
GRAPHS IN MACHINE LEARNING
Michal Valko, SequeL, Inria Lille - Nord Europe
TA: Pierre Perrault

MVA 2017/2018 Partially based on material by Tomáš Kocák

PREVIOUS LECTURE BY PIERRE

2image credits: Srivastava

Questions?

THIS LECTURE LAST LECTURE OF THE COURSE

3

This Lecture

I Graph bandits
I Spectral bandits

I Observability graphs

I Side information

I Influence Maximization

Michal Valko – Graphs in Machine Learning SequeL - 3/75

MULTI-ARM BANDITS IN LAS VEGAS
DECEMBER 2017

RL/BANDITS ~ SEQUENTIAL DECISION-MAKING

unsupervised - supervised-semisupervised-active

ps: several course projects are on this topic

PREVIOUS LAB SESSION

4

Previous Lab Session

I 27. 11. 2017 by Pierre Perrault
I Content (this time lecture in class + coding at home)

I Large-scale graph construction and processing (in class)
I Scalable algorithms:

I Online face recognizer (to code in Matlab)
I Iterative label propagation (to code in Matlab)
I Graph sparsification (presented in class)

I AR: record a video with faces
I Short written report
I Questions to piazza
I

Deadline: 11. 12. 2017 (today)

Michal Valko – Graphs in Machine Learning SequeL - 4/75

FINAL CLASS PROJECTS

5

Final class projects

I time and formatting description on the class website
I grade: report + short presentation of the team
I deadlines

I 8. 1. 2018 final report (for all projects)
I from 9. 1. 2018, presentations (mostly over Skype/Hangout)
I AR: sign-up for the presentation (info already there)

I project report: 5-10 pages in NIPS format
I presentation: 15+5 minutes (time it!)
I everybody has to present
I book presentation time slot on the website
I explicitly state your contributions report + talk

Michal Valko – Graphs in Machine Learning SequeL - 5/75

PHD POSITIONS AT INRIA LILLE - MAGNET

6

The topic is decentralized machine learning. Consider a P2P network with many devices,
each with a local dataset. How can we design/analyze algorithms allowing the devices to
learn from the union of their datasets without leaking too much sensitive information
about individual data points?

We also have Master internship positions (in decentralized/private machine learning, and
natural language processing)

Check https://team.inria.fr/magnet/job-offers/ or contact aurelien.bellet@inria.fr

Open PhD positions at Inria Lille (Magnet team). Lille
is 1 hour away from Paris, 30 minutes from Brussels,
1.5 hours from London and 2.5 hours from
Amsterdam.

https://team.inria.fr/magnet/job-offers/
mailto:aurelien.bellet@inria.fr

PHD + INTERNSHIP AT INRIA LILLE - SEQUEL

7

DELTA: MVA internship + PhD proposal
Dynamically Evolving Long-Term Autonomy

I join project between 4 partners, UPF Barcelona, MUL Austria,
ULG Belgium, and Inria

I Jonsson, Neu, Gomez, Valko, Kaufmann, Lazaric, Auer,
Ortner, Cornelusse, Ernst

I PhD position at SequeL team at Inria
I project starts on 1.1.2018, PhD student expected to start

September/October 2018
I 4 postdocs, one in each center
I Inria will lead the e�ort on adaptive planning with a model

that can adapt to changes. Inria will work with MUL on the
hierarchical state partitioning

I contact: (Emilie Kaufmann & Michal Valko) @ SequeL @ Inria

Michal Valko – Graphs in Machine Learning SequeL - 7/36

Internship position: extending TrailBlazer with BAI-MCTS

BADASS INTERNSHIPS AT LILLE AND SACLAY

https://project.inria.fr/badass/students/

Structured set of Bandits
Structured Bandits: Should Optimism strike back?
Optimal exploration in Multi-armed bandits
Computational complexity in Multi-armed Bandits
Sensitivity analysis and intrinsic horizons in Markov Decision Processes
Reinforcement Learning with Predictive State Representations

Please, send a message directly to the contact email provided in the document detailing each proposal.

8

https://project.inria.fr/badass/files/2017/11/Internship_StructuredSetBandits.pdf
https://project.inria.fr/badass/files/2017/11/Internship_M2_StructuredBandits.pdf
https://project.inria.fr/badass/files/2017/11/Internship_ExplorationMABs.pdf
https://project.inria.fr/badass/files/2017/11/internship_ComplexityMABS.pdf
https://project.inria.fr/badass/files/2017/11/Internship_SensitivityHorizon.pdf
https://project.inria.fr/badass/files/2017/11/Internship_PredictiveStateRepresentations.pdf

9

Example of a graph bandit problem

movie recommendation

recommend movies to a single user

goal: maximise the sum of the ratings  
(minimise regret)

good prediction after just a few steps

extra information

ratings are smooth on a graph

main question: can we learn faster?

T ⌧ N

Th
e S

haw
sha

nk
Re

dem
pti

on
(19

94)

Th
e G

odf
ath

er
(19

72)

Th
e G

odf
ath

er:
Par

t II
(19

74)

Th
e D

ark
Kn

igh
t (2

008
)

Pul
p Fic

tion
(19

94)

The
Goo

d, t
he B

ad and
the

Ugl
y (196

6)

Schi
ndle

r’s L
ist (

1993
)

12 Ang
ry Men (195

7)

The
Lord

of th
e Ri

ngs:
The

Retu
rn of th

e Ki
ng (200

3)

Figh
t Clu

b (1999
)

The L
ord of the

Rings
: The

Fellow
ship of the

Ring
(2001

)

Star W
ars: E

pisode
V - The

Empire S
trikes

Back
(1980)

Incept
ion (2010)

Forrest
Gump (1994)

One Flew Over the Cuckoo’s
Nest (19

75)

The Lord of the Rings: The
Two Towers (20

02)

Goodfellas (199
0)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)
It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1

10

GETTING REAL

Let’s be lazy and ignore the structure

Multi-armed bandit problem!

Worst case regret (to the best fixed strategy)

Matching lower bound (Auer, Cesa-Bianchi, Freund, Schapire 2002)

How big is N? Number of movies on http://www.imdb.com/stats: 4,029,967

Problem: Too many actions!

#actions

#rounds

11

http://www.imdb.com/stats

LEARNING FASTER

Arm independence is too strong and unnecessary

Replace N with something much smaller

problem/instance/data dependent

example: linear bandits N to D

Today: Graph Bandits!

sequential problems where actions are nodes on a graph

find strategies that replace N with a smaller graph-dependent quantity

#actions

#rounds

#dimensions

12

GRAPH BANDITS: GENERAL SETUP

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#

Michal Valko – Graphs in Machine Learning SequeL - 12/63

Every round t the learner

picks a node

incurs a loss

optional feedback

The performance is total expected regret

Specific problems differ in

1. loss

2. feedback

3. guarantees
13

UPPER CONFIDENCE BOUND BASED ALGOS

14

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

MULTI-ARM BANDITS IN CAFÉ CULTURE

15

Video recorded March 30th, 2015, 13h50,
Université de Lille, Susie & the Piggy Bones Band

UPPER CONFIDENCE BOUND BASED ALGOS

16

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

UPPER CONFIDENCE BOUND BASED ALGOS

17

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

UPPER CONFIDENCE BOUND BASED ALGOS

18

1 2 3 4 5 6 7 8 9 10 11

E
x
p
e
c
t
e
d
r
e
w
a
r
d

5. Polymatroid bandits

In this chapter, we first introduce polymatroids and illustrate them on practical problems. We use
the problem of the minimum-cost flow (Megiddo 1974) on a network as an illustrative example
before we give the formal definition of polymatroids and learning with them.

⌅ Example 5.1 Consider a flow network with L source nodes and one sink node. The network is
illustrated in Figure 5.1.

Source'1' Source'2'

1'1'

1.5' 1.5'

1.5'

K'

...'
Source'3' Source'4'

1'1'

Source'L'0'1' Source'L'

1'1'

Figure 5.1: The flow network contains L source nodes and the maximum flow is K. The capacity of
the link is shown next to the link.

The network is defined by three constraints. First, the maximum flow through any source node
is 1. Second, the maximum flow through any two consecutive source nodes, e and e+ 1 where
e = 2i�1 for i 2 {1, . . . ,L/2}, is 3

2 . Third, the maximum flow is K. We assume that K is an integer
multiple of 3

2 . The cost of the flow from source node e is a Bernoulli random variable with mean:

w(e) =
⇢

0.5�D/2 e  4
3 K

0.5+D/2 otherwise. (5.1)

STRUCTURES IN BANDIT PROBLEMS

19

GRAPHS

POLYMATROIDS

BLACK-BOX FUNCTIONS

KERNELS

STRUCTURES WITHOUT TOPOLOGY

…

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄⇤

I Limited sampling resources n

At time t  n one can either

I sample a new arm ⌫Kt from the
reservoir distr. with mean
µKt ⇠ F , and set It = Kt,

I or choose an arm It among the
Kt�1

observed arms {⌫k}kKt�1 ,

and then collect Xt ⇠ ⌫kt

Objective: after n rounds, return an
arm bk whose mean µbk is as large as
possible. Minimize the simple regret

rn = µ̄⇤ � µbk,

where µ̄⇤ is the right end point of
1� F .

At time t...:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

etc...

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

SPECIFIC GRAPH BANDIT SETTINGS

smoothness spectral bandits
side observations on graphs

influence maximisation revealing bandits

Revealing Graph bandits: Influence Maximization
Ignoring the structure again? The best we can do is eO �p

r⇤TN
�

We aim to do better: RT = eO �p
r⇤TD⇤

�
D⇤ - detectable dimension dependent on T and the structureI good case: star-shaped graph can have D⇤ = 1I bad case: a graph with many small cliques.I the worst case: all nodes are disconnected except 2Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

3

8

/

6

6

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=
1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵T ln N
⌘

Next step
Generalization of the setting to combinatorial actions

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

2

7

/

6

6

Spectral Bandits Summary
I Spectral bandit setting (smooth graph functions).I SpectralUCB

I Regret bound
RT = eO

⇣

d

p
T ln

T

⌘

I SpectralTS
I Regret bound

RT = eO
⇣

d

p
T ln

N

⌘

I Computationally more e�cient.I SpectralEliminator
I Regret bound

RT = eO
⇣p

d

T ln
T

⌘

I Better upper, empirically does not seem to work well (yet)
I Bounds scale with e�ective dimension

d ⌧
D.

