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Previous Lecture

I similarity graphs
I different types
I construction
I sources of graphs
I practical considerations

I spectral graph theory

I Laplacians and their properties
I symmetric and asymetric normalization

I random walks

I recommendation on a bipartite graph
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This Lecture

I resistive networks
I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks

I geometry of the data and the connectivity

I spectral clustering

I manifold learning with Laplacians
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Next Class: Lab Session
I 3. 2. 2015 by Daniele.Calandriello@inria.fr

I C109 (lab) + C103 (lecture room)

I Matlab
I How many have Matlab?
I How many have Statistical Toolbox with Matlab?

I Short written report (graded)

I Content
I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation

Michal Valko – Graphs in Machine Learning Lecture 3 - 4/36

mailto:Daniele.Calandriello@inria.fr


Two PhD student positions on the topic of anomaly detection
(mathematical statistics and machine learning) at Uni Potsdam.
Anomaly detection : concerned with detecting automatically anomalies in
systems (e.g. in hospital monitoring, network intrusion detection,
automation of transports, etc).
Uni Potsdam (30 minutes away from Berlin, Germany, by public
transports) and universities in nearby Berlin offer a highly motivating and
rich research environment.

First Position :
Objective : construct a link between
non parametric testing, and anomaly
detection, and design new methods
for anomaly detection. More axed
on theoretical statistics.

Second position :
Objective : design sequential and
adaptive methods for anomaly
detection, that can detect anomalies
in real time. More axed on machine
learning.

The PhD candidates will be advised by Dr. Alexandra Carpentier
(contact a.carpentier@statslab.cam.ac.uk for more infos).
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Use of Laplacians: Movie recommendation
Movie recommendation on a bipartite graph

ranking

ranking

ranking

ranking

viewer1

Adam

movieA

La Famille Bélier

movieB

Invincible

viewer2

Barbara

movieC

Une heure de tranquillité

viewer3

Céline

Question: Do we recommend Une heure de tranquillité to Adam?
Let’s compute some score(v ,m)!
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Laplacians and Resistive Networks
How to compute the score(v ,m)?

Idea4: view edges as conductors
score4(v ,m) = effective resistance between m and v

+
−v

i
C

C ≡ conductance

R ≡ resistance

i ≡ current

V ≡ voltage

C =
1
R i = CV =

V
R
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Resistive Networks

resistors in series

R = R1 + · · ·+ Rn C =
1

1
C1

+ · · ·+ 1
Cn

i = V
R

conductors in parallel

C = C1 + · · ·+ Cn i = VC

Effective Resistance on a graph
Take two nodes: a 6= b. Let Vab be the voltage between them and
iab the current between them. Define Rab = Vab

iab
and Cab = 1

Rab
.

We treat the entire graph as a resistor!

Michal Valko – Graphs in Machine Learning Lecture 3 - 8/36



Resistive Networks: Optional Homework (ungraded)

Show that Rab is a metric space.

1. Rab ≥ 0
2. Rab = 0 iff a = b
3. Rab = Rba

4. Rac ≤ Rab + Rbc

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’s Law ≡ flow in = flow out

C1

C2

C3

V1

V

V2 V3

V = C1
C V1 +

C2
C V2 +

C3
C V3

residual current = CV − C1V1 − C2V2 − C3V3
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Resistors: Where is the link with the Laplacian?

General case of the previous! di =
∑

j cij = sum of conductances

Lij =


di if i = j ,
−cij if (i , j) ∈ E ,

0 otherwise.

v = voltage setting of the nodes on graph.

(Lv)i = residual current at vi

Inverting ≡ injecting current and getting the voltages

The net injected has to be zero - Kirchhoff’s Law.
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Resistors and the Laplacian: Finding Rab

Let’s calculate R1n!

L


0
v2
...

vn−1
1

 =


i
0
...
0
−i


i = V

R V = 1 R =
1
i

Return R1n = 1
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R1n

Lv = (i , 0, . . . ,−i)T ≡ boundary valued problem

For R1n

V1 and Vn are the boundary

(v1, v2, . . . , vn) is harmonic

Vi ∈ interior (not boundary)

Vi is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R1n

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle
If f is harmonic then min and max are on the boundary.

Proof: k ∈ ◦ =⇒ ∃ neighbors Vi ,Vj s.t. vi ≤ vk ≤ vj

Uniqueness Principle
If f and g are harmonic with the same boundary then f = g

Proof: f − g is harmonic with zero on the boundary
=⇒ f − g ≡ 0 =⇒ f = g
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Resistors and the Laplacian: Finding R1n

Alternative method to calculate R1n:

Lv =


1
0
...
0
−1

 def
= iext Return R1n = v1 − vn Why?

