

Graphs in Machine Learning

Michal Valko

INRIA Lille - Nord Europe, France

Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman

January 20, 2015 MVA 2014/2015

Previous Lecture

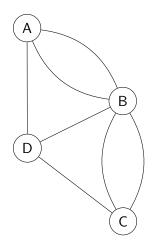
- where do the graphs come from?
 - social, information, utility, and biological networks
 - we create them from the flat data
 - random graph models
- specific applications and concepts
 - maximizing influence on a graph gossip propagation, submodularity
 - google pagerank random surfer process, steady state vector, sparsity
 - online semi-supervised learning label propagation, backbone graph, online learning, combinatorial sparsification, stability analysis
 - ► Erdős number project heavy tails, small world

This Lecture

- similarity graphs
 - different types
 - construction
 - practical considerations
- spectral graph theory
- ► Laplacians and their properties
- random walks
- resistive networks

Graph theory refresher

Graph theory refresher



Graph theory refresher

- 250 years of graph theory
- Seven Bridges of Königsberg (Leonhard Euler, 1735)
- necessary for Eulerian circuit: 0 or 2 nodes of odd degree
- ▶ after bombing and rebuilding there are now 5 bridges in Kaliningrad for the nodes with degrees [2, 2, 3, 3]
- the original problem is solved but not practical http://people.engr.ncsu.edu/mfms/SevenBridges/

Similarity Graphs

Input: $x_1, x_2, x_3, ..., x_n$

- raw data
- ▶ flat data
- vectorial data

Similarity Graphs

Similarity graph: G = (V, E) — (un)weighted

Task 1: For each pair i, j: define a similarity function s_{ij}

Task 2: Decide which edges to include

arepsilon-neighborhood graphs — connect the points with the distances smaller than arepsilon

k-NN neighborhood graphs — take k nearest neighbors Fully connected graphs — consider everything

This is art (not much theory exists).

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf

Similarity Graphs: ε -neighborhood graphs

Edges connect the points with the distances smaller than ε .

- distances are roughly on the same scale (ε)
- lacktriangle weights may not bring additional info ightarrow unweighted
- ightharpoonup equivalent to: similarity function is at least arepsilon
- ▶ theory [Penrose, 1999]: $\varepsilon = ((\log n)/n)^d$ to guarantee connectivity n nodes, d dimension
- ightharpoonup practice: choose ε as the length of the longest edge in the MST minimum spanning tree
 - Q: What could be the problem with this approach?
 - A: Anomalies can make ε too large.

Similarity Graphs: k-nearest neighbors graphs

Edges connect each node to its k-nearest neighbors.

- asymmetric (or directed graph)
 - ▶ option OR: ignore the direction
 - option AND: include if we have both direction (mutual k-NN)
- ▶ $k \approx \log n$ suggested by asymptotics (practice: up to \sqrt{n})
- \blacktriangleright for mutual k-NN we need to take larger k
- ▶ mutual k-NN does not connect regions with different density
- ▶ how to chose k?
- why don't we take k = n 1?
 - space and time
 - manifold considerations (preserving local properties)

Similarity Graphs: Fully connected graphs

Edges connect everything.

- choose a "meaningful" similarity function s
- default choice:

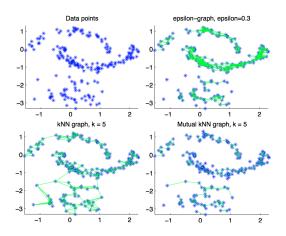
$$s_{ij} = \exp\left(\frac{-\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

- why the exponential decay with the distance?
- $ightharpoonup \sigma$ controls the width of the neighborhoods
 - ightharpoonup similar role as ε
 - ▶ a practical rule of thumb: 10% of the average empirical std
 - \triangleright learn σ_i for each feature independently
- metric learning (a whole field of ML)

Similarity Graphs: Important considerations

- lacktriangle calculate all s_{ij} and threshold has its limits $(n \approx 10000)$
- graph construction step can be a huge bottleneck
- want to go higher? (we often have to)
 - down-sample
 - approximate NN
 - ▶ LSH Locally Sensitive Hashing
 - CoverTrees
 - sometime we may not need the graph (just the final results)
 - yet another story: when we start with a large graph and want to make it sparse (later in the course)
- these rules have little theoretical underpinning
- similarity is very data-dependent

Similarity Graphs: ε or k-NN?



http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/ publications/Luxburg07_tutorial.pdf

Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

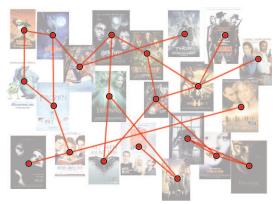
$$s_{ij} = \exp\left(\frac{-\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

