Graphs in Machine Learning

Michal Valko
INRIA Lille - Nord Europe, France

Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle \& Schnell, Daniel Spielman

Previous Lecture

- similarity graphs
- different types
- construction
- sources of graphs
- practical considerations
- spectral graph theory
- Laplacians and their properties
- symmetric and asymetric normalization
- random walks
- recommendation on a bipartite graph

This Lecture

- resistive networks
- recommendation score as a resistance?
- Laplacian and resistive networks
- resistance distance and random walks
- geometry of the data and the connectivity
- spectral clustering
- manifold learning with Laplacians

Next Class: Lab Session

- 3. 2. 2015 by Daniele.Calandriello@inria.fr
- C109 (lab) + C103 (lecture room)
- Matlab
- How many have Matlab?
- How many have Statistical Toolbox with Matlab?
- Short written report (graded)
- Content
- Graph Construction
- Test sensitivity to parameters: σ, k, ε
- Spectral Clustering
- Spectral Clustering vs. k-means
- Image Segmentation

Two PhD student positions on the topic of anomaly detection (mathematical statistics and machine learning) at Uni Potsdam. Anomaly detection: concerned with detecting automatically anomalies in systems (e.g. in hospital monitoring, network intrusion detection, automation of transports, etc).
Uni Potsdam (30 minutes away from Berlin, Germany, by public transports) and universities in nearby Berlin offer a highly motivating and rich research environment.

First Position :

Objective : construct a link between non parametric testing, and anomaly detection, and design new methods for anomaly detection. More axed on theoretical statistics.

Second position :

Objective : design sequential and adaptive methods for anomaly detection, that can detect anomalies in real time. More axed on machine learning.

The PhD candidates will be advised by Dr. Alexandra Carpentier (contact a.carpentier@statslab.cam.ac.uk for more infos).

Use of Laplacians: Movie recommendation

Movie recommendation on a bipartite graph

Question: Do we recommend Une heure de tranquillité to Adam?
Let's compute some score (v, m) !

Laplacians and Resistive Networks

How to compute the $\operatorname{score}(v, m)$?

Idea $_{4}$: view edges as conductors

$\operatorname{score}_{4}(v, m)=$ effective resistance between m and v

$C \equiv$ conductance
$R \equiv$ resistance
$i \equiv$ current
$V \equiv$ voltage

$$
C=\frac{1}{R} \quad i=C V=\frac{V}{R}
$$

Resistive Networks

resistors in series

$$
R=R_{1}+\cdots+R_{n} \quad C=\frac{1}{\frac{1}{C_{1}}+\cdots+\frac{1}{C_{n}}} \quad i=\frac{V}{R}
$$

conductors in parallel

$$
C=C_{1}+\cdots+C_{n} \quad i=V C
$$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let $V_{a b}$ be the voltage between them and $i_{a b}$ the current between them. Define $R_{a b}=\frac{V_{a b}}{i_{a b}}$ and $C_{a b}=\frac{1}{R_{a b}}$.

We treat the entire graph as a resistor!

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1. $R_{a b} \geq 0$
2. $R_{a b}=0$ iff $a=b$
3. $R_{a b}=R_{b a}$
4. $R_{a c} \leq R_{a b}+R_{b c}$

The effective resistance is a distance!

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out

$$
V=\frac{C_{1}}{C} V_{1}+\frac{C_{2}}{C} V_{2}+\frac{C_{3}}{C} V_{3}
$$

$$
\text { residual current }=C V-C_{1} V_{1}-C_{2} V_{2}-C_{3} V_{3}
$$

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_{i}=\sum_{j} c_{i j}=$ sum of conductances

$$
\mathbf{L}_{i j}= \begin{cases}d_{i} & \text { if } i=j \\ -c_{i j} & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbf{v}=$ voltage setting of the nodes on graph.
$(\mathbf{L v})_{i}=$ residual current at \mathbf{v}_{i}
Inverting \equiv injecting current and getting the voltages
The net injected has to be zero - Kirchhoff's Law.