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

3

6

/

4

0

#relevant
eigenvectors

detectable
dimension

independence
number

noisy side
observations

on graphs

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=
1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵?T ln N
⌘

Next step
Generalization of the setting to combinatorial actions

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

2

7

/

6

6

effective
independence number

20

SPECTRAL
BANDITS

exploiting smoothness of
rewards on graphs

MV, Munos, Kveton, Kocák: Spectral Bandits for Smooth Graph Functions, ICML 2014

Kocák, MV, Munos, Agrawal: Spectral Thompson Sampling, AAAI 2014

Hanawal, Saligrama, MV, Munos: Cheap Bandits, ICML 2015

Th
e S

haw
sha

nk
Re

dem
pti

on
(19

94)

Th
e G

odf
ath

er
(19

72)

Th
e G

odf
ath

er:
Par

t II
(19

74)

Th
e D

ark
Kn

igh
t (2

008
)

Pul
p Fic

tion
(19

94)

The
Goo

d, t
he B

ad and
the

Ugl
y (196

6)

Schi
ndle

r’s L
ist (

1993
)

12 Ang
ry Men (195

7)

The
Lord

of th
e Ri

ngs:
The

Retu
rn of th

e Ki
ng (200

3)

Figh
t Clu

b (1999
)

The L
ord of the

Rings
: The

Fellow
ship of the

Ring
(2001

)

Star W
ars: E

pisode
V - The

Empire S
trikes

Back
(1980)

Incept
ion (2010)

Forrest
Gump (1994)

One Flew Over the Cuckoo’s
Nest (19

75)

The Lord of the Rings: The
Two Towers (20

02)

Goodfellas (199
0)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)
It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1

SPECTRAL BANDITS

Online Decision Making on Graphs

Movie recommendation: (in each time step)
I Recommend movies to a single user.
I Good prediction after a few steps (T ⌧N).

Goal:
I Maximize overall reward (sum of ratings).

Assumptions:
I Unknown reward function f : V (G) ! R.
I Function f is smooth on a graph.
I Neighboring movies) similar preferences.
I Similar preferences 6) neighboring movies.

Th
e S

haw
sha

nk
Re

dem
pti

on
(19

94)

Th
e G

odf
ath

er
(19

72)

Th
e G

odf
ath

er:
Par

t II
(19

74)

Th
e D

ark
Kn

igh
t (2

008
)

Pul
p Fic

tion
(19

94)

The
Goo

d, t
he B

ad and
the

Ugl
y (196

6)

Schi
ndle

r’s L
ist (

1993
)

12 Ang
ry Men (195

7)

The
Lord

of th
e Ri

ngs:
The

Retu
rn of th

e Ki
ng (200

3)

Figh
t Clu

b (1999
)

The L
ord of the

Rings
: The

Fellow
ship of the

Ring
(2001

)

Star W
ars: E

pisode
V - The

Empire S
trikes

Back
(1980)

Incept
ion (2010)

Forrest
Gump (1994)

One Flew Over the Cuckoo’s
Nest (19

75)

The Lord of the Rings: The
Two Towers (20

02)

Goodfellas (199
0)

Star Wars: Episode IV - A New Hope (1977)

The Matrix (1999)

Seven Samurai (1954)
City of God (2002)
Se7en (1995)
The Usual Suspects (1995)The Silence of the Lambs (1991)Once Upon a Time in the West (1968)
It’s a Wonderful Life (1946)
Léon: The Professional (1994)
Casablanca (1942)Life Is Beautiful (1997)
Raiders of the Lost Ark (1981)

American History X (1998)

Psycho (1960)
Rear Window (1954)

City Lights (1931)

Saving Private Ryan (1998)

Spirited Away (2001)

The Intouchables (2011)

Memento (2000)

Terminator 2: Judgment Day (1991)

Modern Times (1936) 0

1

Michal Valko – Graphs in Machine Learning SequeL - 8/40

Let’s be lazy: Ignore the structure!

Another problem of the typical bandits strategies for recommendation?

If there is no information shared, we need to try all of the options!

UCB/MOSS and likely TS start with pulling each of the arms once

This is a problem both algorithmically and theoretically

Watch all the movies and then I tell you which one you like

What do we need for movie recommendation?

An algorithm useful in the case T ⌧ N!

Exploiting the structure is a must!

Michal Valko – Graphs in Machine Learning SequeL - 10/40

Assumptions

Desiderata

22

FLIXSTER DATASmooth graph functions: Flixster eigenvectors

−1 0 1
−0.2

0

0.2
Eigenvector 1

−1 0 1
−0.2

0

0.2
Eigenvector 2

−1 0 1
−0.2

0

0.2
Eigenvector 3

−1 0 1
−0.2

0

0.2
Eigenvector 4

−1 0 1
−0.2

0

0.2
Eigenvector 5

−1 0 1
−0.2

0

0.2
Eigenvector 6

−1 0 1
−0.2

0

0.2
Eigenvector 7

−1 0 1
−0.2

0

0.2
Eigenvector 8

−1 0 1
−0.2

0

0.2
Eigenvector 9Eigenvectors from the Flixster data corresponding to the smallest

few eigenvalues of the graph Laplacian projected onto the first
principal component of data. Colors indicate the values.

Michal Valko – Graphs in Machine Learning SequeL - 12/40

23

SPECTRAL BANDIT: LEARNING SETTING
Online Learning Setting - Bandit Problem

Learning setting for a bandit algorithm ⇡

I In each time t step choose a node ⇡(t).
I the ⇡(t)-th row x⇡(t) of the matrix Q corresponds to the arm ⇡(t).
I Obtain noisy reward rt = xT

⇡(t)↵
⇤ + "t . Note: xT

⇡(t)↵
⇤ = f⇡(t)

I "t is R-sub-Gaussian noise. 8⇠ 2 R, E[e⇠"t]  exp
�
⇠2

R

2/2
�

I Minimize cumulative regret

RT = T max
a

(xT

a↵
⇤)�

T
X

t=1

xT

⇡(t)↵
⇤.

What is a good result?

Can’t we just use linear bandits?

Michal Valko – Graphs in Machine Learning SequeL - 13/40

Can we just use linear bandits?

24

LINEAR VS. SPECTRAL BANDITS
Online Decision Making on Graphs: Smoothness

I Linear bandit algorithms
I LinUCB (Li et al., 2010)

I Regret bound ⇡ D

p
T ln T

I LinearTS (Agrawal and Goyal, 2013)
I Regret bound ⇡ D

p
T ln N

Note: D is ambient dimension, in our case N, length of xi .
Number of actions, e.g., all possible movies ! HUGE!

I Spectral bandit algorithms
I SpectralUCB (Valko et al., ICML 2014)

I Regret bound ⇡ d

p
T ln T

I Operations per step: D

2

N

I SpectralTS (Kocák et al., AAAI 2014)
I Regret bound ⇡ d

p
T ln N

I Operations per step: D

2 + DN

Note: d is e�ective dimension, usually much smaller than D.

Michal Valko – Graphs in Machine Learning SequeL - 14/40

25

SPECTRAL BANDITS - EFFECTIVE DIMENSION
E�ective dimension

I E�ective dimension: Largest d such that

(d � 1)�d  T

log(1 + T/�)
.

I Function of time horizon and graph properties
I �i : i-th smallest eigenvalue of ⇤.
I �: Regularization parameter of the algorithm.

Properties:
I

d is small when the coe�cients �i grow rapidly above time.
I

d is related to the number of “non-negligible” dimensions.
I Usually d is much smaller than D in real world graphs.
I Can be computed beforehand.

Michal Valko – Graphs in Machine Learning SequeL - 15/40

26

SPECTRAL BANDITS - EFFECTIVE DIMENSIONE�ective dimension vs. Ambient dimension

0 50 100 150 200 250 300 350 400 450 500
1

2

3

4

5

6

7

time T

ef
fe

ct
iv

e
di

m
en

st
io

n

Barabasi−Albert graph N=500

500 1000 1500 2000 2500 3000 3500 4000 4500
1

2

3

4

5

6

7

8

9

10

11

time T

ef
fe

ct
iv

e
di

m
en

st
io

n

Flixster graph: N=4546

d ⌧ D
Note: In our setting T < N = D.

Michal Valko – Graphs in Machine Learning SequeL - 16/40

27

SPECTRAL UCB

28

SpectralUCB

Given a vector of weights ↵, we define its ⇤ norm as

k↵k⇤ =

v

u

u

t

N
X

k=1

�k↵2

k =
p
↵T⇤↵,

and fit the ratings rv with a (regularized) least-squares estimate

b↵t = arg min
↵

 t
X

v=1

[hxv ,↵i � rv]
2 + k↵k2

⇤

!

.

k↵k⇤ is a penalty for non-smooth combinations of eigenvectors.

Michal Valko – Graphs in Machine Learning SequeL - 19/75

SpectralUCB

Given a vector of weights ↵, we define its ⇤ norm as

k↵k⇤ =

v

u

u

t

N
X

k=1

�k↵2

k =
p
↵T⇤↵,

and fit the ratings rv with a (regularized) least-squares estimate

b↵t = arg min
↵

 t
X

v=1

[hxv ,↵i � rv]
2 + k↵k2

⇤

!

.

k↵k⇤ is a penalty for non-smooth combinations of eigenvectors.

Michal Valko – Graphs in Machine Learning SequeL - 19/75

SPECTRAL UCB

29

SpectralUCB

1: Input:
2: N, T , {⇤L,Q}, �, �, R, C

3: Run:
4: ⇤ ⇤L + �I
5: d max{d : (d � 1)�d  T/ ln(1 + T/�)}
6: for t = 1 to T do
7: Update the basis coe�cients b↵:
8: Xt [x⇡(1), . . . , x⇡(t�1)]

T

9: r [r
1

, . . . , rt�1

]T

10: Vt XtXT

t + ⇤
11: b↵t V�1

t XT

t r
12: ct 2R

p
d ln(1 + t/�) + 2 ln(1/�) + C

13: ⇡(t) arg maxa

⇣
xT

a b↵+ ctkxakV�1

t

⌘

14: Observe the reward rt

15: end for

Michal Valko – Graphs in Machine Learning SequeL - 20/75

SPECTRALUCB REGRET BOUND
SpectralUCB: Regret Bound

I
d : E�ective dimension.

I �: Minimal eigenvalue of ⇤ = ⇤L + �I.
I

C : Smoothness upper bound, k↵⇤k⇤  C .
I xT

i ↵
⇤ 2 [�1, 1] for all i .

The cumulative regret RT of SpectralUCB is with probability 1 � �
bounded as

RT 

8R

r

d ln �+ T

�
+ 2 ln 1

�
+ 4C + 4

!

r

dT ln �+ T

�
.