Cosine similarity function:

$$s_{ij} = \cos(\theta) = \left(\frac{\mathbf{x}_i^\mathsf{T} \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}\right)$$

Typical Kernels

Similarity Graphs



G = (V, E) - with a set of **nodes** V and a set of **edges** E

Sources of Real Networks

- http://snap.stanford.edu/data/
- ▶ http://www-personal.umich.edu/~mejn/netdata/
- http://proj.ise.bgu.ac.il/sns/datasets.html
- http://www.cise.ufl.edu/research/sparse/matrices/
- http://vlado.fmf.uni-lj.si/pub/networks/data/ default.htm

Eigenwerte und Eigenvektoren

A vector \mathbf{v} is an eigenvector of matrix \mathbf{M} of eigenvalue λ

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$
.

If $(\lambda_1, \mathbf{v}_1)$ are $(\lambda_2, \mathbf{v}_2)$ eigenpairs for symmetric \mathbf{M} with $\lambda_1 \neq \lambda_2$ then $\mathbf{v}_1 \perp \mathbf{v}_2$, i.e., $\mathbf{v}_1^\mathsf{T} \mathbf{v}_2 = 0$.

Proof:
$$\lambda_1 \mathbf{v}_1^\mathsf{T} \mathbf{v}_2 = \mathbf{v}_1^\mathsf{T} \mathbf{M} \mathbf{v}_2 = \mathbf{v}_1^\mathsf{T} \lambda_2 \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^\mathsf{T} \mathbf{v}_2 \implies \mathbf{v}_1^\mathsf{T} \mathbf{v}_2 = 0$$

If (λ, \mathbf{v}_1) are (λ, \mathbf{v}_2) eigenpairs for **M** then $(\lambda, \mathbf{v}_1 + \mathbf{v}_2)$ is as well.

For symmetric M, the multiplicity of λ is the dimension of the space of eigenvectors corresponding to λ .

Every $n \times n$ symmetric matrix has n eigenvalues (w/ multiplicities).

Eigenvalues and Eigenvectors

A vector ${\bf v}$ is an **eigenvector** of matrix ${\bf M}$ of **eigenvalue** λ

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$
.

Vectors $\{\mathbf{v}_i\}_i$ form an **orthonormal** basis with $\lambda_1 \leq \lambda_2 \leq \ldots \lambda_n$.

$$\forall i \quad \mathbf{M} \mathbf{v}_i = \lambda_i \mathbf{v}_i \equiv \mathbf{M} \mathbf{V} = \mathbf{V} \mathbf{\Lambda}$$

V has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying $MV = V\Lambda$ by V^T we get the eigendecomposition of M:

$$\mathbf{M} = \frac{\mathbf{M}\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}}}{=} \sum_{i} \lambda_{i}\mathbf{v}_{i}\mathbf{v}_{i}^{\mathsf{T}}$$

Graph Laplacian

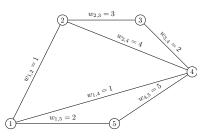
G = (V, E) - with a set of **nodes** V and a set of **edges** E

A adjacency matrixW weight matrix

D (diagonal) degree matrix

 $\mathbf{L} = \mathbf{D} - \mathbf{W}$ graph Laplacian matrix

$$\mathbf{L} = \left(\begin{array}{ccccc} 4 & -1 & 0 & -1 & -2 \\ -1 & 8 & -3 & -4 & 0 \\ 0 & -3 & 5 & -2 & 0 \\ -1 & -4 & -2 & 12 & -5 \\ -2 & 0 & 0 & -5 & 7 \end{array} \right)$$



Properties of Graph Laplacian

Graph function: a vector $\mathbf{f} \in \mathbb{R}^n$ assigning values to nodes:

$$\mathbf{f}:V(G)\to\mathbb{R}.$$

$$\mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq n} w_{i,j} (f_i - f_j)^2 = S_G(\mathbf{f})$$

Proof:

$$\mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{f} - \mathbf{f}^{\mathsf{T}} \mathbf{W} \mathbf{f} = \sum_{i=1}^{n} d_{i} f_{i}^{2} - \sum_{i,j \leq n} w_{i,j} f_{i} f_{j}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_{i} f_{i}^{2} - 2 \sum_{i,j \leq n} w_{i,j} f_{i} f_{j} + \sum_{j=1}^{n} d_{i} f_{j}^{2} \right) = \frac{1}{2} \sum_{i,j \leq n} w_{i,j} (f_{i} - f_{j})^{2}$$

Properties of Graph Laplacian

We assume **non-negative weights**: $w_{ij} \ge 0$.

