
January 20, 2015 MVA 2014/2015

Graphs in Machine Learning
Michal Valko
INRIA Lille - Nord Europe, France

Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman

Previous Lecture

I where do the graphs come from?
I social, information, utility, and biological networks
I we create them from the flat data
I random graph models

I specific applications and concepts
I maximizing influence on a graph gossip propagation,

submodularity
I google pagerank random surfer process, steady state

vector, sparsity
I online semi-supervised learning label propagation, backbone

graph, online learning, combinatorial sparsification,
stability analysis

I Erdős number project heavy tails, small world

Michal Valko – Graphs in Machine Learning Lecture 2 - 2/32

This Lecture

I similarity graphs
I different types
I construction
I practical considerations

I spectral graph theory

I Laplacians and their properties

I random walks

I resistive networks

Michal Valko – Graphs in Machine Learning Lecture 2 - 3/32

Graph theory refresher

Michal Valko – Graphs in Machine Learning Lecture 2 - 4/32

Graph theory refresher

A

D

C

B

Michal Valko – Graphs in Machine Learning Lecture 2 - 5/32

Graph theory refresher

I 250 years of graph theory

I Seven Bridges of Königsberg (Leonhard Euler, 1735)

I necessary for Eulerian circuit: 0 or 2 nodes of odd degree

I after bombing and rebuilding there are now 5 bridges in
Kaliningrad for the nodes with degrees [2, 2, 3, 3]

I the original problem is solved but not practical
http://people.engr.ncsu.edu/mfms/SevenBridges/

Michal Valko – Graphs in Machine Learning Lecture 2 - 6/32

http://people.engr.ncsu.edu/mfms/SevenBridges/

Similarity Graphs
Input: x1, x2, x3, . . . , xn

I raw data
I flat data
I vectorial data

Michal Valko – Graphs in Machine Learning Lecture 2 - 7/32

Similarity Graphs

Similarity graph: G = (V ,E) — (un)weighted

Task 1: For each pair i , j : define a similarity function sij

Task 2: Decide which edges to include

ε-neighborhood graphs – connect the points with the distances
smaller than ε

k-NN neighborhood graphs – take k nearest neighbors
Fully connected graphs - consider everything

This is art (not much theory exists).
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf

Michal Valko – Graphs in Machine Learning Lecture 2 - 8/32

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf

Similarity Graphs: ε-neighborhood graphs

Edges connect the points with the distances smaller than ε.

I distances are roughly on the same scale (ε)

I weights may not bring additional info → unweighted

I equivalent to: similarity function is at least ε

I theory [Penrose, 1999]: ε = ((log n)/n)d to guarantee
connectivity n nodes, d dimension

I practice: choose ε as the length of the longest edge in the
MST - minimum spanning tree

I Q: What could be the problem with this approach?
I A: Anomalies can make ε too large.

Michal Valko – Graphs in Machine Learning Lecture 2 - 9/32

Similarity Graphs: k-nearest neighbors graphs

Edges connect each node to its k-nearest neighbors.

I asymmetric (or directed graph)
I option OR: ignore the direction
I option AND: include if we have both direction (mutual k-NN)

I k ≈ log n - suggested by asymptotics (practice: up to
√

n)

I for mutual k-NN we need to take larger k

I mutual k-NN does not connect regions with different density

I how to chose k?

I why don’t we take k = n − 1?
I space and time
I manifold considerations (preserving local properties)

Michal Valko – Graphs in Machine Learning Lecture 2 - 10/32

Similarity Graphs: Fully connected graphs

Edges connect everything.

I choose a “meaningful” similarity function s
I default choice:

sij = exp
(
−‖xi − xj‖2

2σ2

)
I why the exponential decay with the distance?
I σ controls the width of the neighborhoods

I similar role as ε
I a practical rule of thumb: 10% of the average empirical std
I learn σi for each feature independently

I metric learning (a whole field of ML)

Michal Valko – Graphs in Machine Learning Lecture 2 - 11/32

Similarity Graphs: Important considerations

I calculate all sij and threshold has its limits (n ≈ 10000)
I graph construction step can be a huge bottleneck
I want to go higher? (we often have to)

I down-sample
I approximate NN

I LSH - Locally Sensitive Hashing
I CoverTrees

I sometime we may not need the graph (just the final results)
I yet another story: when we start with a large graph and want

to make it sparse (later in the course)
I these rules have little theoretical underpinning
I similarity is very data-dependent

Michal Valko – Graphs in Machine Learning Lecture 2 - 12/32

Similarity Graphs: ε or k-NN?