R

T

⇡ d

p
T ln T

Michal Valko – Graphs in Machine Learning SequeL - 22/40

30

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

time T

cu
m

ul
at

iv
e

re
gr

et

Barabasi−Albert N=250, basis size=3, effective d=1

SpectralEliminator
SpectralUCB
LinUCB

0

50

100

150

200

250
Movielens: Cumulative regret for randomly sampled users. T = 100

cu
m

ul
at

iv
e

re
gr

et

24
34

16
89

23
35

97
0

65
9

92
0

17
22

24
45

85
6

11
86

25
39

18
11

29
20

60
0

24
37

19
91

73
4

14
02

11
76

17
66

23
58

31
0

24
20

24
77

10
45

12
67

16
86

20
64

21
87

22
32

11
46

12
65

28
17

16
88

25
03

81
4

18
33

17
33

28
38

25
3

14
74

15
37

26
6

26
65

26
05

12
93

23
03

43
8

18
26

76
8

SpectralUCB
LinUCB

BETTER

BETTER

SPECTRAL UCN ON BA GRAPH

31

SpectralUCB: Synthetic experiment

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

time T

cu
m

ul
at

iv
e

re
gr

et

Barabasi−Albert N=250, basis size=3, effective d=1

SpectralEliminator
SpectralUCB
LinUCB

Michal Valko – Graphs in Machine Learning SequeL - 21/75

SPECTRAL UCN ON REAL DATA

32

SpectralUCB: Movie data experiments

0

50

100

150

200

250
Movielens: Cumulative regret for randomly sampled users. T = 100

cu
m

ul
at

iv
e

re
gr

et

24
34

16
89

23
35

97
0

65
9

92
0

17
22

24
45

85
6

11
86

25
39

18
11

29
20

60
0

24
37

19
91

73
4

14
02

11
76

17
66

23
58

31
0

24
20

24
77

10
45

12
67

16
86

20
64

21
87

22
32

11
46

12
65

28
17

16
88

25
03

81
4

18
33

17
33

28
38

25
3

14
74

15
37

26
6

26
65

26
05

12
93

23
03

43
8

18
26

76
8

SpectralUCB
LinUCB

0

50

100

150

200

250
Flixster: Cumulative regret for randomly sampled users. T = 100

cu
m

ul
at

iv
e

re
gr

et

13
60

13
70

23
62

16
2

56
9

23
91 52

24

58 74

15
95

96
9

25
33

19
60

25
89

24
60 1

81
4

22
49

87
8

96
7

99
4

20
29

18
43

16
20

16
8

24
88

64
5 7

21
6

13
57

58
8

21
12

14
87 38

25

32
18

33
21

26
71

1
18

63
11

59
13

53
19

2
98

9
32

2
13

2
16

17
15

6
16

54
33

7
14

20

SpectralUCB
LinUCB

Michal Valko – Graphs in Machine Learning SequeL - 22/75

SPECTRAL UCB: REGRET ANALYSIS

33

SpectralUCB: Regret Bound
I Derivation of the confidence ellipsoid for b↵ with probability 1 � �.

I Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

|xT(b↵�↵⇤)|  kxkV�1

t

✓

R

r

2 ln
⇣

|Vt |1/2

�|⇤|1/2

⌘

+ C

◆

I Regret in one time step: rt = xT

⇤↵
⇤ � xT

⇡(t)↵
⇤  2ctkx⇡(t)kV�1

t

I Cumulative regret:

RT =
T
X

t=1

rt 
v

u

u

t

T

T
X

t=1

r

2

t  2(
cT + 1)

s

2T ln |VT |
|⇤|

I Upperbound for ln(|Vt |/|⇤|)

ln |Vt |
|⇤|  ln |VT |

|⇤|  2d ln
✓

�+ T

�

◆

Michal Valko – Graphs in Machine Learning SequeL - 24/75

SPECTRAL UCB: REGRET ANALYSIS

34

SpectralUCB: Regret Bound
Sylvester’s determinant theorem:

|A + xxT| = |A||I + A�1xxT| = |A|(1 + xTA�1x)

Goal:
I Upperbound determinant |A + xxT| for kxk

2

 1
I Upperbound xTA�1x

xTA�1x = xTQ⇤�1QTx = yT⇤�1y =
N
X

i=1

��1

i y

2

i

I kyk
2

 1.
I y is a canonical vector.
I x = Qy is an eigenvector of A.

Michal Valko – Graphs in Machine Learning SequeL - 25/75

SPECTRAL UCB: REGRET ANALYSIS

35

SpectralUCB: Regret Bound
Corollary: Determinant |VT | of VT = ⇤+

PT
t=1

xtxT

t is
maximized when all xt are aligned with axes.

|VT |  maxP ti=T

Y

(�i + ti)

ln |VT |
|⇤|  maxP ti=T

X

ln
✓

1 +
ti
�i

◆

ln |VT |
|⇤| 

d
X

i=1

ln
✓

1 +
T

�

◆

+
N
X

i=d+1

ln
✓

1 +
ti

�d+1

◆

 d ln
✓

1 +
T

�

◆

+
T

�d+1

 2d ln
✓

1 +
T

�

◆

Michal Valko – Graphs in Machine Learning SequeL - 26/75

INFLUENCE
MAXIMISATION

looking for the influential nodes
while exploring the graph

Carpentier, MV: Revealing Graph Bandits for Maximising Local Influence, AISTATS 2016

Wen, Kveton, MV: Influence Maximization with Semi-Bandit Feedback, (arXiv:1605.06593)

HOW TO RULE THE WORLD?

37

Religion CulturePolitics

Influence the influential!

JULY 18, 2016 March 26, 2017 September 1, 2009

338 ET 200

38slide from Stefanie Jegelka

39

EXAMPLE: INFLUENCE IN SOCIAL NETWORKS  
[KEMPE, KLEINBERG, TARDOS KDD ’03]

 Who should get free cell phones?
 V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}
 F(A) = Expected number of people influenced when targeting A

0.5

0.3
0.5 0.4

0.2

0.2 0.5

Alice

Bob

Charlie

Dorothy Eric

Fiona

Prob.	
 of 
influencing

REVEALING BANDITS FOR LOCAL INFLUENCE

40

p
i

j

pij

i j

Unknown (pij)ij — (symmetric) probability of influences

In each time step t = 1, …., T

learner picks a node kt

environment reveals the set of influenced node Skt

Select influential people = Find the strategy maximising

Why this is a bandit problem?

Case T ⩽ N

LT =
TX

t=1

|Skt,t|

PERFORMANCE CRITERION

41

The number of expected influences of node k is by definition

Oracle strategy always selects the best

Expected regret of the oracle strategy

Expected regret of any adaptive strategy unaware of (pij)ij

p
i

j

pij

i j

rk = E [|Sk,t|] =
X

jN

pk,j

k? = argmax

k
E
"

TX

t=1

|Sk,t|
#
= argmax

k
Trk

E [RT] = E [L?
T]� E [LT]

E [L?
T] = Tr?

BASELINE

42

We only receive |S| instead of S

Can be mapped to multi-arm bandits

rewards are 0, …, N

variance bounded with rkt

We adapt MOSS to GraphMOSS

Regret upper bound of GraphMOSS

matching lower bound
Crash course on stochastic bandits?

each node at least once

unlearnable case T ≤ N

E [RT]  U min
⇣
r?T, r?N +

p
r?TN

⌘

GRAPHMOSS FOR THE RESTRICTED SETTING

43

Revealing graph bandits for maximizing local influence

� > 0 such that for n large enough, depending
on ", we have that

inf supE [Rn] � �min
⇣

r?n, r?d+
p

r?nd
⌘

,

where inf sup means the best possible algorithm
on the worst possible graph bandit problem.

• Upper bound. There exists a constant U > 0
such that the regret of Algorithm 1 is bounded as

E [Rn]  U min
⇣

r?n, r?d+
p

r?nd
⌘

.

Algorithm 1 GraphMOSS
Input

d: the number of nodes
n: time horizon

Initialization
Sample each arm twice
Update brk,2d, b�k,2d, and Tk,2d 2, for 8k  d

for t = 2d+ 1, . . . , n do

Ck,t 2b�k,t

q

max(log(n/(dTk,t)),0)
Tk,t

+ 2max(log(n/(dTk,t)),0)
Tk,t

, for 8k  d

kt argmaxk brk,t + Ck,t

Sample node kt and receive |Skt,t|
Update brk,t+1

, b�k,t+1

, and Tk,t+1

, for 8k  d
end for

The lower bound holds also in the specific case where
the graph G is undirected (i.e., symmetric M), as is
explained in the proof. This is an important remark
as the undirected graphs are a canonical and “per-
fect” example of graphs where influencing and being
influenced is correlated and where the dual influence
is equal to the influence for each node.

3 The BARE algorithm and results

In this section we treat the unrestricted setting de-
scribed in Section 2.1 where we get revealed the iden-
tity of the influenced nodes, while the reward stays the
same as in Section 2.2. First, note that the minimax-
optimal rate in this setting is the same as in the re-
stricted information case above. To see that, one can,
for instance, consider a network composed of isolated
nodes with only a very small clique of most influen-
tial nodes, connected only to each other. Another ex-
ample is a graph where the fact of being influential
is uncorrelated with the fact of being influenced and
where, for instance, the most influential node is not
influenced by any node. For the same reasons as the
ones described in Theorem 1, when n  d, there is

no adaptive strategy in a minimax sense, also in this
unrestricted setting.

However, the cases where the identity of the influenced
nodes does not help, are somewhat pathological. In-
tuitively, they correspond to cases where the graph
structure is not very informative for finding the most
influential node. This is the case when there are many
isolated nodes, and also in the case where observing
nodes that are very influenced does not provide in-
formation on these nodes’ influence. In many typical
and more interesting situations, this is not the case.
First, in these problems, the nodes that have high
influence are also very likely to be subject being in-
fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i  d : r�? � r�i  �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as

D?
def

=D(�?),

where the detectable gap �? is defined as

�?
def

= 16

s

r�?d log (nd)

T?
+

80d log (nd)

T?
·

Remark 1. From the definitions above, the detectable
dimension is the D? that corresponds to the smallest
integer T? > 0 such that

T?r
�
? �

v

u

u

u

tD

0

@16

s

r�?d log (nd)

T?
+

80d log (nd)

T?

1

Anr�?,

or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced

GraphMOSS

BACK TO THE REAL SETTING

Can we actually do better?

Well, not really…..

Minimax optimal rate is still the same

But the bad cases are somehow pathological

isolated nodes

uncorrelated being influenced and being influential

Barabási–Albert etc tell us that the real-world graphs are not like that

Let’s think of some measure of difficulty

to define some non-degenerate cases

ideas?

44

DETECTABLE DIMENSION

45

number of nodes we can efficiently extract in less than n rounds

function D controls number of nodes given a gap

D(r) = N for r≥ r* and D(0) = number of most influenced nodes

Detectable dimension D* = D(Δ∆*)

Detectable gap Δ∆* constants coming from the analysis and the Bernstein inequality

Detectable horizon T*, smallest integer s.t.

Equivalently: D* corresponding to smallest T* such that 

�? = 16

s
r�?N log (TN)

T?
+

144N log (TN)

T?

