

# **Graphs in Machine Learning**

Michal Valko

INRIA Lille - Nord Europe, France

Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton

February 10, 2015 MVA 2014/2015

#### **Previous Lecture**

- resistive networks
  - recommendation score as a resistance?
  - Laplacian and resistive networks
  - computation of effective resistance
- geometry of the data and the connectivity
- spectral clustering
  - connectivity vs. compactness
  - MinCut, RatioCut, NCut
  - spectral relaxations
- manifold learning



#### This Lecture

- manifold learning with Laplacian Eigenmaps
- Gaussian random fields and harmonic solution
- Graph-based semi-supervised learning and manifold regularization
- ► Theory of Laplacian-based manifold methods
- Transductive learning
- SSL Learnability



#### **Previous Lab Session**

- 3. 2. 2015 by Daniele.Calandriello@inria.fr
- Content
  - Graph Construction
  - ▶ Test sensitivity to parameters:  $\sigma$ , k,  $\varepsilon$
  - Spectral Clustering
  - Spectral Clustering vs. k-means
  - ► Image Segmentation
- ► Short written report (graded, each lab around 5% of grade)
- ▶ Hint: Order 2.1, 2.6 (find the bend), 2.2, 2.3, 2.4, 2.5
- Questions to Daniele.Calandriello@inria.fr
- Deadline: 17. 2. 2015
- http://researchers.lille.inria.fr/~calandri/ta/graphs/td1\_handout.pdf



# **Advanced Learning for Text and Graph Data**

Time: Wednesdays 8h30-11h30 — 4 lectures and 3 Labs

Place: Polytechnique / Amphi Sauvy

Lecturer 1: Michalis Vazirgiannis (Polytechnique)

Lecturer 2: Yassine Faihe (Hewlett-Packard - Vertica)

ALTeGraD and Graphs in ML run in parallel

The two graph courses are coordinated to be complementary.

Some of covered graph topics not covered in this course

- Ranking algorithms and measures (Kendal Tau, NDCG)
- Advanced graph generators
- Community mining, advanced graph clustering
- Graph degeneracy (k-core & extensions)
- Privacy in graph mining

http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/contenus-/advanced-learning-for-text-and-graph-data-altegrad--239506.

kjsp?RH=1242430202531



### PhD proposal at CMU and JIE



### A New Engineering School

- SYSU-CMU Joint Institute of Engineering (JIE) in Guangzhou, China:
  - International environment, English working language
- Fully-funded PhD positions available at SYSU-CMU JIE:
  - Single-degree program at SYSU in Guangzhou, China
  - Double-degree program (selective)
    - 2 years at CMU, Pittsburgh
    - rest of the time at JIE in Guangzhou, China
- Fundamental research with applications in:
  - Supercomputing & Big Data
  - Biomedical applications
  - Autonomous driving
  - Smart grids and power systems
- Contact: paweng@cmu.edu



AT-SEN UNIVERSITY Carnegie Mellon University

### Manifold Learning: Recap

### problem: definition reduction/manifold learning

Given  $\{\mathbf{x}_i\}_{i=1}^n$  from  $\mathbb{R}^d$  find  $\{\mathbf{y}_i\}_{i=1}^n$  in  $\mathbb{R}^m$ , where  $m \ll d$ .

- ► What do we know about the dimensionality reduction
  - representation/visualization (2D or 3D)
  - an old example: globe to a map
  - lacktriangledown often assuming  $\mathcal{M}\subset\mathbb{R}^d$
  - feature extraction
  - linear vs. nonlinear dimensionality reduction
- What do we know about linear linear vs. nonlinear methods?
  - ▶ linear: ICA, PCA, SVD, ...
  - nonlinear often preserve only local distances



# Manifold Learning: Linear vs. Non-linear

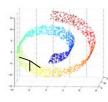


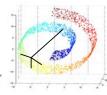


# Manifold Learning: Preserving (just) local distances









$$d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j)$$
 only if  $d(\mathbf{x}_i, \mathbf{x}_j)$  is small

$$\min \sum_{ij} w_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

Looks familiar?



