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Previous Lecture

I resistive networks
I recommendation score as a resistance?
I Laplacian and resistive networks
I computation of effective resistance

I geometry of the data and the connectivity

I spectral clustering
I connectivity vs. compactness
I MinCut, RatioCut, NCut
I spectral relaxations

I manifold learning
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This Lecture

I manifold learning with Laplacian Eigenmaps

I Gaussian random fields and harmonic solution

I Graph-based semi-supervised learning and manifold
regularization

I Theory of Laplacian-based manifold methods

I Transductive learning

I SSL Learnability
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Previous Lab Session

I 3. 2. 2015 by Daniele.Calandriello@inria.fr
I Content

I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation

I Short written report (graded, each lab around 5% of grade)
I Hint: Order 2.1, 2.6 (find the bend), 2.2, 2.3, 2.4, 2.5
I Questions to Daniele.Calandriello@inria.fr
I Deadline: 17. 2. 2015
I http://researchers.lille.inria.fr/~calandri/ta/graphs/td1_handout.pdf
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Advanced Learning for Text and Graph Data
Time: Wednesdays 8h30-11h30 — 4 lectures and 3 Labs
Place: Polytechnique / Amphi Sauvy
Lecturer 1: Michalis Vazirgiannis (Polytechnique)
Lecturer 2: Yassine Faihe (Hewlett-Packard - Vertica)

ALTeGraD and Graphs in ML run in parallel
The two graph courses are coordinated to be complementary.

Some of covered graph topics not covered in this course
I Ranking algorithms and measures (Kendal Tau, NDCG)
I Advanced graph generators
I Community mining, advanced graph clustering
I Graph degeneracy (k-core & extensions)
I Privacy in graph mining

http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/

contenus-/advanced-learning-for-text-and-graph-data-altegrad--239506.

kjsp?RH=1242430202531
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PhD proposal at CMU and JIE

▪ SYSU-CMU Joint Institute of Engineering (JIE) in Guangzhou, China: 
▪ International environment, English working language 

▪ Fully-funded PhD positions available at SYSU-CMU JIE: 
▪ Single-degree program at SYSU in Guangzhou, China 
▪ Double-degree program (selective) 

▪ 2 years at CMU, Pittsburgh 
▪ rest of the time at JIE in Guangzhou, China 

▪ Fundamental research with applications in: 
▪ Supercomputing & Big Data 
▪ Biomedical applications 
▪ Autonomous driving 
▪ Smart grids and power systems 

▪ Contact: paweng@cmu.edu

A New Engineering School
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Manifold Learning: Recap

problem: definition reduction/manifold learning
Given {xi}ni=1 from Rd find {yi}ni=1 in Rm, where m� d .

I What do we know about the dimensionality reduction
I representation/visualization (2D or 3D)
I an old example: globe to a map
I often assuming M⊂ Rd

I feature extraction
I linear vs. nonlinear dimensionality reduction

I What do we know about linear linear vs. nonlinear methods?

I linear: ICA, PCA, SVD, ...
I nonlinear often preserve only local distances
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Manifold Learning: Linear vs. Non-linear
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Manifold Learning: Preserving (just) local distances

d(yi , yj) = d(xi , xj) only if d(xi , xj) is small

min
∑

ij
wij‖yi − yj‖2

Looks familiar?
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Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = λDf

Step 2: Assign m new coordinates:

xi 7→ (f2(i), . . . , fm(i))

Note1: we need to get m smallest eigenvectors
Note2: f1 is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
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Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

min
f

fTLf s.t. fi ∈ R, fTD1 = 0, fTDf = 1

The meaning for constraints is similar as for spectral clustering:

fTDf = 1 is for scaling

fTD1 = 0 is to not get v1

What is the solution?
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Manifold Learning: Example

http://www.mathworks.com/matlabcentral/fileexchange/

36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning
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Semi-supervised learning: How is it possible?

This is how children learn! hypothesis
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Semi-supervised learning (SSL)

SSL problem: definition
Given {xi}ni=1 from Rd and {yi}nl

i=1, with nl � n, find {yi}ni=nl+1
(transductive) or find f predicting y well beyond that (inductive).

Some facts about SSL
I assumes that the unlabeled data is useful
I works with data geometry assumptions

I cluster assumption - low-density separation
I manifold assumption
I smoothness assumptions, generative models, . . .