L is symmetric

L positive semi-definite $\leftarrow \mathbf{f}^{\mathsf{T}}\mathbf{L}\mathbf{f} = \frac{1}{2}\sum_{i,j \leq n} w_{i,j}(f_i - f_j)^2$

Recall: If $\mathbf{Lf} = \lambda \mathbf{f}$ then λ is an **eigenvalue**.

The smallest eigenvalue of L is 0. Corresponding eigenvector: $\mathbf{1}_n$.

All eigenvalues are non-negative reals $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$.

Self-edges do not change the value of L.

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of ${\bf L}$ equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \leq n} w_{i,j} (f_i - f_j)^2$. Therefore, \mathbf{f} is constant on each connected component. If there are k components, then \mathbf{L} is k-block-diagonal:

$$\mathbf{L} = \left[egin{array}{cccc} \mathbf{L}_1 & & & & \ & \mathbf{L}_2 & & & \ & & \ddots & & \ & & & \mathbf{L}_k \end{array}
ight]$$

For block-diagonal matrices: the spectrum is the union of the spectra of L_i (eigenvectors of L_i padded with zeros elsewhere).

For \mathbf{L}_i $(0, \mathbf{1}_{|V_i|})$ is the eigenpair, hence the claim.

Smoothness of the Function and Laplacian

- $\mathbf{f} = (f_1, \dots, f_n)^{\mathsf{T}}$: graph function
- Let $\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
 - Columns of Q are eigenvectors of L.
 - Columns of Q form a basis.
- $ightharpoonup \alpha$: Unique vector such that $\mathbf{Q}\alpha = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}}\mathbf{f} = \alpha$

$$S_G(f) = \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f} = \mathbf{f}^\mathsf{T} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\mathsf{T} \mathbf{f} = \boldsymbol{\alpha}^\mathsf{T} \mathbf{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^n \lambda_i \alpha_i^2$$

Smoothness and regularization: Small value of

(a)
$$S_G(f)$$

(b)
$$\Lambda$$
 norm of α^*

(a)
$$S_G(f)$$
 (b) Λ norm of α^* (c) α_i^* for large λ_i

Smoothness of the Function and Laplacian

$$S_G(f) = \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f} = \mathbf{f}^\mathsf{T} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\mathsf{T} \mathbf{f} = \alpha^\mathsf{T} \mathbf{\Lambda} \alpha = \| \alpha \|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^n \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

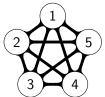
Spectral coordinate of eigenvector \mathbf{v}_k : $\mathbf{Q}^\mathsf{T}\mathbf{v}_k = \mathbf{e}_k$

$$S_G(f) = \mathbf{v}_k^{\mathsf{T}} \mathbf{L} \mathbf{v}_k = \mathbf{v}_k^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{v}_k = \mathbf{e}_k^{\mathsf{T}} \mathbf{\Lambda} \mathbf{e}_k = \|\mathbf{e}_k\|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^n \lambda_i (\mathbf{e}_k)_i^2 = \lambda_k$$

The smoothness of k-th eigenvector is the k-th eigenvalue.

Laplacian of the Complete Graph K_n

What is the eigenspectrum of L_{K_n} ?



$$\mathbf{L}_{K_n} = \left(\begin{array}{ccccc} n-1 & -1 & -1 & -1 & -1 \\ -1 & n-1 & -1 & -1 & -1 \\ -1 & -1 & n-1 & -1 & -1 \\ -1 & -1 & -1 & n-1 & -1 \\ -1 & -1 & -1 & -1 & n-1 \end{array} \right)$$

From before: we know that $(0, \mathbf{1}_n)$ is an eigenpair.

If $\mathbf{v} \neq \mathbf{0}_n$ and $\mathbf{v} \perp \mathbf{1}_n \implies \sum_i \mathbf{v}_i = 0$. To get the other eigenvalues, we compute $(\mathbf{L}_{K_n} \mathbf{v})_1$ and divide by \mathbf{v}_1 (wlog $\mathbf{v}_1 \neq 0$).

$$(\mathbf{L}_{K_n}\mathbf{v})_1=(n-1)\mathbf{v}_1-\sum_{i=2}^n\mathbf{v}_i=n\mathbf{v}_1.$$

What are the remaining eigenvalues/vectors?

Answer: n-1 eigenvectors $\perp 1_n$ for eigenvalue n with multiplicity n-1. Question: What changes for weighted complete graphs?

