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Previous Lecture

» where do the graphs come from?
» social, information, utility, and biological networks
» we create them from the flat data
» random graph models

» specific applications and concepts

» maximizing influence on a graph gossip propagation,
submodularity

» google pagerank random surfer process, steady state
vector, sparsity

> online semi-supervised learning label propagation, backbone
graph, online learning, combinatorial sparsification,
stability analysis

» ErdGs number project heavy tails, small world

Michal Valko — Graphs in Machine Learning Lecture 2



This Lecture

» similarity graphs
» different types
» construction
> practical considerations

» spectral graph theory
» Laplacians and their properties
» random walks

> resistive networks
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Graph theory refresher

‘MONS REGIVS;PRVSSIA, i

SIVE BORVSSIA, VRBS
MARITIMA, ELEGAN TIS?
SIMA PRINCIPIS SEDES-

Michal Va Graphs in Machi Lecture 2 - 4/32




Graph theory refresher
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Graph theory refresher

» 250 years of graph theory
» Seven Bridges of Konigsberg (Leonhard Euler, 1735)
> necessary for Eulerian circuit: 0 or 2 nodes of odd degree

> after bombing and rebuilding there are now 5 bridges in
Kaliningrad for the nodes with degrees [2,2, 3, 3]

> the original problem is solved but not practical
http://people.engr.ncsu.edu/mfms/SevenBridges/

. brrzia~
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Similarity Graphs
Input: X1,X2,X3,...,Xp
> raw data
> flat data

» vectorial data
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Similarity Graphs

Similarity graph: G = (V, E) — (un)weighted

Task 1: For each pair i, j: define a similarity function s;;
Task 2: Decide which edges to include

e-neighborhood graphs — connect the points with the distances
smaller than ¢

k-NN neighborhood graphs — take k nearest neighbors
Fully connected graphs - consider everything
This is art (not much theory exists).

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

. lrezia~
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Similarity Graphs: s-neighborhood graphs
Edges connect the points with the distances smaller than e.
» distances are roughly on the same scale (¢)
» weights may not bring additional info — unweighted
> equivalent to: similarity function is at least ¢

» theory [Penrose, 1999]: ¢ = ((log n)/n)? to guarantee
con neCtiVity n nodes, d dimension

» practice: choose ¢ as the length of the longest edge in the
MST - minimum spanning tree

» Q: What could be the problem with this approach?
» A: Anomalies can make ¢ too large.

. brezia~
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Similarity Graphs: k-nearest neighbors graphs
Edges connect each node to its k-nearest neighbors.
» asymmetric (or directed graph)

» option OR: ignore the direction
» option AND: include if we have both direction (mutual k-NN)

v

k ~ log n - suggested by asymptotics (practice: up to \/n)

v

for mutual k-NN we need to take larger k

v

mutual k-NN does not connect regions with different density

how to chose k7

v

v

why don't we take k = n— 17
> space and time
» manifold considerations (preserving local properties)

. brezia~
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Similarity Graphs: Fully connected graphs

Edges connect everything.

» choose a “meaningful” similarity function s

2
—x
sy = o (L 510)

why the exponential decay with the distance?

v

default choice:

v

v

o controls the width of the neighborhoods

> similar role as ¢
» a practical rule of thumb: 10% of the average empirical std
> learn o; for each feature independently

» metric learning (a whole field of ML)

. brezia~
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Similarity Graphs: Important considerations

» calculate all s and threshold has its limits (n ~ 10000)

» graph construction step can be a huge bottleneck
» want to go higher? (we often have to)

» down-sample
» approximate NN

> LSH - Locally Sensitive Hashing
» CoverTrees

» sometime we may not need the graph (just the final results)
> yet another story: when we start with a large graph and want
to make it sparse (later in the course)

> these rules have little theoretical underpinning

> similarity is very data-dependent

. brrzia~
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Similarity Graphs: ¢ or k-NN?
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Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