### Manifold Learning: Laplacian Eigenmaps

**Step 1:** Solve generalized eigenproblem:

$$Lf = \lambda Df$$

**Step 2:** Assign *m* new coordinates:

$$\mathbf{x}_i \mapsto (f_2(i), \dots, f_m(i))$$

**Note**<sub>1</sub>: we need to get m smallest eigenvectors

Note<sub>2</sub>:  $f_1$  is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM\_NC\_03.pdf



### Manifold Learning: Laplacian Eigenmaps to 1D

#### Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{1} = \mathbf{0}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{f} = \mathbf{1}$$

The meaning for constraints is similar as for spectral clustering:

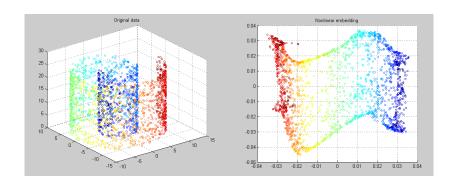
$$f^{\mathsf{T}}Df=1$$
 is for scaling

$$\mathbf{f}^{\mathsf{T}}\mathbf{D}\mathbf{1}=0$$
 is to not get  $\mathbf{v}_1$ 

What is the solution?



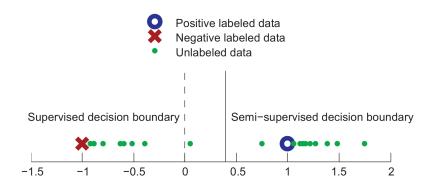
### Manifold Learning: Example



http://www.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning



### Semi-supervised learning: How is it possible?



This is how children learn! hypothesis



# Semi-supervised learning (SSL)

#### SSL problem: definition

Given  $\{\mathbf{x}_i\}_{i=1}^n$  from  $\mathbb{R}^d$  and  $\{y_i\}_{i=1}^{n_l}$ , with  $n_l \ll n$ , find  $\{y_i\}_{i=n_l+1}^n$  (transductive) or find f predicting y well beyond that (inductive).

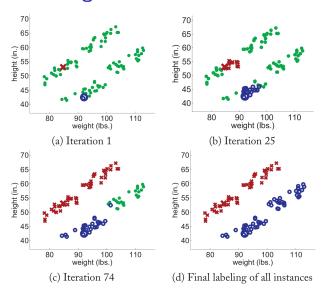
#### Some facts about SSL

- assumes that the unlabeled data is useful
- works with data geometry assumptions
  - cluster assumption low-density separation
  - manifold assumption
  - smoothness assumptions, generative models, . . .
- now it helps now, now it does not (sic)
  - provable cases when it helps
- inductive or transductive/out-of-sample extension

http://olivier.chapelle.cc/ssl-book/discussion.pdf



### **SSL: Self-Training**





# **SSL: Overview: Self-Training**

### **SSL: Self-Training**

**Input:**  $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_i}$  and  $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_i+1}^n$  Repeat:

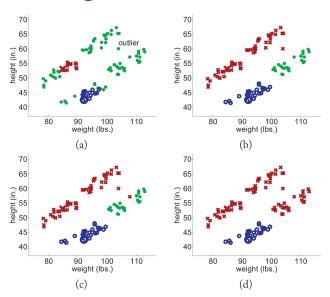
- ightharpoonup train f using  $\mathcal{L}$
- ▶ apply f to (some)  $\mathcal{U}$  and add them to  $\mathcal{L}$

#### What are the properties of self-training?

- its a wrapper method
- heavily depends on the the internal classifier
- some theory exist for specific classifiers
- nobody uses it anymore
- errors propagate (unless the cluster are well separated)

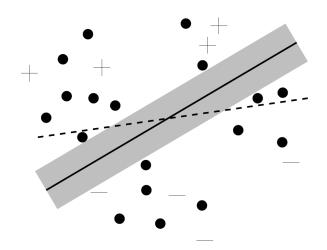


### SSL: Self-Training: Bad Case





### SSL: Transductive SVM: S3VM





#### SSL: Transductive SVM: Classical SVM

Linear case:  $f = \mathbf{w}^\mathsf{T} \mathbf{x} + b \rightarrow \text{we look for } (\mathbf{w}, b)$ 

#### max-margin classification

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|}$$
s.t.  $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 \quad \forall i = 1, \dots, n_l$ 