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf

Michal Valko – Graphs in Machine Learning Lecture 2 - 13/32

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf

Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

sij = exp
(
−‖xi − xj‖2

2σ2

)
Cosine similarity function:

sij = cos(θ) =
(

xT
i xj

‖xi‖‖xj‖

)
Typical Kernels

Michal Valko – Graphs in Machine Learning Lecture 2 - 14/32

Similarity Graphs

G = (V ,E) - with a set of nodes V and a set of edges E

Michal Valko – Graphs in Machine Learning Lecture 2 - 15/32

Sources of Real Networks

I http://snap.stanford.edu/data/

I http://www-personal.umich.edu/~mejn/netdata/

I http://proj.ise.bgu.ac.il/sns/datasets.html

I http://www.cise.ufl.edu/research/sparse/matrices/

I http://vlado.fmf.uni-lj.si/pub/networks/data/

default.htm

Michal Valko – Graphs in Machine Learning Lecture 2 - 16/32

http://snap.stanford.edu/data/
http://www-personal.umich.edu/~mejn/netdata/
http://proj.ise.bgu.ac.il/sns/datasets.html
http://www.cise.ufl.edu/research/sparse/matrices/
http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm

Eigenwerte und Eigenvektoren
A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

If (λ1, v1) are (λ2, v2) eigenpairs for symmetric M with λ1 6= λ2
then v1 ⊥ v2, i.e., vT

1v2 = 0.

Proof: λ1vT
1v2 = vT

1Mv2 = vT
1λ2v2 = λ2vT

1v2 =⇒ vT
1v2 = 0

If (λ, v1) are (λ, v2) eigenpairs for M then (λ, v1 + v2) is as well.

For symmetric M, the multiplicity of λ is the dimension of the
space of eigenvectors corresponding to λ.

Every n× n symmetric matrix has n eigenvalues (w/ multiplicities).

Michal Valko – Graphs in Machine Learning Lecture 2 - 17/32

Eigenvalues and Eigenvectors

A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

Vectors {vi}i form an orthonormal basis with λ1 ≤ λ2 ≤ . . . λn.

∀i Mvi = λivi ≡ MV = VΛ

V has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying MV = VΛ by VT we get the
eigendecomposition of M:

M = MVVT = VΛVT =
∑

i λivivT
i

Michal Valko – Graphs in Machine Learning Lecture 2 - 18/32

Graph Laplacian

G = (V ,E) - with a set of nodes V and a set of edges E

A adjacency matrix
W weight matrix
D (diagonal) degree matrix

L = D−W graph Laplacian matrix

L =


4 −1 0 −1 −2

−1 8 −3 −4 0
0 −3 5 −2 0

−1 −4 −2 12 −5
−2 0 0 −5 7



1

2 3

4

5

w
1,
2
=
1

w2,3 = 3

w
3,4 =

2

w4,5
=
5

w1,5 = 2

w1,4
= 1

w
2,4 = 4

Michal Valko – Graphs in Machine Learning Lecture 2 - 19/32

Properties of Graph Laplacian

Graph function: a vector f ∈ Rn assigning values to nodes:

f : V (G)→ R.

fTLf = 1
2
∑
i ,j≤n

wi ,j(fi − fj)2 = SG(f)

Proof:

fTLf = fTDf − fTWf =
n∑

i=1
di f 2

i −
∑
i,j≤n

wi,j fi fj

=
1
2

 n∑
i=1

di f 2
i − 2

∑
i,j≤n

wi,j fi fj +
n∑

j=1
di f 2

j

 =
1
2
∑
i,j≤n

wi,j(fi − fj)
2

Michal Valko – Graphs in Machine Learning Lecture 2 - 20/32

Properties of Graph Laplacian

We assume non-negative weights: wij ≥ 0.

L is symmetric

L positive semi-definite ← fTLf = 1
2
∑

i ,j≤n wi ,j(fi − fj)2

Recall: If Lf = λf then λ is an eigenvalue.

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1n.

All eigenvalues are non-negative reals 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Self-edges do not change the value of L.

Michal Valko – Graphs in Machine Learning Lecture 2 - 21/32

Properties of Graph Laplacian
The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0, f) is an eigenpair then 0 = 1
2
∑

i ,j≤n wi ,j(fi − fj)2.
Therefore, f is constant on each connected component. If there are
k components, then L is k-block-diagonal:

L =


L1

L2
. . .

Lk


For block-diagonal matrices: the spectrum is the union of the
spectra of Li (eigenvectors of Li padded with zeros elsewhere).

For Li (0, 1|Vi |) is the eigenpair, hence the claim.

Michal Valko – Graphs in Machine Learning Lecture 2 - 22/32

Smoothness of the Function and Laplacian

I f = (f1, . . . , fn)T: graph function
I Let L = QΛQT be the eigendecomposition of the Laplacian.

I Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
I Columns of Q are eigenvectors of L.
I Columns of Q form a basis.