D(�) = |{i  N : r�? � r�i  �}|

T?r
�
? �

p
D?Tr�?,

T?r
�
? �

vuuutD

0

@
16

s
r�?N log (TN)

T?
+

144N log (TN)

T?

1

ATr�?

HOW DOES D* BEHAVE?

For (easy, structured) star graphs D* = 1 even for small n (big gain)

For (difficult) empty graphs D*= N even for large T (no gain)

In general: D* roughly decreases with n and it is small when D decreases quickly

For n large enough D* is the number of the most influences nodes

Example: D* for Barabási–Albert model & Enron graph as a function of T 

46

n - number of rounds

D
*-

de
te

ct
ab

le
 d

im
en

si
on

Enron - Number of nodes: 36692 - Number of runs: 1 - revelation p = 0.80

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0

0.5

1

1.5

2

2.5

3

3.5

4
× 104

n - number of rounds

D
*-

de
te

ct
ab

le
 d

im
en

si
on

Barabasi-Albert - Number of nodes: 1000 - Number of runs: 10 - revelation p = 0.80

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200

300

400

500

600

700

800

900

1000

BARE SOLUTION

47

BAndit REvelator: 2-phase algorithm
- global exploration phase

- super-efficient exploration 😸

- linear regret 😿 — needs to be short!

- extracts D* nodes
- bandit phase

- uses a minimax-optimal bandit algorithm
- GraphMOSS is a little brother of MOSS
- has a “square root” regret on D* nodes

- D* realizes the optimal trade-off !
- different from exploration/exploitation tradeoff

48

Algorithm BARE - BAndit REvelator

Alexandra Carpentier, Michal Valko

nodes, then D? converges to the number of most influ-
enced nodes as n tends to infinity.

Finally let us write the influential-influenced gap as

"?
def

= r? � max
k2D�

rk,

where D� def

={i : r�i = maxk r�k}. The quantity "? quan-
tifies the gap between the most influential node overall
vs. the most influential node in the set of most influ-
enced nodes.

Remark 2. The quantity "? is small when one of the
most influenced nodes is also very influential. It is
exactly zero when one of the most influential nodes
happens to also be one of the most influenced nodes.
For instance, the case "? = 0 appears in undirected
social network models with mutual influence.

The graph structure is helpful when the D function
decreases quickly with n. To give an intuition about
how is D linked to the graph topology, consider a star-
shaped graph which is the most helpful and can have
D? = 1 even for a small n. On the other hand, a bad
case is a graph with many small cliques. The worst
case is where all nodes are disconnected except two,
where D? will be of order d even for a large n.

The detectable dimension D? is a problem dependent
quantity that represents the complexity of the problem
instead of d. In real networks, D? is typically smaller
than the number of nodes d and we give several ex-
amples of the empirical value of D? in Section 5 and
Appendix ??. As our analysis will show, D? represents
the number of nodes that we can e�ciently extract
from d nodes in less than n rounds of the time budget.
Our bandit revelator algorithm, BARE (Algorithm 2),
starts by the global-exploration phase and extracts a
subset of cardinality less than or equal toD?, that con-
tains a very influential node, that is at most "? away
from the most influential node. BARE does this extrac-
tion without scanning all the d nodes, which could be
impossible anyway, since we do not restrict to d  n.
In the subsequent bandit phase, BARE proceeds with
scanning this smaller set of selected nodes to find the
most influential one.

We now state our main theoretical result that proves
a bound on the regret of BARE.
Theorem 2 (proof in Section 4). In the unrestricted
local influence setting with information about the
neighbors, BARE satisfies, for a constant C > 0,

E [Rn]  Cmin
⇣

r?n,D?r? +
p

r?nD? + n"?
⌘

.

Remark 3. Note that BARE does not need prelimi-
nary information about G, as a classic multi-arm ban-
dit strategy described in Section 2.2 would require in
order to attain this rate.

Algorithm 2 BARE: Bandit revelator
Input
d: the number of nodes
n: time horizon

Initialization
Tk,t 0, for 8k  d
dr�k,t 0, for 8k  d

t 1, bT? 0, bD?,t d, b�?,1 d
Global exploration phase

while t
⇣

b�?,t � 4
p

d log(dn)/t
⌘


q

bD?,tn do

Influence a node at random (choose kt uniformly
at random) and get Skt,t from this node
\r�k,t+1

 t
t+1

dr�k,t +
d

t+1

Skt,t(k)

b�?,t+1

 maxk0

q

\r�k0,t+1

+ 8d log(nd)/(t+ 1)

w?,t+1

 8b�?,t+1

q

d log(nd)
t+1

+ 24d log(nd)
t+1

bD?,t+1

�

�

�

n

k : maxk0 \r�k0,t+1

�\r�k,t+1

 w?,t+1

o

�

�

�

t t+ 1
end while
bT? t.
Bandit phase
Run minimax-optimal bandit algorithm on the
bD?,bT?

chosen nodes (e.g., Algorithm 1)

Corollary 1. For an undirected social network model
the expected regret of BARE is

E [Rn]  Cmin
⇣

r?n,D?r? +
p

r?nD?

⌘

,

which is the minimax-optimal regret in the case where
there are D? instead of d nodes. This highlights the
dimensionality reduction potential of our method.

Finally, we state a lower bound for our setting. Notice
that the influential-influence gap also appears here.

Theorem 3 (proof in Appendix ??). Let d � Cn > 0
where C > 0 is an universal constant. Consider the
set of unrestricted local influence settings with infor-
mation about the neighbors, and the set of all problems
that have maximal influence bounded by r, detectable
dimension smaller than D  d/2 and influential-
influence gap smaller than ". Then the expected regret
of the best possible algorithm in the worst case of these
problems is lower bounded as

C 00 min
⇣

rn,Dr? +
p

rnD + n"
⌘

,

where C 00 is a universal constant.

4 Proof of Theorem 2

For any node k  d and any round t that is during
the global exploration phase, let us define the following

EMPIRICAL RESULTS
Manuscript under review by AISTATS 2016

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD⇤ = 134, bT⇤ = 36

round t

re
gr

et

Graph: Facebook - Number of runs: 100 - revelation p = 0.80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5
× 106

BARE
GraphMOSS

bD⇤ = 125, bT⇤ = 28

round t

re
gr

et

Graph: Enron - Number of runs: 100 - revelation p = 0.80

1 5000 10000 15000 20000 25000 30000 35000
0

1

2

3

4

5

6

7

8

9
× 107

BARE
GraphMOSS

bD⇤ = 564, bT⇤ = 107

round t

re
gr

et

Graph: Gnutella - Number of runs: 100 - revelation p = 0.80

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

9
× 105

BARE
GraphMOSS

bD⇤ = 3916, bT⇤ = 779

Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.

bD⇤ = 529, bT⇤ = 147 bD⇤ = 230, bT⇤ = 64 bD⇤ = 161, bT⇤ = 50 bD⇤ = 134, bT⇤ = 36 bD⇤ = 133, bT⇤ = 34

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear
regret up to time t = d, since there is no sharing of in-
formation and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer
linear for t > d and eventually detects the best node,
BARE is able to detect promising nodes much sooner
during its global exploration phase and we can see the
benefit of revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information on the
structure and the performance of BARE and Graph-
MOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnuttella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook
network with d = 4039 (Viswanath et al., 2009). We
used the same parameters as for the Barabási-Albert
case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depends heavily on the structure. In En-
ron and Facebook, the gain of BARE is significant
which suggests that the graphs from these networks

feature a relatively small number of influential nodes.
On the other hand, the gain of BARE in Gnutella was
much smaller which again suggests that this network
is more decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD⇤ and the detectable
horizon bT⇤. Notice that the smaller bD⇤, as compared
to d, and the smaller bT⇤ is as compared to n, the sooner
is BARE able to learn the most influential node as
compared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., identity of the influencing paths, our results could
extend more e�ciently.

Note that in our setting, we were completely agnos-
tic to the graph structure. Realistic networks often
exhibit some additional structural properties that are
captured by graph generator models, such as various
stochastic block models (Girvan & Newman, 2002).

In future, we would like to extend our approach to
cases where we can take advantage of the assump-
tions stemming from these models and consider the
subclasses of graph structures where we can further
improve the learning rates.

Enron and Facebook vs. Gnutella (decentralised)

49

BETTER

Revealing graph bandits for maximizing local influence

bD? = 134, bT? = 36 bD? = 125, bT? = 28 bD? = 564, bT? = 107 bD? = 3916, bT? = 779

Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.20

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4
× 104

BARE
GraphMOSS

bD? = 529, bT? = 147

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.40

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
× 104

BARE
GraphMOSS

bD? = 230, bT? = 64

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.60

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8
× 104

BARE
GraphMOSS

bD? = 161, bT? = 50

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

0 200 400 600 800 1000 1200
0

5

10

15
× 104

BARE
GraphMOSS

bD? = 134, bT? = 36

round t

re
gr

et

Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 1.00

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14
× 104

BARE
GraphMOSS

bD? = 133, bT? = 34

Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear re-
gret up to time t = d, since there is no sharing of
information and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer linear
for t > d and eventually detects the best node, BARE is
able to detect promising nodes much sooner during its
global exploration phase and we can see the benefit of
revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information
about the structure and the performance of BARE and
GraphMOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnutella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook net-
work with d = 4039 (Viswanath et al., 2009). We used
the same parameters as for the Barabási-Albert case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depend heavily on the structure. In Enron
and Facebook, the gain of BARE is significant which
suggests that the graphs from these networks feature
a relatively small number of influential nodes. On the
other hand, the gain of BARE on Gnutella was much
smaller which again suggests that this network is more
decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD? and the detectable
horizon bT?. Notice that the smaller bD?, as compared
to d, and the smaller bT? is as compared to n, the sooner
is BARE able to learn the most influential node as com-
pared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., the identity of the influencing paths, our results
could extend more e�ciently. Note that in our setting,
we were completely agnostic to the graph structure.
Realistic networks often exhibit some additional struc-
tural properties that are captured by graph generator
models, such as various stochastic block models (Gir-
van & Newman, 2002). In future, we would like to
extend our approach to cases where we can take advan-
tage of the assumptions stemming from these models
and consider the subclasses of graph structures where
we can further improve the learning rates.

Acknowledgements We thank Alan Mislove for
the Facebook dataset. The research presented in this
paper was supported by French Ministry of Higher
Education and Research, Nord-Pas-de-Calais Regional
Council, French National Research Agency project
ExTra-Learn (n.ANR-14-CE24-0010-01), and by Ger-
man Research Foundation’s Emmy Noether grant
MuSyAD (CA 1488/1-1).

BETTER

Varying a (constant) probability of influence

REVEALING BANDITS: WHAT DO YOU MEAN?

Ignoring the structure again?