#### max-margin classification

$$\begin{aligned} & \min_{\mathbf{w},b} & \|\mathbf{w}\|^2 \\ & s.t. & y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 & \forall i = 1,\dots,n_I \end{aligned}$$



#### SSL: Transductive SVM: Classical SVM

#### max-margin classification: separable case

$$\min_{\mathbf{w},b} \ \|\mathbf{w}\|^2$$

s.t. 
$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i+b)\geq 1 \quad \forall i=1,\ldots,n_l$$

#### max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \quad \frac{\lambda}{\|\mathbf{w}\|^2} + \sum_{i} \frac{\xi_i}{\xi_i}$$

s.t. 
$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1, \dots, n_l$$
  
 $\xi_i > 0 \quad \forall i = 1, \dots, n_l$ 



#### SSL: Transductive SVM: Classical SVM

#### max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \quad \lambda \|\mathbf{w}\|^2 + \sum_{i} \xi_{i}$$
s.t. 
$$y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i} \quad \forall i = 1, \dots, n_{l}$$

$$\xi_{i} \geq 0 \quad \forall i = 1, \dots, n_{l}$$

Unconstrained formulation:

$$\min_{\mathbf{w},b} \sum_{i}^{I} \max \left(1 - y_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|^{2}$$

In general?

$$\min_{\mathbf{w},b} \sum_{i}^{I} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda \Omega(f)$$



### SSL: Transductive SVM: Unlabeled Examples

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} \max \left(1 - y_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|^{2}$$

How to incorporate unlabeled examples?

No y's for unlabeled x.

Prediction of 
$$f$$
 for (any)  $\mathbf{x}$ ?  $\hat{y} = \operatorname{sgn}(f(\mathbf{x})) = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$ 

Pretending that  $sgn(f(\mathbf{x}))$  is true . . .

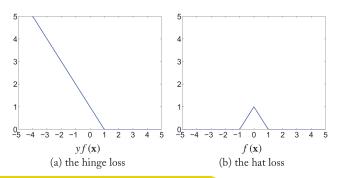
$$V(\mathbf{x}, \hat{y}, f(\mathbf{x})) = \max (1 - \hat{y} (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b), 0)$$

$$= \max (1 - \operatorname{sgn} (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b) (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b), 0)$$

$$= \max (1 - |\mathbf{w}^{\mathsf{T}} \mathbf{x} + b|, 0)$$



### **SSL:** Transductive SVM: Hinge and Hat Loss



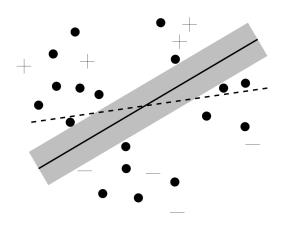
What is the difference in the objectives?

Hinge loss penalizes? the margin of being on the wrong side

Hat loss penalizes? predicting in the margin



### SSL: Transductive SVM: S3VM



This what we wanted!



#### SSL: Transductive SVM: Formulation

Main SVM idea stays: penalize the margin

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max \left(1 - y_i \left(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b\right), 0\right) + \lambda_1 \|\mathbf{w}\|^2 + \lambda_2 \sum_{i=l+1}^{n_l + n_u} \max \left(1 - \left|\mathbf{w}^\mathsf{T} \mathbf{x}_i + b\right|, 0\right)$$

What is the loss and what is the regularizer?

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max (1 - y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b), 0) + \lambda_1 ||\mathbf{w}||^2 + \lambda_2 \sum_{i=l+1}^{n_l+n_u} \max (1 - |\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b|, 0)$$

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.

Another problem: Optimization is difficult.

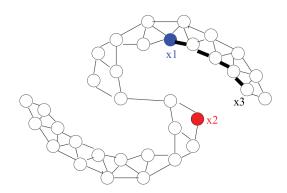


### **SSL** with **Graphs**: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts

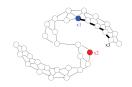
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

\*following some insights from vision research in 1980s





# SSL with Graphs: MinCut



MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact

What is the formal statement? We look for  $f(\mathbf{x}) \in \{\pm 1\}$ 

$$\mathrm{cut} = w_{ij} \sum_{i,j=1}^{n_l+n_u} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \Omega(f)$$

Why  $(f(\mathbf{x}_i) - f(\mathbf{x}_i))^2$  and not  $|f(\mathbf{x}_i) - f(\mathbf{x}_i)|$ ? It does not matter.