2
i —x,
:p< b~ >

Cosine similarity function:

xXIX;
= 0) = i
s = cos(f) <ux,-u||x,-||)

Typical Kernels

. Cbreia—
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Similarity Graphs
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Sources of Real Networks

> http://snap.stanford.edu/data/

> http://www-personal.umich.edu/~mejn/netdata/

> http://proj.ise.bgu.ac.il/sns/datasets.html

> http://www.cise.ufl.edu/research/sparse/matrices/

> http://vlado.fmf.uni-1j.si/pub/networks/data/
default.htm

IlédzéLA
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Eigenwerte und Eigenvektoren

A vector v is an eigenvector of matrix M of eigenvalue A
Mv = )v.

If (A1,v1) are (A2, v2) eigenpairs for symmetric M with A\; # A
then vi L vy, i.e., vjvp = 0.

Proof: Ajviva = viMvo = viovp = Aovivy = vivp =0

If (A, v1) are (A, vz) eigenpairs for M then (A, v1 + v2) is as well.

For symmetric M, the multiplicity of X is the dimension of the
space of eigenvectors corresponding to A.

Every n x n symmetric matrix has n eigenvalues (w/ multiplicities).

. brezia~
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Eigenvalues and Eigenvectors

A vector v is an eigenvector of matrix M of eigenvalue \
Mv = Av.
Vectors {v;}; form an orthonormal basis with A\; < Ay < ...\,
Vi Mv; = \yv; = MV = VA
V has eigenvectors in columns and A has eigenvalugs on its diagonal.

Right-multiplying MV = VA by VT we get the
eigendecomposition of M:

M= MVV'™ =VAV" =% . \vjv]

. Cbreia—
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Graph Laplacian

G = (V,E) - with a set of nodes V and a set of edges E

A adjacency matrix
w weight matrix
D (diagonal) degree matrix

L=D - W graph Laplacian matrix

wa 3 =3

4 -1 0o -1 -2

-1 8 -3 —4 0

L= 0 -3 5 =2 0
-1 -4 -2 12 -5

-2 0 0 -5 7

. Crzia—~
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Properties of Graph Laplacian

Graph function: a vector f € R" assigning values to nodes:
f:V(G) >R
1
fiLf =3 Z wij(fi — £)? = Se(f)
ij<n
Proof:

fILF=fDf — FTWF =) dif’ — > wifif,

i=1 ij<n
(de2—2zw,,ff+2df2>— > wij(fi—6)°
ij<n ij<n

. bezia~
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Properties of Graph Laplacian

We assume non-negative weights: w;; > 0.
L is symmetric
wij(fi — £)?

L positive semi-definite < f'Lf = %Zugn

Recall: If Lf = Af then X is an eigenvalue.

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1,,.
All eigenvalues are non-negative reals 0 = A1 < Ay < -+ < A

Self-edges do not change the value of L.

. bezia~
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components' indicators.

Proof: If (0,f) is an eigenpair then 0 = %Zi,jgn w; j(fi — 15)2
Therefore, f is constant on each connected component. If there are
k components, then L is k-block-diagonal:

L,
L,

Ly

For block-diagonal matrices: the spectrum is the union of the
spectra of L; (eigenvectors of L; padded with zeros elsewhere).

For L; (0,1y,) is the eigenpair, hence the claim.
.&z’l@
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Smoothness of the Function and Laplacian

> f=(f,...,f)": graph function
> Let L = QAQT be the eigendecomposition of the Laplacian.

» Diagonal matrix A whose diagonal entries are eigenvalues of L.
» Columns of Q are eigenvectors of L.
» Columns of Q form a basis.

> a: Unique vector such that Qo = f Note: Q'f = «

n
Se(f) =fLF = QAQ'f = oA = |aly = > Nief
i=1

Smoothness and regularization: Small value of

(@) Sc(f) (b) A norm of a*  (c) af for large \;

. brezia~
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Smoothness of the Function and Laplacian

n
Se(f) = fTLE = fTQAQTF = a"Aa = [efff = D~ Nia?
i=1

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?