BAndit REvelator: 2-phase algorithm

global exploration phase

super-efficient exploration

linear regret — needs to be short!

extracts D* nodes

bandit phase

uses a minimax-optimal bandit algorithm (GraphMOSS)

has a “square root” regret on D* nodes

D* realizes the optimal trade-off !

different from exploration/exploitation tradeoff

50

reward of the
best node

D* - detectable dimension
(depends on T and the structure)

good case: star-shaped graph
can have D* = 1

bad case: a graph with many
small cliques.

the worst case: all nodes are
disconnected except 2

Revealing Graph bandits: Influence Maximization

Ignoring the structure again? The best we can do is eO �p
r⇤TN

�

We aim to do better: RT = eO �p
r⇤TD⇤

�

D⇤ - detectable dimension dependent on T and the structure
I good case: star-shaped graph can have D⇤ = 1
I bad case: a graph with many small cliques.
I the worst case: all nodes are disconnected except 2

Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes

More information: Revealing Graph Bandits for Maximizing Local Influence, Carpentier and Valko, AISTATS 2016

Michal Valko – Graphs in Machine Learning SequeL - 39/67

Regret of BARE

O(
p

r?TD?)

NEXT: GLOBAL INFLUENCE MODELS

Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models

global and multiple-source models

Different feed-back models

Full bandit (only the number of influenced nodes)

Node-level semi-bandit (identities of influenced nodes)

Edge-level semi-bandit (identities of influenced edges)

Wen, Kveton, Valko, Vaswani, NIPS 2017

IMLinUCB with linear parametrization of edge weights

Regret analysis for general graphs, cascading model, and multiple-sources

51

52

Online Influence Maximization under Independent
Cascade Model with Semi-Bandit Feedback

Zheng Wen
Adobe Research

San Jose, CA 95110
zwen@adobe.com

Branislav Kveton
Adobe Research

San Jose, CA 95110
kveton@adobe.com

Michal Valko
Inria Lille-Nord Europe

59650 Villeneuve d’Ascq, France
michal.valko@inria.fr

Sharan Vaswani
University of British Columbia

Vancouver, B.C., Canada
sharanv@cs.ubc.ca

Abstract

We study the stochastic online problem of learning to influence in a social network
with semi-bandit feedback, where we observe how users influence each other. The
problem combines challenges of limited feedback, because the learning agent
only observes the influenced portion of the network, and combinatorial number of
actions, because the cardinality of the feasible set is exponential in the maximum
number of influencers. We propose a computationally efficient UCB-like algorithm,
IMLinUCB, and analyze it. Our regret bounds are polynomial in all quantities
of interest; reflect the structure of the network and the probabilities of influence.
Moreover, they do not depend on inherently large quantities, such as the cardinality
of the action set. To the best of our knowledge, these are the first such results.
IMLinUCB permits linear generalization and therefore is suitable for large-scale
problems. Our experiments show that the regret of IMLinUCB scales as suggested
by our upper bounds in several representative graph topologies; and based on linear
generalization, IMLinUCB can significantly reduce regret of real-world influence
maximization semi-bandits.

1 Introduction

Social networks have been playing an increasingly important role in the past decade as the media
for spreading information, ideas, and influence. A large research field of computational advertising
studies various models of how the influence spreads [19, 9, 13]. The best known and studied are the
models of Kempe et al. [19], and in particular the independent cascade model. In this model, the
social network is a directed graph, where each directed edge (i, j) is associated with an activation
probability w(i, j). We say a node j is a downstream neighbor of node i if there is a directed edge
(i, j) from i to j. After the agent chooses a set of influencers (source nodes) S, the independent
cascade model defines an activation (influence, diffusion) process: At the beginning, all nodes in
S are activated; subsequently, every activated node i can activate its downstream neighbor j with
probability w(i, j) once, independently of the history of the process. This process runs until no
activations are possible. In an influence maximization (IM) problem, the goal of the agent is to
maximize the expected number of the influenced (activated) nodes subject to a cardinality constraint
on S . This problem is NP-hard but can be efficiently approximated within the factor of 1� 1/e [19].

In many social networks, however, the activation probabilities are unknown, and the agent needs to
choose a good set of source nodes while interacting with the network. This motivates the learning
framework of IM bandits [32]. Depending on the feedback to the agent, the IM bandits can have (1) a

Presented 5 days ago

at NIPS 2017, Long Beach, CA

CHALLENGES AND SOLUTIONS

Already the offline problem is NP hard

solution: approximation/randomized algorithms

Lots of edges

lots of parameters to learn, if we want to scale, we need to reduce this complexity

solution: linear approximation of probabilities

Combinatorial size of possible seed-sets

Combinatorial Bandits: IMLinUCB

Understanding what’s going on?

known analyses VERY loose (e.g., scaling with 1/pmin, or only assymptotic)

53

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K  L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

seed sizeseed set

APPROXIMATION ORACLE

54

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K  L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

the oracle solution that is 𝛾-optimal with probability at least 𝛼

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

𝛾-optimal

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

𝛾-optimal with probability at least 𝛼

full-bandit feedback, where only the number of influenced nodes is observed; (2) a node semi-bandit
feedback, where the identity of influenced nodes is observed; or (3) an edge semi-bandit feedback,
where the identity of influenced edges (edges from influenced nodes) is observed. In all models, the
IM bandits combines two main challenges. First, the number of actions S grows exponentially with
the cardinality constraint on S . Second, we only observe the influenced portion of the network.

Although IM bandits have been studied very recently [23, 11, 32, 27], open challenges remain. One
challenge is to identify reasonable complexity metrics, which should depend on both the structure
(topology) of the network and the activation probabilities of edges to reflect the information-theoretic
complexity of IM bandits, and develop learning algorithms whose performance scales gracefully with
these metrics. Another challenge is to develop efficient learning algorithms for large-scale IM bandits,
which is increasingly important because social networks have millions or even billions of users.

In this paper, we suggest to overcome these two challenges in IM bandits in the case of edge semi-
bandit feedback, where we observe for each influenced node the downstream neighbors that this
node influenced (activated). Modern online social networks track activities of their users and these
activation events can often be observed, for instance when the user retweets a tweet of another
user. We refer to our model as an independent cascade semi-bandit (ICSB). We make four main
contributions. First, we propose IMLinUCB, a UCB-like algorithm for ICSBs that permits linear
generalization and is suitable for large-scale problems. Second, we propose a novel complexity
metric, referred to as maximum observed relevance C⇤ for ICSB, which depends on the topology of
the network and is a non-decreasing function of activation probabilities. C⇤ can be upper bounded
based on network topology or number of nodes/ edges in the network, but it is expected to be much
smaller than these upper bounds in real-world social networks due to the relatively low activation
probabilities, which favorably impacts our performance guarantees. Third, we bound the regret of
IMLinUCB. Our regret bounds are polynomial in all quantities of interest; reflect the structure and
activation probabilities of the network through C⇤; and do not depend on inherently large quantities,
such as the reciprocal of the minimum probability of being influenced [11] and the cardinality of the
action set. Finally, we evaluate IMLinUCB on several problems. Our experiment results show that the
regret of IMLinUCB scales as suggested by our topology-dependent regret bounds; and based on linear
generalization, IMLinUCB can significantly reduce regrets for real-world influence maximization
semi-bandit problems.

2 Influence Maximization under Independence Cascade Models

Consider an directed graph G = (V, E) with a set V of L = |V| nodes, a set E of directed edges,
and a binary1 weight function w : E ! {0, 1}. We say that a node v

2

2 V is reachable from a
node v

1

2 V under w if there is a directed path2 p = (e
1

, e
2

, . . . , e
l

) from v
1

to v
2

in G satisfying
w(e

i

) = 1 for all i = 1, 2, . . . , l. For a given source node set S ✓ V and w, we say that node v 2 V
is influenced if v is reachable from at least one source node in S under w; and denote the number of
influenced nodes in G by f(S,w). By definition, the nodes in S are always influenced.

The influence maximization (IM) problem is characterized by a triple (G,K,w), where G is a given
directed graph, K  L is the cardinality of source nodes, and w : E ! [0, 1] is a probability weight
function mapping each edge e 2 E to a real number w(e) 2 [0, 1]. The agent needs to choose a
set of K source nodes S ✓ V based on (G,K,w). Then a binary weight function w is obtained by
independently sampling a Bernoulli random variable w(e) ⇠ Bern (w(e)) for each edge e 2 E . The
agent’s objective is to maximize the expected number of the influenced nodes: maxS: |S|=K

f(S, w),
where f(S, w) �

= Ew [f(S,w)] is the expected number of influenced nodes when the source node set
is S and w is sampled according to w.3 It is well-known that the (offline) IM problem is NP-hard [19],
but can be approximately solved by approximation / randomized algorithms [9]. In this paper, we
refer to such algorithms as oracles to distinguish them from the machine learning algorithms discussed
in following sections. Let Sopt be the optimal solution of this problem, and S⇤

= ORACLE(G,K,w)
be the (possibly random) solution of an oracle ORACLE. For any ↵, � 2 [0, 1], we say that ORACLE

1Notice, that for a binary w there is no randomness in the subsequent definition.
2As is standard in graph theory, a directed path is a sequence of directed edges connecting a sequence of

distinct nodes, under the restriction that all edges are directed in the same direction.
3Notice that the definitions of f(S, w) and f(S,w) are consistent in the sense that if w 2 {0, 1}|E|, then

f(S, w) = f(S,w) with probability 1.

2

the optimal offline solution seed size

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

unknown to the agentOur problem is a triple:

seed sizetopology

LINEAR GENERALIZATION

55

is an (↵, �)-approximation oracle for a given (G,K) if for any w, f(S⇤, w) � �f(Sopt, w) with
probability at least ↵. Notice that this further implies that E [f(S⇤, w)] � ↵�f(Sopt, w). We say an
oracle is exact if ↵ = � = 1.

3 Influence Maximization Semi-Bandits

In many practical IM problems, the social-network provider is aware of the topology of the network,
but has to learn the influence probabilities to maximize the influence spread. The network provider
also observes all attempted influences from an influenced user, such as a tweet which is retweeted by
other users. This motivates the framework of the influence maximization semi-bandits.

Specifically, an independent cascade semi-bandit (ICSB) is also characterized by a triple (G,K,w),
but w is unknown to the agent. The agent interacts with the influence maximization semi-bandit for n
rounds. At each round t = 1, 2, . . . , n, the agent first adaptively chooses a source node set S

t

✓ V
with cardinality K based on its prior information and past observations. Then, the environment
chooses binary weight function w

t

by independently sampling w
t

(e) ⇠ Bern (w(e)). The agent
receives a reward f(S

t

,w
t

) at round t. For any edge e = (u
1

, u
2

) 2 E , the agent observes the
realization of w

t

(e) if and only if the start node u
1

of the directed edge e is influenced under binary
weight w

t

with source node set S
t

. This feedback model is an example of the partial monitoring
feedback [2, 6]. The agent’s objective is to maximize the expected cumulative reward over the n steps.