# SSL with Graphs: MinCut

We look for  $f(\mathbf{x}) \in \{\pm 1\}$ 

$$\Omega(f) = \sum_{i,j=1}^{n_l + n_u} w_{ij} \left( f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective framework:

$$\min_{\mathbf{w},b} \sum_{i}^{I} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda \Omega(f)$$

It would be nice if we match the prediction on labeled data:

$$V(\mathbf{x}, y, f(\mathbf{x})) = \infty \sum_{i=1}^{n_l} (f(\mathbf{x}) - y)^2$$



# SSL with Graphs: MinCut

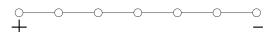
Final objective function:

$$\min_{f \in \{\pm 1\}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}) - y)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it? It still just MinCut.

Are we happy?



There are six solutions. All equivalent.

We need a better way to reflect the confidence.



Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions

http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

\*a seminal paper that convinced people to use graphs for SSL

**Idea 1:** Look for a unique solution.

Idea 2: Find a smooth one. (Harmonic solution)

Harmonic SSL

1): As before we constrain f to match the supervised data:

$$f(\mathbf{x}_i) = y_i \quad \forall i \in \{1, \dots, n_l\}$$

**2):** We enforce the solution f to be harmonic.

$$f(\mathbf{x}_i) = \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim i} w_{ij}} \qquad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$



The harmonic solution is obtained from the mincut one ...

$$\min_{f \in \{\pm 1\}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

... if we just relax the integer constraints to be real ...

$$\min_{f \in \mathbb{R}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

... or equivalently (note that  $f(\mathbf{x}_i) = f_i$ ) ...

$$\min_{f \in \mathbb{R}^{n_l + n_u}} \sum_{i,i=1}^{n_l + n_u} w_{ij} \left( f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

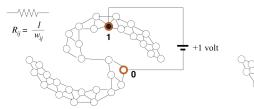
s.t. 
$$v_i = f(\mathbf{x}_i) \quad \forall i = 1, \dots, n_l$$



#### Properties of the relaxation from $\pm 1$ to $\mathbb R$

- ▶ there is a closed form solution for f
- this solution is unique
- globally optimal
- it is either constant or has a maximum /minimum on a boundary
- $ightharpoonup f(\mathbf{x}_i)$  may not be discrete
  - but we can threshold it
- random walk interpretation
- electric networks interpretation







- (a) The electric network interpretation
- (b) The random walk interpretation

#### Random walk interpretation:

- 1) start from the vertex to label and follow
- $\mathbf{P}(j|i) = \frac{w_{ij}}{\sum_{L} w_{ik}} \equiv \mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$
- 3) finish when the labeled vertex is hit absorbing random walk

 $f_i$  = probability of reaching a positive labeled vertex



How to compute HS? Option A: iteration/propagation

**Step 1:** Set  $f(\mathbf{x}_i) = y_i$  for  $i = 1, ..., n_l$ 

**Step 2:** Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

#### Properties:

- ▶ this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data



How to compute HS? Option B: Closed form solution

Define 
$$\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l + n_u})) = (f_1, \dots, f_{n_l + n_u})$$

$$\Omega(f) = \sum_{i,j=1}^{n_l + n_u} w_{ij} \left( f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 = \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f}$$

**L** is a  $(n_l + n_u) \times (n_l + n_u)$  matrix:

$$\mathbf{L} = \left[ \begin{array}{cc} \mathbf{L}_{II} & \mathbf{L}_{Iu} \\ \mathbf{L}_{u1} & \mathbf{L}_{uu} \end{array} \right]$$

How to compute this **constrained** minimization problem?

Yes. Lagrangian multipliers are an option, but . . .



Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

$$(Lf)_u = 0$$

In matrix notation

$$\left[\begin{array}{cc} \mathbf{L}_{II} & \mathbf{L}_{Iu} \\ \mathbf{L}_{uI} & \mathbf{L}_{uu} \end{array}\right] \left[\begin{array}{c} \mathbf{f}_{I} \\ \mathbf{f}_{u} \end{array}\right] = \left[\begin{array}{c} \mathbf{0}_{I} \\ \mathbf{0}_{u} \end{array}\right]$$

 $\mathbf{f}_l$  is constrained to be  $\mathbf{y}_l$  and for  $\mathbf{f}_u$  .....

$$\mathbf{L}_{ul}\mathbf{f}_{l}+\mathbf{L}_{uu}\mathbf{f}_{u}=\mathbf{0}_{u}$$

... from which we get

$$\mathbf{f}_{II} = \mathbf{L}_{III}^{-1}(-\mathbf{L}_{III}\mathbf{f}_{I}) = \mathbf{L}_{IIII}^{-1}(\mathbf{W}_{III}\mathbf{f}_{I}).$$



Can we see that this calculate the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l)$$

Note that  $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ . Then equivalently

$$\mathbf{f}_u = (\mathbf{I} - \mathbf{P}_{uu})^{-1} \mathbf{P}_{ul} \mathbf{f}_l.$$

Split the equation into +ve & -ve part:

$$f_{i} = (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{ul} \mathbf{f}_{l}$$

$$= \sum_{j:y_{j}=1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{uj} - \sum_{j:y_{j}=-1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{uj}$$

$$= p_{i}^{(+1)} - p_{i}^{(-1)}$$



### **SSL** with Graphs: Regularized Harmonic Functions

$$f_i = \underbrace{|f_i|}_{\text{confidence}} \times \underbrace{\operatorname{sgn}(f_i)}_{\text{label}}$$

What if a nasty outlier sneaks in?

The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?

Allow the random walk to die!

We add a sink to the graph.

sink = artificial label node with value 0

We connect it to every other vertex.

What will this do to our predictions?

depends on the weigh on the edges

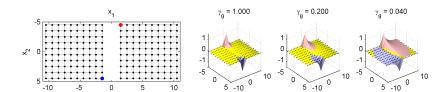


### **SSL** with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

$$\mathbf{f}_{u} = (\mathbf{L}_{uu} + \gamma_{\mathbf{g}} \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_{l})$$

How does  $\gamma_{g}$  influence HS?



What happens to sneaky outliers?



Regularized HS objective with  $\mathbf{Q} = \mathbf{L} + \gamma_{\mathbf{g}} \mathbf{I}$ :

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} w_{ij} \left( f(\mathbf{x}_i) - y_i \right)^2 + \lambda \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{f}$$

What if we do not really believe that  $f(\mathbf{x}_i) = y_i, \forall i$ ?

$$\mathbf{f}^{\star} = \min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{f}$$

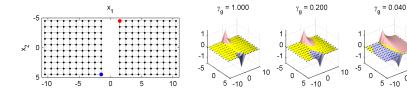
 $\mathbf{C}$  is diagonal with  $C_{ii} = \begin{cases} c_l & \text{for labeled examples} \\ c_u & \text{otherwise.} \end{cases}$   $\mathbf{y} \equiv \text{pseudo-targets with } y_i = \begin{cases} \text{true label} & \text{for labeled examples} \\ 0 & \text{otherwise.} \end{cases}$ 



$$\mathbf{f}^{\star} = \min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{f}$$

Closed form soft harmonic solution:

$$\mathbf{f}^{\star} = (\mathbf{C}^{-1}\mathbf{Q} + \mathbf{I})^{-1}\mathbf{y}$$



What are the differences between hard and soft?

Not much different in practice.

Provable generalization guarantees for soft.



### **SSL** with Graphs: Regularized Harmonic Functions

#### Larger implications of random walks

random walk relates to commute distance which should satisfy

 $(\star)$  Vertices in the same cluster of the graph have a small commute distance, whereas two vertices in different clusters of the graph have a "large" commute distance.

Do we have this property for HS?

What if  $n \to \infty$ ?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the commute distance http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/LuxburgRadlHein2010\_PaperAndSupplement.pdf

Solutions? 1)  $\gamma_g$  2) amplified commute distance 3)  $\mathbf{L}^p$  4)  $\mathbf{L}^{\star}$  ...

The goal of these solutions: make them remember!



Michal Valko

michal.valko@inria.fr

sequel.lille.inria.fr

SequeL - INRIA Lille

MVA 2014/2015