q}) + 1)^2} \right]$$

 ${f Q}$ is reg. ${f L}$: $\lambda_m({f Q})=\lambda_m({f L})+\gamma_g$ and $\lambda_M({f Q})=\lambda_M({f L})+\gamma_g$

$$\beta \leq 2 \left[\frac{\sqrt{2}}{\gamma_g + 1} + \sqrt{2n_l} \frac{1 - \sqrt{c_u}}{\sqrt{c_u}} \frac{\lambda_M(\mathbf{L}) + \gamma_g}{\gamma_g^2 + 1} \right]$$

Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf

By the generalization bound of Belkin [BMN04]

$$R_P^W(\ell^*) \leq \widehat{R}_P^W(\ell^*) + \underbrace{\beta + \sqrt{\frac{2\ln(2/\delta)}{n_l}}(n_l\beta + 4)}_{\text{transductive error }\Delta_T(\beta, n_l, \delta)}$$

$$\beta \leq 2 \left[\frac{\sqrt{2}}{\gamma_{\sigma} + 1} + \sqrt{2n_l} \frac{1 - \sqrt{c_u}}{\sqrt{c_u}} \frac{\lambda_M(\mathbf{L}) + \gamma_g}{\gamma_{\sigma}^2 + 1} \right]$$

holds with probability $1 - \delta$, where

$$R_P^W(\ell^*) = \frac{1}{n} \sum_{i} (\ell_i^* - y_i)^2$$

$$\widehat{R}_P^W(\ell^\star) \; = \; \frac{1}{n_I} \sum_{i \in I} (\ell_i^\star - y_i)^2.$$

Bounding transductive error

$$R_{P}^{W}(\ell^{\star}) \leq \widehat{R}_{P}^{W}(\ell^{\star}) + \underbrace{\beta + \sqrt{\frac{2\ln(2/\delta)}{n_{I}}}(n_{I}\beta + 4)}_{\text{transductive error } \Delta_{T}(\beta, n_{I}, \delta)}$$
$$\beta \leq 2 \left[\frac{\sqrt{2}}{\gamma_{g} + 1} + \sqrt{2n_{I}} \frac{1 - \sqrt{c_{u}}}{\sqrt{c_{u}}} \frac{\lambda_{M}(\mathbf{L}) + \gamma_{g}}{\gamma_{g}^{2} + 1} \right]$$

Does the bound say anything useful?

- 1) The error is controlled.
- **2)** Practical when error $\Delta_T(\beta, n_l, \delta)$ decreases at rate $O(n_l^{-\frac{1}{2}})$. Achieved when $\beta = O(1/n_l)$. That is, $\gamma_{\sigma} = \Omega(n_l^{\frac{3}{2}})$.

We have an idea how to set $\gamma_g!$

Combining inductive + transductive error

With probability $1 - (\eta + \delta)$.

$$R_P(f) \leq \frac{1}{n} \sum_i \mathcal{L}(f(\mathbf{x}_i), \operatorname{sgn}(\ell_i^*)) + \widehat{R}_P^W(\ell^*) + \Delta_T(\beta, n_I, \delta) + \Delta_I(h, n, \eta)$$

We need to account for ε . With probability $1 - (\eta + \delta)$.

$$\begin{split} R_P(f) \leq & \frac{1}{n} \sum_{i: |\ell_i^{\star}| \geq \varepsilon} \mathcal{L}(f(\mathbf{x}_i), \operatorname{sgn}(\ell_i^{\star})) + \frac{2\varepsilon n_{\varepsilon}}{n} + \\ & \widehat{R}_P^{W}(\ell^{\star}) + \Delta_T(\beta, n_I, \delta) + \Delta_I(h, n, \eta) \end{split}$$

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and **linear** \mathcal{K} only changes the slope

MMGC for 2D data and linear ${\cal K}$ works as we want

SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and **cubic** \mathcal{K} is also not so good

SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF \mathcal{K}

SSL with Graphs

Graph-based SSL is obviously sensitive to graph construction!

Offline learning setup

Given $\{\mathbf{x}_i\}_{i=1}^n$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll n$, find $\{y_i\}_{i=n_l+1}^n$ (transductive) or find f predicting y well beyond that (inductive).