3.1 Linear generalization

Since the number of edges in real-world social networks is large, in order to develop efficient and
deployable learning algorithms, we assume that there exists a linear-generalization model for the
probability weight function w. Specifically, each edge e 2 E is associated with a known feature
vector x

e

2 <d, where d is the dimension of the feature vector, and there is an unknown coefficient
vector ✓⇤ 2 <d such that for all e 2 E , w(e) is sufficiently approximated by xT

e

✓⇤. Formally, we
assume that ⇢ �

= max

e2E |w(e)� xT
e

✓⇤| is small.

Similar to the existing approaches for linear bandits, we exploit the linear generalization to develop
a learning algorithm for ICSB. Without loss of generality, we assume that kx

e

k
2

 1 for all e 2 E .
Moreover, we use X 2 <|E|⇥d to denote the feature matrix, i.e., the row of X associated with edge
e is xT

e

. Note that if a learning agent does not know how to construct good features, it can always
choose the naïve feature matrix X = I 2 <|E|⇥|E|. We refer to the special case X = I 2 <|E|⇥|E| as
the tabular case. In the tabular case, we assume no generalization model across edges.

3.2 IMLinUCB algorithm

Our proposed algorithm, Influence Maximization Linear UCB (IMLinUCB), is detailed in Algorithm 1
and is a natural approach to ICSB. Notice that IMLinUCB represents its past observations as a positive-
definite matrix (gram matrix) M

t

2 <d⇥d and a vector B
t

2 <d. Specifically, let X
t

be a matrix
whose rows are the feature vectors of all observed edges in t steps and Y

t

be a binary column vector
encoding the realizations of all observed edges in t steps. Then M

t

= I+��2XT
t

X
t

and B
t

= XT
t

Y
t

.

At each round t, IMLinUCB operates in three steps: First, it computes an upper confidence bound
U
t

(e) for each edge e 2 E . Note that Proj
[0,1]

(·) projects a real number into interval [0, 1] to ensure
that it is a probability. Second, it chooses a set of source nodes based on the given ORACLE and U

t

,
which is also a probability-weight function. Finally, it receives the edge semi-bandit feedback and
uses it to update M

t

and B
t

. It is worth emphasizing that IMLinUCB is computationally efficient
as long as ORACLE is computationally efficient. Specifically, at each round t, the computational
complexities of both Step 1 and 3 of IMLinUCB are O

�
|E|d2

�
.4

It is worth pointing out that in the tabular case, IMLinUCB reduces to CUCB [10], in the sense that the
confidence radii in IMLinUCB are the same as those in CUCB, up to logarithmic factors. That is, CUCB
can be viewed as a special case of IMLinUCB with X = I.

4Notice that in a practical implementation, we store M�1

t

instead of M
t

. Moreover, M
t

 M
t

+�

�2

x

e

x

T
e

is equivalent to M�1

t

 M�1

t

� M�1
t

x

e

x

T
e

M�1
t

x

T
e

M�1
t

x

e

+�

2
.

3

— learning the only network (weights) is VERY impractical

true weights

linear approximation

this is small

— by choosing the dimension (size of 𝜃*) we can reduce this complexity

— if we do not want to lose generality we set d to the number of edges

ALGORITHM AND PERFORMANCE MEASURE

56

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

MAXIMUM OBSERVED RELEVANCE

57

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

depends on bothonly depends on topology

max (over) 2-norm of N weighted by P

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB
Input: graph G, source node set cardinality K, oracle ORACLE, feature vector x

e

’s, and algorithm
parameters �, c > 0,
Initialization: B

0

 0 2 <d, M
0

 I 2 <d⇥d

for t = 1, 2, . . . , n do

1. set ✓
t�1

 ��2M�1

t�1

B
t�1

and the UCBs as U
t

(e) Proj

[0,1]

✓
xT
e

✓
t�1

+ c
q

xT
e

M�1

t�1

x
e

◆

for all e 2 E
2. choose S

t

2 ORACLE(G,K, U
t

), and observe the edge-level semi-bandit feedback
3. update statistics:

(a) initialize M
t

 M
t�1

and B
t

 B
t�1

(b) for all observed edges e 2 E , update M
t

 M
t

+ ��2x
e

xT
e

and B
t

 B
t

+ x
e

w
t

(e)

3.3 Performance metrics

Recall that the agent’s objective is to maximize the expected cumulative reward, which is equivalent
to minimizing the expected cumulative regret. At each round t, IMLinUCB needs to call an oracle
ORACLE for solving an offline IM problem, which can be an approximation / randomized oracle.
Naturally, this can lead to O(n) cumulative regret, since at each round t there is a non-diminishing
regret due to the approximation / randomized nature of ORACLE. To analyze the performance of
IMLinUCB in such cases, we define a more appropriate performance metric, the scaled cumulative
regret, as R⌘

(n) =

P
n

t=1

E [R⌘

t

], where n is the number of steps, ⌘ > 0 is the scale, and R⌘

t

=

f(Sopt,w
t

)� 1

⌘

f(S
t

,w
t

) is the ⌘-scaled realized regret R⌘

t

at round t. When ⌘ = 1, R⌘

(n) reduces
to the standard expected cumulative regret R(n).

4 Analysis

In this section, we give a regret bound for IMLinUCB for the case when w(e) = xT
e

✓⇤ for all e 2 E
(i.e., the linear generalization is perfect). Our main contribution regret bound depends with a new
complexity metric, maximum observed relevance, which depends on both the topology of G and the
probability weight function w, and is defined in Section 4.1. We highlight this as most known results
for this problem are worst case, and some of them do not depend on probability weight function at all.

4.1 Maximum observed relevance

We start by some terminology. For given directed graph G = (V, E) and source node set S ✓ V , we
say an edge e 2 E is relevant to a node v 2 V \ S under S if there exists a path p from a source
node s 2 S to v such that (1) e 2 p and (2) p does not contain another source node other than s.
Notice that with a given S , whether or not a node v 2 V \ S is influenced only depends on the binary
weights w on its relevant edges. For any edge e 2 E , we define NS,e

as the number of nodes in V \ S
it is relevant to, and define PS,e

as the conditional probability that e is observed given S ,

NS,e

�

=

P
v2V\S 1 {e is relevant to v under S} and PS,e

�

= P (e is observed | S) . (1)

Notice that NS,e

only depends on the topology of G, while PS,e

depends on both the topology of G
and the probability weight w. The maximum observed relevance C⇤ is defined as the maximum
(over S) 2-norm of NS,e

’s weighted by PS,e

’s,

C⇤
�

= maxS: |S|=K

qP
e2E N

2

S,e

PS,e

. (2)

As is detailed in the proof of Lemma 1 in Appendix A, C⇤ arises in the step where Cauchy-Schwarz
inequality is applied. Note that C⇤ also depends on both the topology of G and the probability
weight w. However, C⇤ can be bounded from above only based on the topology of G or the size of
the problem (i.e., L = |V| and |E|):

C⇤  CG
�

= maxS: |S|=K

qP
e2E N

2

S,e

 (L�K)

p
|E| = O

⇣
L
p

|E|
⌘
= O

�
L2

�
, (3)

4

#nodes

seed size

#edgesWorst-case upper bound:

WORST-CASE BOUNDS

58

(a) (b) (c) (d)

Figure 1: a. Bar graph on 8 nodes. b. Star graph on 4 nodes. c. Ray graph on 10 nodes. d. Grid
graph on 9 nodes. Each undirected edge denotes two directed edges in opposite directions.

where CG is the maximum / worst-case (over w) C⇤ for the directed graph G, and the maximum
is obtained by setting w(e) = 1 for all e 2 E . Since CG is worst-case, it might be very far away
from C⇤ if the activation probabilities are small. Indeed, this is what we except a typical real-world
situation. Notice also that if max

e2E w(e) ! 0, then PS,e

! 0 for all e whose start node is not in S ,
and C⇤ ! C0

G
�

= maxS: |S|=K

qP
e2E(S)

N2

S,e

, where E(S) is the set of edges with start node in S .

Hence if K is small, C0

G is much less than CG in many topologies. Finally, it is worth pointing out
that there exists (G, w) such that C⇤ = ⇥(L2

). One such example is when G is a complete graph
with L nodes and w(e) = L/(L+ 1) for all edges e in this graph.

To give more intuition, in the rest of this subsection, we illustrate how CG , the worst-case C⇤, varies
with four graph topologies in Figure 1: bar, star, ray, and grid, as well as two other topologies:
general tree and complete graph. We fix the node set V = {1, 2, . . . , L} for all graphs. The bar
graph (Figure 1a) is a graph where nodes i and i + 1 are connected when i is odd. The star graph
(Figure 1b) is a graph where node 1 is central and all remaining nodes i 2 V \ {1} are connected
to it. The distance between any two of these nodes is 2. The ray graph (Figure 1c) is a star graph
with k =

⌃p
L� 1

⌥
arms, where node 1 is central and each arm contains either d(L � 1)/ke or

b(L� 1)/kc nodes connected in a line. The distance between any two nodes in this graph is O(

p
L).

The grid graph (Figure 1d) is a classical non-tree graph with O(L) edges.

To see how CG varies with the graph topology, we start with the simplified case when K = |S| = 1.
In the bar graph (Figure 1a), only one edge is relevant to a node v 2 V \ S and all the other edges
are not relevant to any nodes. Therefore, CG  1. In the star graph (Figure 1b), for any s, at
most one edge is relevant to at most L � 1 nodes and the remaining edges are relevant to at most
one node. In this case, CG 

p
L2

+ L = O(L). In the ray graph (Figure 1c), for any s, at most
O(

p
L) edges are relevant to L� 1 nodes and the remaining edges are relevant to at most O(

p
L)

nodes. In this case, CG = O(

p
L

1
2L2

+ LL) = O(L
5
4
). Finally, recall that for all graphs we can

bound CG by O(L
p
|E|), regardless of K. Hence, for the grid graph (Figure 1d) and general tree

graph, CG = O(L
3
2
) since |E| = O(L); for the complete graph CG = O(L2

) since |E| = O(L2

).
Clearly, CG varies widely with the topology of the graph. The second column of Table 1 summarizes
how CG varies with the above-mentioned graph topologies for general K = |S|.

4.2 Regret guarantees

Consider C⇤ defined in Section 4.1 and the recall the worst-case upper bound C⇤  (L�K)

p
|E|,

we have the following regret guarantees for IMLinUCB.