Spectral coordinate of eigenvector vi: QTv, = ey

n
Sc(F)=viLvi=viQAQ"v, = efAe, = [lex[lz = > Ni(ex)7 = M
i=1

The smoothness of k-th eigenvector is the k-th eigenvalue.

-
bezia—
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Laplacian of the Complete Graph K,

What is the eigenspectrum of Lg,?

n-1 -1 -1 -1 -1
1 n-1 -1 -1 -1
Lk, = -1 -1 n-1 -1 -1
-1 -1 -1 n-1 -1
1 -1 -1 -1 n-1

From before: we know that (0,1,) is an eigenpair.

lfv#0,andv 11, = ) ,v; =0. To get the other
eigenvalues, we compute (Lk,v); and divide by vi (wlog vi # 0).
n
(Lx,v)1 = (n—1)v; — Zv,- = nv;.
i=2
What are the remaining eigenvalues/vectors?

Answer: n — 1 eigenvectors 1, for eigenvalue n with multiplicity n — 1

Question: What changes for weighted complete graphs?
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Normalized Laplacians

L,,=D-W
Lsym — D71/2LD71/2 — - Dfl/ZWD71/2
Lw=D"'L=1-D"'W

f}- 2
iyl )

I,J<n

(A, u) is an eigenpair for L, iff (), D1/2u) is an eigenpair for Lgym

. brrzia~
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Normalized Laplacians

Lsym and L,, are PSD with non-negative real eigenvalues
O=AM < <A< <A,

(A, u) is an eigenpair for L, iff (A, u) solve the generalized
eigenproblem Lu = ADu.

(0,1,) is an eigenpair for L.
(0, D1/21,,) is an eigenpair for Lgym.

Multiplicity of eigenvalue 0 of L,, or Ls,, equals to the number of
connected components.

Proof: As for L.

-
bezia—
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Laplacian and Random Walks on Undirected Graphs

> stochastic process: vertex-to-vertex jumping

> transition probability v; — v; is p; = w;;/d;

def

> = > Wi
> transition matrix P = (p;;); = D™!W (notice )
» if G is connected and non-bipartite — unique stationary

distribution © = (w1, m2, 73, ..., m,) where 7; = d;/vol(V)
> vol(G) = vol(V) = vol(W) &' S, di = 32, wy

_ 1w - _ .
T = SolW) verifies 7P = 7 as:

v

_1'WP _ 1'DP _ 1'DD'W _ 1I'W
~ vol(W)  vol(W)  vol(W)  vol(W)

s

=T

. lrezia~
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Use of Laplacians: Movie recommendation

Movie recommendation on a bipartite graph

Adam Barbara Céline
viewery viewers viewers
ranking ranking
ranking ranking

moviex movieg moviec
La Famille Bélier Invincible Une heure de tranquillité

Question: Do we recommend Une heure de tranquillité to Adam?
Let's compute some score(v, m)!
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Use of Laplacians: Movie recommendation

How to compute the score(v, m)? Using some graph distance!

Idea;: maximally weighted path

score(v, m) = max,py, weight(P) = max,pm Y .. p ranking(e)
Problem: If there is a weak edge, then the path is not good.

dea;: change the path weight

scorey(v, m) = max,pp, weight,(P) = max,p, mineep ranking(e)

Problem of 1&2: Additional paths does not improve the score.

Ideas: consider everything

scores(v, m) = max flow from m to v

Problem of 3: Shorter paths do not improve the score.

-
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Laplacians and Resistive Networks

How to compute the score(v, m)?

ldea,: view edges as conductors

score4(v, m) = effective resistance between m and v

I
C = conductance
v § C R = resistance
i = current
V = voltage
1 "4
C=— =CV=—
R ' R
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