I α: Unique vector such that Qα = f Note: QTf = α

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2
Λ =

n∑
i=1

λiα
2
i

Smoothness and regularization: Small value of

(a) SG(f) (b) Λ norm of α∗ (c) α∗
i for large λi

Michal Valko – Graphs in Machine Learning Lecture 2 - 23/32

Smoothness of the Function and Laplacian

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2Λ =
n∑

i=1
λiα

2
i

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?
Spectral coordinate of eigenvector vk : QTvk = ek

SG(f)=vT
kLvk =vT

kQΛQTvk = eT
kΛek = ‖ek‖2Λ =

n∑
i=1

λi(ek)
2
i = λk

The smoothness of k-th eigenvector is the k-th eigenvalue.

Michal Valko – Graphs in Machine Learning Lecture 2 - 24/32

Laplacian of the Complete Graph Kn
What is the eigenspectrum of LKn?

1

2

3 4

5
LKn =


n − 1 −1 −1 −1 −1
−1 n − 1 −1 −1 −1
−1 −1 n − 1 −1 −1
−1 −1 −1 n − 1 −1
−1 −1 −1 −1 n − 1


From before: we know that (0, 1n) is an eigenpair.

If v 6= 0n and v ⊥ 1n =⇒
∑

i vi = 0. To get the other
eigenvalues, we compute (LKnv)1 and divide by v1 (wlog v1 6= 0).

(LKnv)1 = (n − 1)v1 −
n∑

i=2
vi = nv1.

What are the remaining eigenvalues/vectors?
Answer: n − 1 eigenvectors ⊥ 1n for eigenvalue n with multiplicity n − 1.

Question: What changes for weighted complete graphs?

Michal Valko – Graphs in Machine Learning Lecture 2 - 25/32

Normalized Laplacians

Lun = D−W
Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw = D−1L = I−D−1W

fTLsymf = 1
2
∑
i ,j≤n

wi ,j

(
fi√
di
− fj√

dj

)2

(λ,u) is an eigenpair for Lrw iff (λ,D1/2u) is an eigenpair for Lsym

Michal Valko – Graphs in Machine Learning Lecture 2 - 26/32

Normalized Laplacians
Lsym and Lrw are PSD with non-negative real eigenvalues

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn

.
(λ,u) is an eigenpair for Lrw iff (λ,u) solve the generalized
eigenproblem Lu = λDu.

(0, 1n) is an eigenpair for Lrw .

(0,D1/21n) is an eigenpair for Lsym.

Multiplicity of eigenvalue 0 of Lrw or Lsym equals to the number of
connected components.

Proof: As for L.
Michal Valko – Graphs in Machine Learning Lecture 2 - 27/32

Laplacian and Random Walks on Undirected Graphs
I stochastic process: vertex-to-vertex jumping

I transition probability vi → vj is pij = wij/di

I di
def
=
∑

j wij

I transition matrix P = (pij)ij = D−1W (notice Lrw = I− P)

I if G is connected and non-bipartite → unique stationary
distribution π = (π1, π2, π3, . . . , πn) where πi = di/vol(V)

I vol(G) = vol(V) = vol(W)
def
=
∑

i di =
∑

i,j wij

I π = 1TW
vol(W) verifies πP = π as:

πP =
1TWP
vol(W)

=
1TDP
vol(W)

=
1TDD−1W
vol(W)

=
1TW

vol(W)
= π

Michal Valko – Graphs in Machine Learning Lecture 2 - 28/32

Use of Laplacians: Movie recommendation
Movie recommendation on a bipartite graph

ranking

ranking

ranking

ranking

viewer1

Adam

movieA

La Famille Bélier

movieB

Invincible

viewer2

Barbara

movieC

Une heure de tranquillité

viewer3

Céline

Question: Do we recommend Une heure de tranquillité to Adam?
Let’s compute some score(v ,m)!

Michal Valko – Graphs in Machine Learning Lecture 2 - 29/32

Use of Laplacians: Movie recommendation

How to compute the score(v ,m)? Using some graph distance!

Idea1: maximally weighted path
score(v ,m) = maxvPm weight(P) = maxvPm

∑
e∈P ranking(e)

Problem: If there is a weak edge, then the path is not good.

Idea2: change the path weight
score2(v ,m) = maxvPm weight2(P) = maxvPm mine∈P ranking(e)

Problem of 1&2: Additional paths does not improve the score.

Idea3: consider everything
score3(v ,m) = max flow from m to v

Problem of 3: Shorter paths do not improve the score.

Michal Valko – Graphs in Machine Learning Lecture 2 - 30/32

Laplacians and Resistive Networks
How to compute the score(v ,m)?

Idea4: view edges as conductors
score4(v ,m) = effective resistance between m and v

+
−v

i
C

C ≡ conductance

R ≡ resistance

i ≡ current

V ≡ voltage

C =
1
R i = CV =

V
R

Michal Valko – Graphs in Machine Learning Lecture 2 - 31/32

Michal Valko
michal.valko@inria.fr

sequel.lille.inria.fr
SequeL – INRIA Lille

MVA 2014/2015