Normalized Laplacians

$$egin{aligned} & f L_{\it un} = f D - W \ & f L_{\it sym} = f D^{-1/2} f L f D^{-1/2} = f I - f D^{-1/2} f W f D^{-1/2} \ & f L_{\it rw} = f D^{-1} f L = f I - f D^{-1} f W \end{aligned}$$

$$\mathbf{f}^{\mathsf{T}} \mathbf{L}_{sym} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq n} w_{i,j} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2$$

 (λ, \mathbf{u}) is an eigenpair for \mathbf{L}_{rw} iff $(\lambda, \mathbf{D}^{1/2}\mathbf{u})$ is an eigenpair for \mathbf{L}_{sym}

Normalized Laplacians

 \mathbf{L}_{sym} and \mathbf{L}_{rw} are PSD with non-negative real eigenvalues

$$0 = \lambda_1 \le \lambda_2 \le \lambda_3 \le \dots \le \lambda_n$$

 (λ, \mathbf{u}) is an eigenpair for \mathbf{L}_{rw} iff (λ, \mathbf{u}) solve the generalized eigenproblem $\mathbf{L}\mathbf{u} = \lambda \mathbf{D}\mathbf{u}$.

 $(0, \mathbf{1}_n)$ is an eigenpair for \mathbf{L}_{rw} .

 $(0, \mathbf{D}^{1/2}\mathbf{1}_n)$ is an eigenpair for \mathbf{L}_{sym} .

Multiplicity of eigenvalue 0 of \mathbf{L}_{rw} or \mathbf{L}_{sym} equals to the number of connected components.

Proof: As for L.

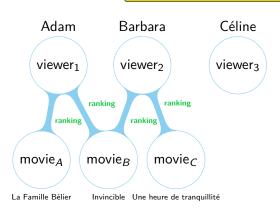
Laplacian and Random Walks on Undirected Graphs

- stochastic process: vertex-to-vertex jumping
- ▶ transition probability $v_i \rightarrow v_j$ is $p_{ij} = w_{ij}/d_i$
 - $ightharpoonup d_i \stackrel{\text{def}}{=} \sum_i w_{ij}$
- ▶ transition matrix $\mathbf{P} = (p_{ii})_{ii} = \mathbf{D}^{-1}\mathbf{W}$ (notice $\mathbf{L}_{rw} = \mathbf{I} \mathbf{P}$)
- ▶ if G is connected and non-bipartite \rightarrow unique **stationary** distribution $\pi = (\pi_1, \pi_2, \pi_3, \dots, \pi_n)$ where $\pi_i = d_i/\text{vol}(V)$
 - $ightharpoonup \operatorname{vol}(G) = \operatorname{vol}(V) = \operatorname{vol}(W) \stackrel{\text{def}}{=} \sum_i d_i = \sum_{i,j} w_{ij}$
- $m \pi = \frac{\mathbf{1}^\mathsf{T} \mathbf{W}}{\mathrm{vol}(\mathbf{W})}$ verifies $\pi \mathbf{P} = \pi$ as:

$$\pi \mathbf{P} = \frac{\mathbf{1}^\mathsf{T} \mathbf{W} \mathbf{P}}{\mathrm{vol}(\mathbf{W})} = \frac{\mathbf{1}^\mathsf{T} \mathbf{D} \mathbf{P}}{\mathrm{vol}(\mathbf{W})} = \frac{\mathbf{1}^\mathsf{T} \mathbf{D} \mathbf{D}^{-1} \mathbf{W}}{\mathrm{vol}(\mathbf{W})} = \frac{\mathbf{1}^\mathsf{T} \mathbf{W}}{\mathrm{vol}(\mathbf{W})} = \pi$$

Use of Laplacians: Movie recommendation

Movie recommendation on a bipartite graph



Question: Do we recommend Une heure de tranquillité to Adam? Let's compute some score(v, m)!

Use of Laplacians: Movie recommendation

How to compute the score(v, m)? Using some graph distance!

Idea₁: maximally weighted path

$$\operatorname{score}(v, m) = \max_{v \neq m} \operatorname{weight}(P) = \max_{v \neq m} \sum_{e \in P} \operatorname{ranking}(e)$$

Problem: If there is a weak edge, then the path is not good.

Idea₂: change the path weight

$$score_2(v, m) = max_{vPm} weight_2(P) = max_{vPm} min_{e \in P} ranking(e)$$

Problem of 1&2: Additional paths does not improve the score.

Idea₃: consider everything

 $score_3(v, m) = max flow from m to v$

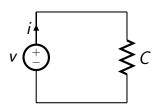
Problem of 3: Shorter paths do not improve the score.

Laplacians and Resistive Networks

How to compute the score(v, m)?

Idea₄: view edges as conductors

 $score_4(v, m) = effective resistance between m and v$



 $C \equiv \text{conductance}$

 $R \equiv \text{resistance}$

 $i \equiv \text{current}$

 $V \equiv \text{voltage}$

$$C = \frac{1}{R}$$
 $i = CV = \frac{V}{R}$

Michal Valko

michal.valko@inria.fr

sequel.lille.inria.fr

SequeL - INRIA Lille

MVA 2014/2015