Resistors and the Laplacian: Finding $R_{a b}$

Let's calculate $R_{1 n}$!
$\mathbf{L}\left(\begin{array}{c}0 \\ v_{2} \\ \vdots \\ v_{n-1} \\ 1\end{array}\right)=\left(\begin{array}{c}i \\ 0 \\ \vdots \\ 0 \\ -i\end{array}\right) \quad V=1 \quad R=\frac{1}{i}$
Return $R_{1 n}=\frac{1}{i}$
Doyle and Snell: Random Walks and Electric Networks https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

Resistors and the Laplacian: Finding $R_{1 n}$

$$
\mathbf{L v}=(i, 0, \ldots,-i)^{\top} \equiv \text { boundary valued problem }
$$

For $R_{1 n}$
V_{1} and V_{n} are the boundary
$\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is harmonic
$V_{i} \in$ interior (not boundary)
V_{i} is a convex combination of its neighbors

Resistors and the Laplacian: Finding $R_{1 n}$

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If \mathbf{f} is harmonic then min and max are on the boundary.

$$
\text { Proof: } k \in \circ \Longrightarrow \exists \text { neighbors } V_{i}, V_{j} \text { s.t. } v_{i} \leq v_{k} \leq v_{j}
$$

Uniqueness Principle

If \mathbf{f} and \mathbf{g} are harmonic with the same boundary then $\mathbf{f}=\mathbf{g}$
Proof: $\mathbf{f}-\mathbf{g}$ is harmonic with zero on the boundary
$\Longrightarrow \mathbf{f}-\mathbf{g} \equiv 0 \Longrightarrow \mathbf{f}=\mathbf{g}$

Resistors and the Laplacian: Finding $R_{1 n}$

Alternative method to calculate $R_{1 n}$:
$\mathbf{L v}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0 \\ -1\end{array}\right) \stackrel{\text { def }}{=} \mathbf{i}_{\text {ext }} \quad$ Return $\quad R_{1 n}=v_{1}-v_{n} \quad$ Why?
Question: Does v exist? L does not have an inverse :(.
Solution: Instead of $\mathbf{v}=\mathbf{L}^{-1} \mathbf{i}_{\text {ext }}$ we take $\mathbf{v}=\mathbf{L}^{+} \mathbf{i}_{\text {ext }}$ Moore-Penrose pseudo-inverse solves LS
We get: $R_{1 n}=v_{1}-v_{n}=\mathbf{i}_{\text {ext }}^{\top} \mathbf{v}=\mathbf{i}_{\text {ext }}^{\top} \mathbf{L}^{+} \mathbf{i}_{\text {ext }}$.
Not unique: $\mathbf{1}$ in the nullspace of $\mathbf{L}: \mathbf{L}(\mathbf{v}+c \mathbf{1})=\mathbf{L v}+c \mathbf{L} \mathbf{1}=\mathbf{L} \mathbf{v}$

Application: Clustering

Application: Clustering - Recap

- What do we know about the clustering in general?
- ill defined problem (different tasks \rightarrow different paradigms)
- inconsistent (wrt. Kleinberg's axioms)
- number of clusters k need often be known
- difficult to evaluate
- What do we know about k-means?
- "hard" version of EM clustering
- sensitive to initialization
- optimizes for compactness
- yet: algorithm-to-go

Spectral Clustering: Cuts on graphs

Defining the cut objective we get the clustering!

Spectral Clustering: Cuts on graphs

Defining the cut objective we get the clustering!

Spectral Clustering: Cuts on graphs

Defining the cut objective we get the clustering!
MinCut: $\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i j}$
Are we done?
Can be solved efficiently, but maybe not what we want

Spectral Clustering: Balanced Cuts

Let's balance the cuts!

MinCut

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i j}
$$

RatioCut

$$
\operatorname{RatioCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{|A|}+\frac{1}{|B|}\right)
$$

Normalized Cut

$$
\operatorname{NCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
$$

Spectral Clustering: Balanced Cuts

$$
\begin{gathered}
\operatorname{RatioCut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{|A|}+\frac{1}{|B|}\right) \\
\operatorname{NCut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
\end{gathered}
$$

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!

Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts

$$
\min _{A, B} \operatorname{cut}(A, B) \quad \text { s.t. } \quad|A|=|B|
$$

Graph function \mathbf{f} for cluster membership: $f_{i}= \begin{cases}1 & \text { if } V_{i} \in A, \\ -1 & \text { if } V_{i} \in B .\end{cases}$
What it is the cut value with this definition?