Question: Does v exist? L does not have an inverse :(.
Solution: Instead of v = L−1iext we take v = L+iext
Moore-Penrose pseudo-inverse solves LS
We get: R1n = v1 − vn = iTextv = iTextL+iext.
Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = Lv
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Application: Clustering
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Application: Clustering - Recap

I What do we know about the clustering in general?
I ill defined problem (different tasks → different paradigms)
I inconsistent (wrt. Kleinberg’s axioms)
I number of clusters k need often be known
I difficult to evaluate

I What do we know about k-means?
I “hard” version of EM clustering
I sensitive to initialization
I optimizes for compactness
I yet: algorithm-to-go
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

IJ

H

K

Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G
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H
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Spectral Clustering: Cuts on graphs
A

B
C

E

D

F

G

IJ

H

K

Defining the cut objective we get the clustering!

MinCut: cut(A,B) =
∑

i∈A,j∈B wij Are we done?
Can be solved efficiently, but maybe not what we want . . . .
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Spectral Clustering: Balanced Cuts
Let’s balance the cuts!

MinCut

cut(A,B) =
∑

i∈A,j∈B
wij

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
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Spectral Clustering: Balanced Cuts

RatioCut(A,B) = cut(A,B)

(
1
|A| +

1
|B|

)
NCut(A,B) = cut(A,B)

(
1

vol(A) +
1

vol(B)

)

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts

min
A,B

cut(A,B) s.t. |A| = |B|

Graph function f for cluster membership: fi =
{

1 if Vi ∈ A,
−1 if Vi ∈ B.

What it is the cut value with this definition?

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

|A| = |B| =⇒
∑

i fi = 0 =⇒ f ⊥ 1n

‖f‖ =
√

n

objective function of spectral clustering

min
f

fTLf s.t. fi = ±1, f ⊥ 1n, ‖f‖ =
√

n

Still NP hard :( → Relax even further!

fi = ±1 → fi ∈ R;
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n

Rayleigh-Ritz Theorem
If λ1 ≤ · · · ≤ λn are the eigenvectors of real symmetric M then

λ1 = min
x 6=0

xTMx
xTx = min

xTx=1
xTMx

λn = max
x 6=0

xTMx
xTx = max

xTx=1
xTMx

xTMx
xTx ≡ Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n

Generalized Rayleigh-Ritz Theorem
If λ1 ≤ · · · ≤ λn are the eigenvectors of real symmetric M and
v1, . . . , vn the corresponding orthogonal eigenvalues, then for
k = 1 : n − 1

λk+1 = min
x 6=0,x⊥v1,...vk

xTMx
xTx = min

xTx=1,x⊥v1,...vk
xTMx

λn−k = max
x 6=0,x⊥vn,...vn−k+1

xTMx
xTx = max

xTx=1,x⊥vn,...vn−k+1
xTMx
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n

We have a solution: second eigenvector
How do we get the clustering?

The solution may not be integer. What to do?

clusteri =

{
1 if fi ≥ 0,
−1 if fi < 0.

Works but often too simple. In practice: cluster f using k-means
to get {Ci}i and assign:

clusteri =

{
1 if i ∈ C1,

−1 if i ∈ C−1.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

fTLf = 1
2

∑
i ,j

wi ,j(fi − fj)2 = (|A|+ |B|)RatioCut(A,B)
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Spectral Clustering: Approximating RatioCut
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

∑
i

fi = 0

∑
i

f 2
i = n

objective function of spectral clustering (same)

min
f

fTLf s.t. fi ∈ R, f ⊥ 1n, ‖f‖ =
√

n
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Spectral Clustering: Approximating NCut

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
Define graph function f for cluster membership of NCut:

fi =


√

vol(A)
vol(B) if Vi ∈ A,

−
√

vol(B)
vol(A) if Vi ∈ B.

(Df)T1n = 0 fTDf = vol(V ) fTLf = vol(V )NCut(A,B)

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1n, fTDf = vol(V )
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1n, fTDf = vol(V )

Can we apply Rayleigh-Ritz now? Define w = D1/2f

objective function of spectral clustering (NCut)

min
w

wTD−1/2LD−1/2w s.t. wi ∈ R,w ⊥ D1/21n, ‖w‖ = vol(V )

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V )
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V )

Solution by Rayleigh-Ritz? w = v2,Lsym f = D−1/2w

f is a also the second eigenvector of Lrw !

tl;dr: Get the second eigenvector of L/Lrw for RatioCut/NCut.
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Pretty bad. Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters
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Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of date we can use one vs. the other?
Any disadvantages of spectral clustering?
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Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf
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Spectral Clustering: 1D Example - Eigenvectors
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Spectral Clustering: Bibliography
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