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Previous Lecture

I Manifold learning with Laplacian Eigenmaps
I Semi-Supervised Learning

I Why and when it helps?
I Self-training
I Semi-supervised SVMs

I Graph-based semi-supervised learning
I SSL with MinCuts
I Gaussian random fields and harmonic solution
I Regularization of harmonic solution
I Soft-harmonic solution
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This Lecture

I Inductive and transductive semi-supervised learning
I Manifold regularization
I Theory of Laplacian-based manifold methods
I Transductive learning stability based bounds
I SSL Learnability
I Online Semi-Supervised Learning
I Online incremental k-centers
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Previous Lab Session

I 3. 2. 2015 by Daniele.Calandriello@inria.fr
I Content

I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation

I Short written report (graded, each lab around 5% of grade)
I Questions to Daniele.Calandriello@inria.fr
I Deadline: 17. 2. 2015 Today!
I http://researchers.lille.inria.fr/~calandri/ta/graphs/td1_handout.pdf
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Next Lab Session

I 24. 2. 2015 by Daniele.Calandriello@inria.fr
I Content

I Semi-supervised learning
I Graph quantization
I Online face recognizer
I 3 volunteers (Linux, Max, Windows)
I Install OpenCV (instructions: few days before the lab)
I record a video with faces

I Short written report (graded, each lab around 5% of grade)
I Questions to Daniele.Calandriello@inria.fr
I Deadline: 10. 3. 2015
I http://researchers.lille.inria.fr/~calandri/ta/graphs/td2_handout.pdf

Michal Valko – Graphs in Machine Learning Lecture 5 - 5/41

mailto:Daniele.Calandriello@inria.fr
mailto:Daniele.Calandriello@inria.fr
http://researchers.lille.inria.fr/~calandri/ta/graphs/td2_handout.pdf


Final Class projects

I preferred option: you come up with the topic

I list of suggested topics from March

I theory/implementation/review or a combination

I one or two people per project (exceptionally three)

I grade: report + short presentation of the team

I deadlines soon

Michal Valko – Graphs in Machine Learning Lecture 5 - 6/41



Advanced Learning for Text and Graph Data
Time: Wednesdays 8h30-11h30 — 4 lectures and 3 Labs
Place: Polytechnique / Amphi Sauvy
Lecturer 1: Michalis Vazirgiannis (Polytechnique)
Lecturer 2: Yassine Faihe (Hewlett-Packard - Vertica)

ALTeGraD and Graphs in ML run in parallel
The two graph courses are coordinated to be complementary.

Some of covered graph topics not covered in this course
I Ranking algorithms and measures (Kendal Tau, NDCG)
I Advanced graph generators
I Community mining, advanced graph clustering
I Graph degeneracy (k-core & extensions)
I Privacy in graph mining

http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/

contenus-/advanced-learning-for-text-and-graph-data-altegrad--239506.

kjsp?RH=1242430202531
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Where we left off

Semi-supervised learning with graphs:

min
f
(
∈{±1}nl+nu

) (∞)

nl∑
i=1

wij (f (xi)− yi)
2 + λ

nl+nu∑
i ,j=1

(f (xi)− f (xj))
2

Regularized harmonic Solution:

fu = (Luu + γg I)−1 (Wul fl)

Unconstrained regularization in general:

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.

They are transductive.

What if a new point xnl+nu+1 arrives? also called out-of-sample extension

Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X 7→ R
Allow f (xi) 6= yi . Why? To deal with noise.

Solution: Manifold Regularization
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SSL with Graphs: Manifold Regularization

General (S)SL objective:

min
f

nl∑
i

V (xi , yi , f (xi)) + λΩ(f )

Want to control f , also for the out-of-sample data, i.e., everywhere.

Ω(f ) = λ2fTLf + λ1

∫
x∈X

f (x)2 dx

For general kernels:

min
f ∈HK

nl∑
i

V (xi , yi , f (xi)) + λ1‖f ‖K + λ2fTLf
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SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖K + λ2fTLf

Representer Theorem for Manifold Regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines
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SSL with Graphs: Laplacian SVMs

f ? = arg min
f ∈HK

nl∑
i

max (0, 1− yf (x)) + λ1‖f ‖K + λ2fTLf

Allows us to learn a function in RKHS, i.e., RBF kernels.
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SSL with Graphs: Laplacian SVMs
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SSL with Graphs: Laplacian SVMs

f ? = arg min
f ∈HK

nl∑
i

max (0, 1− yf (x)) + λ1‖f ‖K + λ2fTLf

HK is nice and expressive.

Can there be a problem with certain HK?

We look for f only in HK.
If it is simple (e.g., linear) minimization of fTLf can perform badly.

Consider again this 2D data and linear K.