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i, j}=\frac{1}{4} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \mathbf{f}^{\top} \mathbf{L f}
$$

What is the relationship with the smoothness of a graph function?

Spectral Clustering: Relaxing Balanced Cuts

$$
\begin{aligned}
& \quad \operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i, j}=\frac{1}{4} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \mathbf{f}^{\top} \mathbf{L f} \\
& |A|=|B| \Longrightarrow \sum_{i} f_{i}=0 \Longrightarrow \mathbf{f} \perp \mathbf{1}_{n} \\
& \|\mathbf{f}\|=\sqrt{n}
\end{aligned}
$$

objective function of spectral clustering

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i}= \pm 1, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Still NP hard :($\quad \rightarrow \quad$ Relax even further!

Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Rayleigh-Ritz Theorem

If $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvectors of real symmetric \mathbf{M} then

$$
\begin{aligned}
\lambda_{1} & =\min _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\min _{\mathbf{x}^{\top} \mathbf{x}=1} \mathbf{x}^{\top} \mathbf{M} \mathbf{x} \\
\lambda_{n} & =\max _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\max _{\mathbf{x}^{\top} \mathbf{x}=1} \mathbf{x}^{\top} \mathbf{M} \mathbf{x}
\end{aligned}
$$

$\frac{x^{\top} M x}{x^{\top} x} \equiv$ Rayleigh quotient

> How can we use it?

Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Generalized Rayleigh-Ritz Theorem

If $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvectors of real symmetric \mathbf{M} and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ the corresponding orthogonal eigenvalues, then for $k=1: n-1$

$$
\lambda_{k+1}=\min _{\mathbf{x} \neq 0, \mathbf{x} \perp \mathbf{v}_{1}, \ldots \mathbf{v}_{k}} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\min _{\mathbf{x}^{\top} \mathbf{x}=1, \mathbf{x} \perp \mathbf{v}_{1}, \ldots \mathbf{v}_{k}} \mathbf{x}^{\top} \mathbf{M} \mathbf{x}
$$

$$
\lambda_{n-k}=\max _{\mathbf{x} \neq 0, \mathbf{x} \perp \mathbf{v}_{n}, \ldots \mathbf{v}_{n-k+1}} \frac{\mathbf{x}^{\top} \mathbf{M} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\max _{\mathbf{x}^{\top} \mathbf{x}=1, \mathbf{x} \perp \mathbf{v}_{n}, \ldots \mathbf{v}_{n-k+1}} \mathbf{x}^{\top} \mathbf{M} \mathbf{x}
$$

Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering
 $$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|f\|=\sqrt{n}
$$

We have a solution: second eigenvector
How do we get the clustering?
The solution may not be integer. What to do?

$$
\text { cluster }_{i}= \begin{cases}1 & \text { if } f_{i} \geq 0 \\ -1 & \text { if } f_{i}<0\end{cases}
$$

Works but often too simple. In practice: cluster \mathbf{f} using k-means to get $\left\{C_{i}\right\}_{i}$ and assign:

$$
\text { cluster }_{i}= \begin{cases}1 & \text { if } i \in C_{1} \\ -1 & \text { if } i \in C_{-1}\end{cases}
$$

Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

$$
\operatorname{RatioCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{|A|}+\frac{1}{|B|}\right)
$$

Define graph function \mathbf{f} for cluster membership of RatioCut:

$$
\begin{gathered}
f_{i}= \begin{cases}\sqrt{\frac{|B|}{|A|}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{|A|}{|B|}} & \text { if } V_{i} \in B .\end{cases} \\
\mathbf{f}^{\top} \mathbf{L f}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=(|A|+|B|) \operatorname{RatioCut}(A, B)
\end{gathered}
$$

Spectral Clustering: Approximating RatioCut

Define graph function \mathbf{f} for cluster membership of RatioCut:

$$
\begin{gathered}
f_{i}=\left\{\begin{array}{cl}
\sqrt{\frac{|B|}{|A|}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{|A|}{|B|}} & \text { if } V_{i} \in B .
\end{array}\right. \\
\sum_{i} f_{i}=0 \\
\sum_{i} f_{i}^{2}=n
\end{gathered}
$$

objective function of spectral clustering (same)