I now it helps now, now it does not (sic)
I provable cases when it helps

I inductive or transductive/out-of-sample extension
http://olivier.chapelle.cc/ssl-book/discussion.pdf
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SSL: Self-Training

Michal Valko – Graphs in Machine Learning Lecture 4 - 15/43



SSL: Overview: Self-Training

SSL: Self-Training
Input: L = {xi , yi}nl

i=1 and U = {xi}ni=nl+1 Repeat:
I train f using L
I apply f to (some) U and add them to L

What are the properties of self-training?
I its a wrapper method
I heavily depends on the the internal classifier
I some theory exist for specific classifiers
I nobody uses it anymore
I errors propagate (unless the cluster are well separated)
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SSL: Self-Training: Bad Case
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SSL: Transductive SVM: S3VM
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SSL: Transductive SVM: Classical SVM

Linear case: f = wTx + b → we look for (w, b)

max-margin classification

max
w,b

1
‖w‖

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

max-margin classification

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1− ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM
max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1− ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl

Unconstrained formulation:

min
w,b

l∑
i

max (1− yi (wTxi + b) , 0) + λ‖w‖2

In general?

min
w,b

l∑
i

V (xi , yi , f (xi)) + λΩ(f )
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SSL: Transductive SVM: Unlabeled Examples

min
w,b

nl∑
i

max (1− yi (wTxi + b) , 0) + λ‖w‖2

How to incorporate unlabeled examples?

No y ’s for unlabeled x.

Prediction of f for (any) x? ŷ = sgn (f (x)) = sgn (wTx + b)

Pretending that sgn (f (x)) is true . . .

V (x, ŷ , f (x)) = max (1− ŷ (wTx + b) , 0)
= max (1− sgn (wTx + b) (wTx + b) , 0)
= max (1− |wTx + b| , 0)
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SSL: Transductive SVM: Hinge and Hat Loss

What is the difference in the objectives?

Hinge loss penalizes? the margin of being on the wrong side

Hat loss penalizes? predicting in the margin
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SSL: Transductive SVM: S3VM

This what we wanted!
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SSL: Transductive SVM: Formulation

Main SVM idea stays: penalize the margin

min
w,b

nl∑
i=1

max (1− yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=l+1

max (1− |wTxi + b| , 0)

What is the loss and what is the regularizer?

min
w,b

nl∑
i=1

max (1− yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=l+1

max (1− |wTxi + b| , 0)

Think of unlabeled data as the regularizers for your classifiers!
Practical hint: Additionally enforce the class balance.
Another problem: Optimization is difficult.
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SSL with Graphs: Prehistory
Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph
Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

*following some insights from vision research in 1980s
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
Where is the link? connected classes, not necessarily compact

What is the formal statement? We look for f (x) ∈ {±1}

cut = wij

nl+nu∑
i ,j=1

(f (xi)− f (xj))
2 = Ω(f )

Why (f (xi)− f (xj))
2 and not |f (xi)− f (xj)|? It does not matter.
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SSL with Graphs: MinCut
We look for f (x) ∈ {±1}

Ω(f ) =
nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

Clustering was unsupervised, here we have supervised data.

Recall the general objective framework:

min
w,b

l∑
i

V (xi , yi , f (xi)) + λΩ(f )

It would be nice if we match the prediction on labeled data:

V (x, y , f (x)) =∞
nl∑

i=1
(f (x)− y)2
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SSL with Graphs: MinCut
Final objective function:

min
f ∈{±1}nl+nu

∞
nl∑

i=1
(f (x)− y)2 + λ

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

This is an integer program :(

Can we solve it? It still just MinCut. Are we happy?