Theorem 1 Assume that (1) w(e) = xT
e

✓⇤ for all e 2 E and (2) ORACLE is an (↵, �)-approximation
algorithm. Let D be a known upper bound on k✓⇤k

2

, if we apply IMLinUCB with � = 1 and

c =

s

d log

✓
1 +

n|E|
d

◆
+ 2 log (n(L+ 1�K)) +D, (4)

5

topology CG (worst-case C⇤) R

↵�(n) for general X R

↵�(n) for X = I

bar graph O(
p
K) eO (dK

p
n/(↵�)) eO

⇣
L

p
Kn/(↵�)

⌘

star graph O(L
p
K) eO

⇣
dL

3
2
p
Kn/(↵�)

⌘
eO
⇣
L

2

p
Kn/(↵�)

⌘

ray graph O(L
5
4
p
K) eO

⇣
dL

7
4
p
Kn/(↵�)

⌘
eO
⇣
L

9
4
p
Kn/(↵�)

⌘

tree graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

grid graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

complete graph O(L2) eO �
dL

3

p
n/(↵�)

� eO �
L

4

p
n/(↵�)

�

Table 1: CG and worst-case regret bounds for different graph topologies

then we have

R↵�

(n)  2cC⇤
↵�

s

dn|E| log
2

✓
1 +

n|E|
d

◆
+ 1 =

eO
⇣
dC⇤

p
|E|n/(↵�)

⌘
(5)

 eO
�
d(L�K)|E|

p
n/(↵�)

�
. (6)

Moreover, if the feature matrix X = I 2 <|E|⇥|E| (i.e., the tabular case), we have

R↵�

(n)  2cC⇤
↵�

p
n|E| log

2

(1 + n) + 1 =

eO
�
|E|C⇤

p
n/(↵�)

�
(7)

 eO
⇣
(L�K)|E| 32

p
n/(↵�)

⌘
. (8)

Please refer to Appendix A for the proof of Theorem 1, that we outline in Section 4.3. We now briefly
comment on the regret bounds in Theorem 1.

Topology-dependent bounds: Since C⇤ is topology-dependent, the regret bounds in Equations 5
and 7 are also topology-dependent. Table 1 summarizes the regret bounds for each topology5

discussed in Section 4.1. Since the regret bounds in Table 1 are the worst-case regret bounds for a
given topology, more general topologies have larger regret bounds. For instance, the regret bounds
for tree are larger than their counterparts for star and ray, since star and ray are special trees. The
grid and tree can also be viewed as special complete graphs by setting w(e) = 0 for some e 2 E ,
hence complete graph has larger regret bounds. Again, in practice we expect C⇤ to be far lower due
to activation probabilities.

Tighter bounds in tabular case and under exact oracle: Notice that for the tabular case with
feature matrix X = I and d = |E|, eO(

p
|E|) tighter regret bounds are obtained in Equations 7 and

8. Also notice that the eO(1/(↵�)) factor is due to the fact that ORACLE is an (↵, �)-approximation
oracle. If ORACLE solves the IM problem exactly (i.e., ↵ = � = 1), then R↵�

(n) = R(n).

Tightness of our regret bounds: First, note that our regret bound in the bar case with K = 1 matches
the regret bound of the classic LinUCB algorithm. Specifically, with perfect linear generalization, this
case is equivalent to a linear bandit problem with L arms and feature dimension d. From Table 1,
our regret bound in this case is eO (d

p
n), which matches the known regret bound of LinUCB that can

be obtained by the technique of [1]. Second, we briefly discuss the tightness of the regret bound in
Equation 6 for a general graph with L nodes and |E| edges. Note that the eO(

p
n)-dependence on time

is near-optimal, and the eO(d)-dependence on feature dimension is standard in linear bandits6[1, 34].
The eO(L�K) factor is due to the fact that the reward in this problem is from K to L, rather than
from 0 to 1. To explain the eO(|E|) factor in this bound, notice that one eO(

p
|E|) factor is due to the

fact that at most eO(|E|) edges might be observed at each round (see Theorem 3), and is intrinsic to
the problem similarly to combinatorial semi-bandits [22]; another eO(

p
|E|) factor is due to linear

generalization (see Lemma 1) and might be removed by better analysis. We conjecture that our
eO (d(L�K)|E|pn/(↵�)) regret bound in this case is at most eO(

p
|E|d) away from being tight.

5The regret bound for bar graph is based on Theorem 2 in the appendix, which is a stronger version of
Theorem 1 for disconnected graph.

6
p
d results are only known for impractical algorithms

6

L = number of nodes, K = size of seed set, n = number of rounds, d = dimension

RESULTS

59

topology CG (worst-case C⇤) R

↵�(n) for general X R

↵�(n) for X = I

bar graph O(
p
K) eO (dK

p
n/(↵�)) eO

⇣
L

p
Kn/(↵�)

⌘

star graph O(L
p
K) eO

⇣
dL

3
2
p
Kn/(↵�)

⌘
eO
⇣
L

2

p
Kn/(↵�)

⌘

ray graph O(L
5
4
p
K) eO

⇣
dL

7
4
p
Kn/(↵�)

⌘
eO
⇣
L

9
4
p
Kn/(↵�)

⌘

tree graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

grid graph O(L
3
2) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

complete graph O(L2) eO �
dL

3

p
n/(↵�)

� eO �
L

4

p
n/(↵�)

�

Table 1: CG and worst-case regret bounds for different graph topologies

then we have

R↵�

(n)  2cC⇤
↵�

s

dn|E| log
2

✓
1 +

n|E|
d

◆
+ 1 =

eO
⇣
dC⇤

p
|E|n/(↵�)

⌘
(5)

 eO
�
d(L�K)|E|

p
n/(↵�)

�
. (6)

Moreover, if the feature matrix X = I 2 <|E|⇥|E| (i.e., the tabular case), we have

R↵�

(n)  2cC⇤
↵�

p
n|E| log

2

(1 + n) + 1 =

eO
�
|E|C⇤

p
n/(↵�)

�
(7)

 eO
⇣
(L�K)|E| 32

p
n/(↵�)

⌘
. (8)

Please refer to Appendix A for the proof of Theorem 1, that we outline in Section 4.3. We now briefly
comment on the regret bounds in Theorem 1.

Topology-dependent bounds: Since C⇤ is topology-dependent, the regret bounds in Equations 5
and 7 are also topology-dependent. Table 1 summarizes the regret bounds for each topology5

discussed in Section 4.1. Since the regret bounds in Table 1 are the worst-case regret bounds for a
given topology, more general topologies have larger regret bounds. For instance, the regret bounds
for tree are larger than their counterparts for star and ray, since star and ray are special trees. The
grid and tree can also be viewed as special complete graphs by setting w(e) = 0 for some e 2 E ,
hence complete graph has larger regret bounds. Again, in practice we expect C⇤ to be far lower due
to activation probabilities.

Tighter bounds in tabular case and under exact oracle: Notice that for the tabular case with
feature matrix X = I and d = |E|, eO(

p
|E|) tighter regret bounds are obtained in Equations 7 and

8. Also notice that the eO(1/(↵�)) factor is due to the fact that ORACLE is an (↵, �)-approximation
oracle. If ORACLE solves the IM problem exactly (i.e., ↵ = � = 1), then R↵�

(n) = R(n).

Tightness of our regret bounds: First, note that our regret bound in the bar case with K = 1 matches
the regret bound of the classic LinUCB algorithm. Specifically, with perfect linear generalization, this
case is equivalent to a linear bandit problem with L arms and feature dimension d. From Table 1,
our regret bound in this case is eO (d

p
n), which matches the known regret bound of LinUCB that can

be obtained by the technique of [1]. Second, we briefly discuss the tightness of the regret bound in
Equation 6 for a general graph with L nodes and |E| edges. Note that the eO(

p
n)-dependence on time

is near-optimal, and the eO(d)-dependence on feature dimension is standard in linear bandits6[1, 34].
The eO(L�K) factor is due to the fact that the reward in this problem is from K to L, rather than
from 0 to 1. To explain the eO(|E|) factor in this bound, notice that one eO(

p
|E|) factor is due to the

fact that at most eO(|E|) edges might be observed at each round (see Theorem 3), and is intrinsic to
the problem similarly to combinatorial semi-bandits [22]; another eO(

p
|E|) factor is due to linear

generalization (see Lemma 1) and might be removed by better analysis. We conjecture that our
eO (d(L�K)|E|pn/(↵�)) regret bound in this case is at most eO(

p
|E|d) away from being tight.

5The regret bound for bar graph is based on Theorem 2 in the appendix, which is a stronger version of
Theorem 1 for disconnected graph.

6
p
d results are only known for impractical algorithms

6

How good (tight) is this?

comparison with linear bandits

comparison with general combinatorial bandits

(L-K) factor

How good is C*?

PROOF SKETCH?

60

when are our upper bounds on the estimates right?

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

…. decomposes the regret at round t

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

Cu
m

ul
at

ive
 R

eg
re

t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

monotonicity of f decomposed into nodes

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

Cu
m

ul
at

ive
 R

eg
re

t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

probability that node v is influences

studying the Markov process of propagation

consider non-overlaping layers

random stopping time

EXPERIMENTS

61

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

Objective: “Check” how good is our C*

Tabular case, K = 1, exact comparison possible, all weights are same = 𝜔

Conclusion: evidence that our C* is a reasonable complexity measure

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d

max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

and c > 0, both p and log(c) can be estimated by linear regression in the new space. For star graphs
with ! = 0.8 and ! = 0.7, our estimated growth are respectively O(L2.040

) and O(L2.056

), which
are close to the expected eO(L2

). For ray graphs with ! = 0.8 and ! = 0.7, our estimated growth are
respectively O(L2.488

) and O(L2.467

), which are again close to the expected eO(L
9
4
). This shows

that maximum observed relevance C⇤ proposed in Section 4.1 is a reasonable complexity metric for
these two topologies.

5.2 Subgraph of Facebook network

In the second experiment, we demonstrate the potential performance gain of IMLinUCB in real-
world influence maximization semi-bandit problems by exploiting linear generalization across edges.
Specifically, we compare IMLinUCB with CUCB in a subgraph of Facebook network from [24]. The
subgraph has L = |V| = 327 nodes and |E| = 5038 directed edges. Since the true probability weight
function w is not available, we independently sample w(e)’s from the uniform distribution U(0, 0.1)
and treat them as ground-truth. Note that this range of probabilities is guided by empirical evidence
in [17, 5]. We set n = 5000 and K = 10 in this experiment. For IMLinUCB, we choose d = 10

and generate edge feature x
e

’s as follows: we first use node2vec algorithm [18] to generate a node
feature in <d for each node v 2 V ; then for each edge e, we generate x

e

as the element-wise product
of node features of the two nodes connected to e. Note that the linear generalization in this experiment
is imperfect in the sense that min

✓2<d max

e2E |w(e) � xT

e

✓| > 0. For both CUCB and IMLinUCB,
we choose ORACLE as the state-of-the-art offline IM algorithm proposed in [29]. To compute the
cumulative regret, we compare against a fixed seed set S⇤ obtained by using the true w as input to
the oracle proposed in [29]. We average the empirical cumulative regret over 10 independent runs,
and plot the results in figure 2b. The experimental results show that compared with CUCB, IMLinUCB
can significantly reduce the cumulative regret by exploiting linear generalization across w(e)’s.