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{n}, \quad\|\mathbf{f}\|=\sqrt{n}
$$

Spectral Clustering: Approximating NCut

Normalized Cut

$$
\operatorname{NCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
$$

Define graph function \mathbf{f} for cluster membership of NCut:

$$
\begin{array}{cc}
& f_{i}= \begin{cases}\sqrt{\frac{\operatorname{vol}(A)}{\operatorname{vol}(B)}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{\operatorname{vol}(B)}{\operatorname{vol}(A)}} & \text { if } V_{i} \in B .\end{cases} \\
(\mathbf{D f})^{\top} \mathbf{1}_{n}=0 & \mathbf{f}^{\top} \mathbf{D} \mathbf{f}=\operatorname{vol}(V)
\end{array} \mathbf{f}^{\top} \mathbf{L f}=\operatorname{vol}(V) \operatorname{NCut}(A, B) .
$$

objective function of spectral clustering (NCut)

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{D f} \perp \mathbf{1}_{n}, \quad \mathbf{f}^{\top} \mathbf{D f}=\operatorname{vol}(V)
$$

Spectral Clustering: Approximating NCut

 objective function of spectral clustering (NCut)$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{D f} \perp \mathbf{1}_{n}, \quad \mathbf{f}^{\top} \mathbf{D} \mathbf{f}=\operatorname{vol}(V)
$$

Can we apply Rayleigh-Ritz now? \quad Define $\mathbf{w}=\mathbf{D}^{1 / 2} \mathbf{f}$

objective function of spectral clustering (NCut)

$$
\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{D}^{-1 / 2} \mathbf{L} \mathbf{D}^{-1 / 2} \mathbf{w} \quad \text { s.t. } \quad w_{i} \in \mathbb{R}, \mathbf{w} \perp \mathbf{D}^{1 / 2} \mathbf{1}_{n},\|\mathbf{w}\|=\operatorname{vol}(V)
$$

objective function of spectral clustering (NCut)

$\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{L}_{\text {sym }} \mathbf{w} \quad$ s.t. $\quad w_{i} \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1, \mathbf{L}_{\text {sym }}}, \quad\|\mathbf{w}\|=\operatorname{vol}(V)$

Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

$\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{L}_{\text {sym }} \mathbf{w} \quad$ s.t. $\quad w_{i} \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1, \mathbf{L}_{\text {sym }}}, \quad\|\mathbf{w}\|=\operatorname{vol}(V)$

Solution by Rayleigh-Ritz? $\quad \mathbf{w}=\mathbf{v}_{2, \mathbf{L}_{\text {sym }}} \mathbf{f}=\mathbf{D}^{-1 / 2} \mathbf{w}$
\mathbf{f} is a also the second eigenvector of $\mathbf{L}_{\text {rw }}$!
$\mathbf{t l} ; \mathbf{d r}$: Get the second eigenvector of $\mathbf{L} / \mathbf{L}_{\mathrm{rw}}$ for RatioCut/NCut.

Spectral Clustering: Approximation

These are all approximations. How bad can they be?
Pretty bad. Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.

Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of date we can use one vs. the other?
Any disadvantages of spectral clustering?

Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/ publications/Luxburg07_tutorial.pdf

Spectral Clustering: 1D Example - Eigenvectors

Eigenvalues

Eigenvalues

Eigenvector 1

Eigenvector 1

Eigenvector 1 Eigenvector 2

Eigenvector 5

Eigenvector 3

Eigenvector 1 Eigenvector 2

Eigenvector 5

Spectral Clustering: Bibliography

- M. Meila et al. "A random walks view of spectral segmentation". In: Al and Statistics (AISTATS) 57 (2001), p. 5287
- $\mathrm{L}_{\text {sym }}$ Andrew Y Ng, Michael I Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm". In: Advances in Neural Information Processing Systems 14. 2001, pp. 849-856
- L_{rm} J Shi and J Malik. "Normalized Cuts and Image Segmentation". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000), pp. 888-905
- Things can go wrong with the relaxation: Daniel A. Spielman and Shang H. Teng. "Spectral partitioning works: Planar graphs and finite element meshes". In: Linear Algebra and Its Applications 421 (2007), pp. 284-305

Michal Valko

michal.valko@inria.fr