Online learning setup

At the beginning: $\{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ from \mathbb{R}^d At time t:

receive \mathbf{x}_t

predict y_t

Online HFS: Straightforward solution

- 1: **while** new unlabeled example \mathbf{x}_t comes **do**
- 2: Add \mathbf{x}_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t
- 4: Infer labels

$$\mathbf{f}_{u} = \left(\mathbf{L}_{uu} + \frac{\gamma_{g}}{\mathbf{I}}\right)^{-1} \left(\mathbf{W}_{ul}\mathbf{f}_{l}\right)$$

- 5: Predict $\hat{y}_t = \operatorname{sgn}(\mathbf{f}_u(t))$
- 6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?

Let's keep only *k* vertices!

Limit memory to k centroids with $\tilde{\mathbf{W}}^{\mathrm{q}}$ weights.

Each centroids represents several others.

Diagonal $V \equiv multiplicity$. We have V_{ii} copies of centroid i.

Can we compute it compactly? Compact harmonic solution.

$$\ell^{
m q} = (\mathbf{L}_{uu}^{
m q} + \gamma_{
m g} V)^{-1} \mathbf{W}_{ul}^{
m q} \ell_{l} \quad ext{where} \quad \mathbf{W}^{
m q} = V ilde{\mathbf{W}}^{
m q} V$$

Proof? Using electric circuits.

Why do we keep the multiplicities?

Online HFS with Graph Quantization

- 1: Input
- 2: **k** number of representative nodes
- 3: Initialization
- 4: **V** matrix of multiplicities with 1 on diagonal
- 5: **while** new unlabeled example \mathbf{x}_t comes **do**
- 6: Add \mathbf{x}_t to graph G
- 7: **if** # nodes > k **then**
- 8: quantize G
- 9: end if
- 10: Update \mathbf{L}_t of $G(\mathbf{VWV})$
- 11: Infer labels
- 12: Predict $\hat{y}_t = \operatorname{sgn}(\mathbf{f}_u(t))$
- 13: end while

An idea: incremental k-centers

Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to k centers $C_t = \{\mathbf{c}_1, \mathbf{c}_2, \dots\}$ with

- ▶ Distance $\mathbf{c}_i, \mathbf{c}_i \in C_t$ is at least $\geq R$
- ▶ For each new \mathbf{x}_t , distance to some $\mathbf{c}_i \in C_t$ is less than R.
- $|C_t| \leq k$
- ▶ if not possible, *R* is doubled

Doubling algorithm [Cha+97]

To reduce growth of R, we use $R = m \times R$, with $m \ge 1$

 C_t is changing. How far can **x** be from some **c**?

$$R + \frac{R}{m} + \frac{R}{m^2} + \dots = R\left(1 + \frac{1}{m} + \frac{1}{m^2} + \dots\right) = \frac{Rm}{m-1}$$

Guarantees: $(1 + \varepsilon)$ -approximation algorithm.

Why not incremental k-means?

Online k-centers

```
1: an unlabeled \mathbf{x}_t, a set of centroids C_{t-1}, multiplicities \mathbf{v}_{t-1}
 2: if (|C_{t-1}| = k+1) then
 3: R \leftarrow mR
     greedily repartition C_{t-1} into C_t such that:
 5:
             no two vertices in C_t are closer than R
            for any \mathbf{c}_i \in C_{t-1} exists \mathbf{c}_i \in C_t such that d(\mathbf{c}_i, \mathbf{c}_i) < R
 6:
         update \mathbf{v}_t to reflect the new partitioning
 8: else
 9: C_t \leftarrow C_{t-1}
10: \mathbf{v}_t \leftarrow \mathbf{v}_{t-1}
11: end if
12: if \mathbf{x}_t is closer than R to any \mathbf{c}_i \in C_t then
13: \mathbf{v}_t(i) \leftarrow \mathbf{v}_t(i) + 1
14: else
15: \mathbf{v}_t(|C_t|+1) \leftarrow 1
```


16: end if

Michal Valko

michal.valko@inria.fr

sequel.lille.inria.fr

SequeL - INRIA Lille

MVA 2014/2015