There are six solutions. All equivalent.
We need a better way to reflect the confidence.
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SSL with Graphs: Harmonic Functions
Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.
Idea 2: Find a smooth one. (Harmonic solution)
Harmonic SSL
1): As before we constrain f to match the supervised data:

f (xi) = yi ∀i ∈ {1, . . . , nl}

2): We enforce the solution f to be harmonic.

f (xi) =

∑
i∼j f (xj)wij∑

i∼j wij
∀i ∈ {nl + 1, . . . , nu + nl}
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SSL with Graphs: Harmonic Functions
The harmonic solution is obtained from the mincut one . . .

min
f ∈{±1}nl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

. . . if we just relax the integer constraints to be real . . .

min
f ∈Rnl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

. . . or equivalently (note that f (xi) = fi ) . . .

min
f ∈Rnl+nu

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

s.t. yi = f (xi) ∀i = 1, . . . , nl
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SSL with Graphs: Harmonic Functions

Properties of the relaxation from ±1 to R

I there is a closed form solution for f
I this solution is unique
I globally optimal
I it is either constant or has a maximum /minimum on a

boundary
I f (xi) may not be discrete

I but we can threshold it
I random walk interpretation
I electric networks interpretation
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SSL with Graphs: Harmonic Functions

Random walk interpretation:
1) start from the vertex to label and follow
2) P(j |i) = wij∑

k wik
≡ P = D−1W

3) finish when the labeled vertex is hit
absorbing random walk

fi = probability of reaching a positive labeled vertex
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SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation

Step 1: Set f (xi) = yi for i = 1, . . . , nl
Step 2: Propagate iteratively (only for unlabeled)

f (xi)←
∑

i∼j f (xj)wij∑
i∼j wij

∀i ∈ {nl + 1, . . . , nu + nl}

Properties:
I this will converge to the harmonic solution
I we can set the initial values for unlabeled nodes arbitrarily
I an interesting option for large-scale data
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f (x1), . . . , f (xnl+nu)) = (f1, . . . , fnl+nu)

Ω(f ) =
nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2 = fTLf

L is a (nl + nu)× (nl + nu) matrix:

L =

[
Lll Llu
Lu1 Luu

]
How to compute this constrained minimization problem?

Yes, Lagrangian multipliers are an option, but . . .

Michal Valko – Graphs in Machine Learning Lecture 4 - 35/43



SSL with Graphs: Harmonic Functions
Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

(Lf)u = 0

In matrix notation[
Lll Llu
Lul Luu

] [
fl
fu

]
=

[
0l
0u

]
fl is constrained to be yl and for fu . . . . . .

Lul fl + Luufu = 0u

. . . from which we get

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl).
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SSL with Graphs: Harmonic Functions
Can we see that this calculate the probability of a random walk?

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl)

Note that P = D−1W. Then equivalently

fu = (I− Puu)
−1Pul fl .

Split the equation into +ve & -ve part:

fi = (I− Puu)
−1
iu Pul fl

=
∑

j:yj=1
(I− Puu)

−1
iu Puj︸ ︷︷ ︸

p(+1)
i

−
∑

j:yj=−1
(I− Puu)

−1
iu Puj︸ ︷︷ ︸

p(−1)
i

= p(+1)
i − p(−1)

i
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SSL with Graphs: Regularized Harmonic Functions

fi = |fi |︸︷︷︸
confidence

× sgn(fi)︸ ︷︷ ︸
label

What if a nasty outlier sneaks in?

The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?
Allow the random walk to die!

We add a sink to the graph.

sink = artificial label node with value 0

We connect it to every other vertex.

What will this do to our predictions?
depends on the weigh on the edges

Michal Valko – Graphs in Machine Learning Lecture 4 - 38/43



SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

fu = (Luu + γg I)−1 (Wul fl)

How does γg influence HS?

What happens to sneaky outliers?

Michal Valko – Graphs in Machine Learning Lecture 4 - 39/43



SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with Q = L + γg I:

min
f∈Rnl+nu

∞
nl∑

i=1
wij (f (xi)− yi)

2 + λfTQf

What if we do not really believe that f (xi) = yi , ∀i?

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

C is diagonal with Cii =

{
cl for labeled examples
cu otherwise.

y ≡ pseudo-targets with yi =

{
true label for labeled examples
0 otherwise.
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SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for soft.
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SSL with Graphs: Regularized Harmonic Functions
Larger implications of random walks

random walk relates to commute distance which should satisfy

(?) Vertices in the same cluster of the graph have a small
commute distance, whereas two vertices in different clusters of the
graph have a “large” commute distance.

Do we have this property for HS? What if n→∞?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the
commute distance http://www.informatik.uni-hamburg.de/ML/contents/

people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf

Solutions? 1) γg 2) amplified commute distance 3) Lp 4) L? . . .

The goal of these solutions: make them remember!
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