Michal Valko – Graphs in Machine Learning Lecture 5 - 14/41



SSL with Graphs: Laplacian SVMs
Linear K ≡ functions with slope α1 and intercept α2.

min
α1,α2

nl∑
i

V (f , xi , yi) + λ1
[
α2

1 + α2
2
]
+ λ2fTLf

For this simple case we can write down fTLf explicitly.

fTLf =
1
2
∑
i ,j

wij(f (xi)− f (xj))
2

=
1
2
∑
i ,j

wij(α1(xi1 − xj1) + α2(xi2 − xj2))
2

=
α2

1
2

∑
i ,j

wij(xi1 − xj1)
2

︸ ︷︷ ︸
∆=218.351

+
α2

2
2

∑
i ,j

wij(xi2 − xj2)
2

︸ ︷︷ ︸
∆=218.351
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SSL with Graphs: Laplacian SVMs
2D data and linear K objective

min
α1,α2

nl∑
i

V (f , xi , yi) +

(
λ1 +

λ2∆

2

)
[α2

1 + α2
2]

Setting λ? =
(
λ1 +

γ2∆
2

)
:

min
α1,α2

nl∑
i

V (f , xi , yi) + λ?[α2
1 + α2

2]

The only influence of unlabeled data is through λ?.

The same value of the objective as for supervised learning for some
λ without the unlabeled data! This is not good.
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SSL with Graphs: Laplacian SVMs

MR for 2D data and linear K only changes the slope

What would we like to see?

We use the unlabeled data before optimizing HK!
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SSL with Graphs: Max-Margin Graph Cuts
Let’s take the confident data and use them as true!

f ? = min
f ∈HK

∑
i :|`?i |≥ε

V (f , xi , sgn(`?i )) + γ‖f ‖2K

s.t. `? = arg min
`∈Rn

`T(L + γg I)`

s.t. `i = yi for all i = 1, . . . , nl

Wait, but this is what we did not like in self-training!

Will we get into the same trouble?

Representer theorem still cool:

f ?(x) =
∑

i :
∣∣f ?

i
∣∣≥ε

α?
i K(xi , x)
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SSL with Graphs: Generalization Bounds
Why is this not a witchcraft? We take GC as an example. MR or HFS are similar.

What kind of guarantees we want?

We may want to bound the risk

RP(f ) = EP(x) [L (f (x) , y (x))]

for some loss, e.g., 0/1 loss

L(y ′, y)=1{sgn(y ′) 6=y}

What makes sense to bound RP(f ) with?

empirical risk + error terms
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SSL with Graphs: Generalization Bounds

True risk vs. empirical risk

RP(f?) =
1
n
∑

i
(f ?i − yi)

2

R̂P(f?) =
1
nl

∑
i∈l

(f ?i − yi)
2

We look for the bound in the form

RP(f?) ≤ R̂P(f?) + errors

errors = transductive + inductive
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SSL with Graphs: Generalization Bounds
Bounding inductive error (using classical SLT tools)

With probability 1− η, using Equations 3.15 and 3.24 [Vap95]

RP(f ) ≤
1
n
∑

i
L(f (xi), yi) + ∆I(h, n, η).

n ≡ number of samples , h ≡ VC dimension of the class

∆I(h, n, η) =
h(ln(2n/h) + 1)− ln(η/4)

n

How to bound L(f (xi), yi)? For any yi ∈ {−1, 1} and `?i

L(f (xi), yi) ≤ L(f (xi), sgn(`?i )) + (`?i − yi)
2.
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SSL with Graphs: Generalization Bounds

Bounding transductive error (using stability analysis)

http://www.cs.nyu.edu/~mohri/pub/str.pdf

How to bound (`?i − yi)
2?

Bounding (`?i − yi)
2 for hard case difficult → we bound soft HFS:

`? = min
`∈Rn

(`− y)TC(`− y) + `TQ`

Closed form solution

`? =
(
C−1Q + I

)−1 y
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SSL with Graphs: Generalization Bounds
Bounding transductive error

`? = min
`∈Rn

(`− y)TC(`− y) + `TQ`

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point.
C1 = C−1

1 Q + I and C2 = C−1
2 Q + I

What is the maximal difference in the solutions?

`?2 − `?1 = C−1
2 y2 − C−1

1 y1

= C−1
2 (y2 − y1)−

(
C−1

2 − C−1
1

)
y1

= C−1
2 (y2 − y1)−

(
C−1

1
[(

C−1
1 − C−1

2
)

Q
]
C−1

2
)

y1

Note that v ∈ Rn×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM (A)‖v‖2

‖`?2 − `?1‖2 =
‖y2 − y1‖2
λm(C2)

+
λM(Q)‖C−1

1 − C−1
2 ‖2 · ‖y1‖2

λm(C2)λm(C1)
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SSL with Graphs: Generalization Bounds

Bounding transductive error

`? = min
`∈Rn

(`− y)TC(`− y) + `TQ`

‖`?2 − `?1‖2 =
‖y2 − y1‖2
λm(C2)

+
λM(Q)‖C−1

1 − C−1
2 ‖2 · ‖y1‖2

λm(C2)λm(C1)

Using λm(C) ≥ λm(Q)
λM(C) + 1

‖`?2 − `?1‖2 =
‖y2 − y1‖2
λm(Q)
λM(C1)

+ 1
+

λM(Q)‖C−1
1 − C−1

2 ‖2 · ‖y1‖2(
λm(Q)
λM(C2)

+ 1
)(

λm(Q)
λM(C1)

+ 1
)
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SSL with Graphs: Generalization Bounds
Bounding transductive error

β = ‖`?2 − `?1‖2 =
‖y2 − y1‖2
λm(Q)
λM(C1)

+ 1
+

λM(Q)‖C−1
1 − C−1

2 ‖2 · ‖y1‖2(
λm(Q)
λM(C2)

+ 1
)(

λm(Q)
λM(C1)

+ 1
)

Now let us plug in the values for our problem.

Take cl = 1 and cl > cu . We have |yi | ≤ 1 and |`?i | ≤ 1.

β = 2
[ √

2
λm(Q) + 1 +

√
2nl

1−√cu√cu

λM(Q)

(λm(Q) + 1)2

]

Q is reg. L: λm(Q) = λm(L) + γg and λM(Q) = λM(L) + γg

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1−√cu√cu

λM(L) + γg
γ2

g + 1

]
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SSL with Graphs: Generalization Bounds
Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf

By the generalization bound of Belkin [BMN04]

RW
P (`?) ≤ R̂W

P (`?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1−√cu√cu

λM(L) + γg
γ2

g + 1

]
holds with probability 1− δ, where

RW
P (`?) =

1
n
∑

i
(`?i − yi)

2

R̂W
P (`?) =

1
nl

∑
i∈l

(`?i − yi)
2.
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SSL with Graphs: Generalization Bounds
Bounding transductive error

RW
P (`?) ≤ R̂W

P (`?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1−√cu√cu

λM(L) + γg
γ2

g + 1

]
Does the bound say anything useful?

1) The error is controlled.

2) Practical when error ∆T (β, nl , δ) decreases at rate O(n− 1
2

l ).
Achieved when β=O(1/nl). That is, γg =Ω(n

3
2
l ).

We have an idea how to set γg !
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SSL with Graphs: Generalization Bounds
Combining inductive + transductive error

With probability 1− (η + δ).

RP(f ) ≤
1
n
∑

i
L(f (xi), sgn(`?i )) +

R̂W
P (`?) + ∆T (β, nl , δ) + ∆I(h, n, η)

We need to account for ε. With probability 1− (η + δ).

RP(f ) ≤
1
n
∑

i :
∣∣`?i ∣∣≥ε

L(f (xi), sgn(`?i )) +
2εnε

n +

R̂W
P (`?) + ∆T (β, nl , δ) + ∆I(h, n, η)
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and linear K only changes the slope

MMGC for 2D data and linear K works as we want
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic K is also not so good
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SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF K
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SSL with Graphs

Graph-based SSL is obviously sensitive to graph construction!
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Online SSL with Graphs
Offline learning setup
Given {xi}ni=1 from Rd and {yi}nl

i=1, with nl � n, find {yi}ni=nl+1
(transductive) or find f predicting y well beyond that (inductive).

Online learning setup
At the beginning: {xi , yi}nl

i=1 from Rd

At time t:
receive xt
predict yt
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Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example xt comes do
2: Add xt to graph G(W)
3: Update Lt
4: Infer labels

fu = (Luu + γg I)−1 (Wul fl)

5: Predict ŷt = sgn (fu (t))
6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?
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Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroids represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2: k number of representative nodes
3: Initialization
4: V matrix of multiplicities with 1 on diagonal
5: while new unlabeled example xt comes do
6: Add xt to graph G
7: if # nodes > k then
8: quantize G
9: end if

10: Update Lt of G(VWV)
11: Infer labels
12: Predict ŷt = sgn (fu (t))
13: end while
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Online SSL with Graphs: Graph Quantization

An idea: incremental k-centers

Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to k centers Ct = {c1, c2, . . . } with

I Distance ci , cj ∈ Ct is at least ≥ R
I For each new xt , distance to some ci ∈ Ct is less than R.
I |Ct | ≤ k
I if not possible, R is doubled
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization

Doubling algorithm [Cha+97]

To reduce growth of R, we use R = m × R, with m ≥ 1

Ct is changing. How far can x be from some c?

R +
R
m +

R
m2 + · · · = R

(
1 +

1
m +

1
m2 + · · ·

)
=

Rm
m − 1

Guarantees: (1 + ε)-approximation algorithm.

Why not incremental k-means?
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Online SSL with Graphs: Graph Quantization
Online k-centers

1: an unlabeled xt , a set of centroids Ct−1, multiplicities vt−1
2: if (|Ct−1| = k + 1) then
3: R ← mR
4: greedily repartition Ct−1 into Ct such that:
5: no two vertices in Ct are closer than R
6: for any ci ∈ Ct−1 exists cj ∈ Ct such that d(ci , cj) < R
7: update vt to reflect the new partitioning
8: else
9: Ct ← Ct−1

10: vt ← vt−1
11: end if
12: if xt is closer than R to any ci ∈ Ct then
13: vt(i)← vt(i) + 1
14: else
15: vt(|Ct |+ 1)← 1
16: end if
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