6 Related Work

IM semi-bandits were studied recently [23, 11, 32]. First, Lei et al. [23] proposed algorithms for
the same feedback model as ours. The algorithms are not analyzed and cannot solve large-scale
problems because they estimate each edge weight independently. Second, our setting is a special
case of stochastic combinatorial semi-bandit with a submodular reward function and stochastically
observed edges [11]. Chen et al. [11] proposed an algorithm for these problems and bounded its
regret. Their work is the closest related work. Their gap-dependent and gap-free bounds are both
problematic because they depend on the reciprocal of the minimum observation probability p⇤ of an
edge: Consider a line graph with |E| edges where all edge weights are 0.5. Then 1/p⇤ is 2|E|�1. On
the other hand, our derived regret bounds in Theorem 1 are polynomial in all quantities of interest.
A recent paper [33] removes the 1/p⇤ factor in [11] and presents a eO(L

p
|E|Kn+ L|E|3) gap-free

regret bound for the tabular case, where the latter term depends on log n. Though this bound is
asymptotically tighter than our eO(L|E| 32pn) bound (Equation 8) in the worst case, our bound is
tighter in finite time when n =

eO(|E|3). As |E| is expected to be huge in social networks, we believe
that our bound is more practical at realistic operating points. Moreover, both Chen et al. [11] and
Wang and Chen [33] do not consider generalization models across edges or nodes, and therefore
their proposed algorithms are unlikely to be practical for real-world social networks. In contrast, our
proposed algorithm scales to large problems by exploiting linear generalization across edges.

IM bandits for different influence models and settings: Vaswani et al. [32] proposed a learning
algorithm for a different and more challenging feedback model, where the learning agent observes
influenced nodes but not the edges, but they do not give any guarantees. Carpentier and Valko [8] give
a minimax optimal algorithm for IM bandits but only consider a local model of influence with a single
source and a cascade of influences never happens. In related networked bandits [14], the learner
chooses a node and its reward is the sum of the rewards of the chosen node and its neighborhood.
The problem gets more challenging when we allow the influence probabilities to change [4], when
we allow the seed set to be chosen adaptively [31], or when we consider a continuous model [15].
Furthermore, Sigla et al. [28] treats the IM setting with an additional observability constraints, where
we face a restriction on which nodes we can choose at each round. This setting is also related to
the volatile multi-armed bandits where the set of possible arms changes [7]. Vaswani et al. [30]
proposed a diffusion-independent algorithm for IM semi-bandits with a wide range of diffusion

8

Star

Ray

vs.

vs.

FACEBOOK EXPERIMENT

62

8 16 24 32
L

210

212

214

216

R
eg

re
t

! = 0.8, X = I

Star
Ray

8 16 24 32
L

29

211

213

215

R
eg

re
t

! = 0.7, X = I

8 16 24 32
L

28

29

210

211

R
eg

re
t

! = 0.8, X = X4

(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.

0 1000 2000 3000 4000 5000
Number of Rounds

0

0.5

1

1.5

2

2.5

C
um

ul
at

iv
e

R
eg

re
t

#105

CUCB
IMLinUCB with d=10

(b) Subgraph of Facebook Network

Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

real Facebook (a small subgraph)

weights from U(0,0.1)

nodetovec with d=10

imperfect

K = 10

CUCB with no linear generalisation

CONCLUSION AND NEXT STEPS

Active learning on graphs

learning the graph while acting on it optimal

difficulty of the problem and scaling with it

online influence maximization

local model (minimax optimal algorithm)

global cascading model

What is next?

dynamic/evolving graphs

realistic accessibility constraints

63

GRAPH
BANDITS  

WITH SIDE
OBSERVATIONS
exploiting free observations from

neighbouring nodes

Kocák, Neu, MV, Munos: Efficient learning by implicit exploration in bandit problems
with side observations, NIPS 2014

Kocák, Neu, MV: Online learning with Erdos-Rényi side-observation graphs  
UAI 2016

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016

SIDE OBSERVATIONS: UNDIRECTEDGraph bandits: Side observations

Example 1: undirected observations

Michal Valko – Graphs in Machine Learning SequeL - 8/66

Graph bandits: Side observations

Example 1: Graph Representation

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 9/66

65

SIDE OBSERVATIONS: DIRECTEDGraph bandits: Side observations
Example 2: Directed observation

Michal Valko – Graphs in Machine Learning SequeL - 10/66

Graph bandits: Side observations

Example 2

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 11/66

66

SIDE OBSERVATIONS - AN INTERMEDIATE GAME

Full-information

observe losses of all actions

example: Hedge

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T)

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT)

A B

C

DE

F

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 13/66

67

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T)

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT)

A B

C

DE

F

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 13/66

Bandits

observe losses of the chosen action

example: EXP3

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T)

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT)

A B

C

DE

F

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 13/67

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T)

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT)

A B

C

DE

F

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 13/67

From Experts to Bandits
Mannor and Shamir 2011

KNOWLEDGE OF OBSERVATION GRAPHS

ELP (Mannor and Shamir 2011)

EXP3 - with “LP balanced exploration”

undirected O(√(αT)) ✅ - needs to know Gt

directed case O(√(cT)) - needs to know Gt

EXP3-SET (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)

undirected O(√(αT)) ✅ does not need to know Gt ✅

EXP3-DOM (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)

directed O(√(αT)) ✅ - need to know Gt

calculates dominating set

68

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT)

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 14/67

Graph bandits: Side observation - Directed case
Side observation (Directed case)

I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = eO(

p
↵T)

Exp3-IX - Kocák et. al
I No need to know graph
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 15/67

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT)

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 14/67

EXP3-IX: IMPLICIT EXPLORATION

2.2 Performance guarantees for EXP3-IX
Algorithm 1 EXP3-IX

1: Input: Set of actions S = [d],
2: parameters �

t

2 (0, 1), ⌘
t

> 0 for t 2 [T].
3: for t = 1 to T do

4: w
t,i

 (1/d) exp (�⌘
t

bL
t�1,i

) for i 2 [d]
5: An adversary privately chooses losses `

t,i

for i 2 [d] and generates a graph G
t

6: W
t

 P
d

i=1

w
t,i

7: p
t,i

 w
t,i

/W
t

8: Choose I
t

⇠ p
t

= (p
t,1

, . . . , p
t,d

)

9: Observe graph G
t

10: Observe pairs {i, `
t,i

} for (I
t

! i) 2 G
t

11: o
t,i

 P
(j!i)2Gt

p
t,j

for i 2 [d]

12: ˆ`
t,i

 `t,i

ot,i+�t
1{(It!i)2Gt} for i 2 [d]

13: end for

Our analysis follows the footsteps of Auer et al.
[3] and Györfi and Ottucsák [9], who provide
an improved analysis of the adaptive learning-
rate rule proposed by Auer et al. [4]. However,
a technical subtlety will force us to proceed a
little differently than these standard proofs: for
achieving the tightest possible bounds and the
most efficient algorithm, we need to tune our
learning rates according to some random quan-
tities that depend on the performance of EXP3-
IX. In fact, the key quantities in our analysis are
the terms

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

,

which depend on the interaction history F
t�1

for all t. Our theorem below gives the performance
guarantee for EXP3-IX using a parameter setting adaptive to the values of Q

t

. A full proof of the
theorem is given in the supplementary material.

Theorem 1. Setting ⌘
t

= �
t

=

q
(log d)/(d+

P
t�1

s=1

Q
s

) , the regret of EXP3-IX satisfies

R
T

 4E
"r⇣

d+
P

T

t=1

Q
t

⌘
log d

#
. (3)

Proof sketch. Following the proof of Lemma 1 in Györfi and Ottucsák [9], we can prove that
dX

i=1

p
t,i

ˆ`
t,i

 ⌘
t

2

dX

i=1

p
t,i

⇣
ˆ`
t,i

⌘
2

+

✓
logW

t

⌘
t

� logW
t+1

⌘
t+1

◆
. (4)

Taking conditional expectations, using Equation (2) and summing up both sides, we get
TX

t=1

dX

i=1

p
t,i

`
t,i


TX

t=1

⇣⌘
t

2

+ �
t

⌘
Q

t

+

TX

t=1

E
✓

logW
t

⌘
t

� logW
t+1

⌘
t+1

◆����Ft�1

�
.

Using Lemma 3.5 of Auer et al. [4] and plugging in ⌘
t

and �
t

, this becomes
TX

t=1

dX

i=1

p
t,i

`
t,i

 3

r⇣
d+

P
T

t=1

Q
t

⌘
log d+

TX

t=1

E
✓

logW
t

⌘
t

� logW
t+1

⌘
t+1

◆����Ft�1

�
.

Taking expectations on both sides, the second term on the right hand side telescopes into

E

logW

1

⌘
1

� logW
T+1

⌘
T+1

�
 E


� logw

T+1,j

⌘
T+1

�
= E


log d

⌘
T+1

�
+ E

h
ˆL
T,j

i

for any j 2 [d], giving the desired result as
TX

t=1

dX

i=1

p
t,i

`
t,i


TX

t=1

`
t,j

+ 4E
"r⇣

d+
P

T

t=1

Q
t

⌘
log d

#
,

where we used the definition of ⌘
T

and the optimistic property of the loss estimates.

Setting m = 1 and c = �
t

in Lemma 1, gives the following deterministic upper bound on each Q
t

.
Lemma 2. For all t 2 [T],

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

 2↵
t

log

✓
1 +

dd2/�
t

e+ d

↵
t

◆
+ 2.

5

Graph bandits: Comparison of loss estimates
Typical algorithms - loss estimates

ˆ̀t,i =

(
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i] =
`t,i
ot,i

ot,i + 0(1 � ot,i) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

(
`t,i/(ot,i + �) if `t,i is observed

0 otherwise.

E[ˆ̀t,i] =
`t,i

ot,i + �
ot,i + 0(1 � ot,i) = `t,i � `t,i

�

ot,i + �
 `t,i

No mixing!

Michal Valko – Graphs in Machine Learning SequeL - 20/67

Optimistic bias for the loss estimates

Benefits of the implicit exploration

no need to know the graph before

no need to estimate dominating set

no need for doubling trick

no need for aggregation

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵T ln N
⌘

Next step
Generalization of the setting to combinatorial actions

Michal Valko – Graphs in Machine Learning SequeL - 27/67

69

FOLLOW UPS

EXP3-IX (Kocák, Neu, MV, Munos, 2014)

directed O(√(αT)) ✅ does not need to know Gt ✅

EXP3.G (Alon, Cesa-Bianchi, Dekel, Koren, 2015)

directed O(√(αT)) ✅ does not need to know Gt ✅

mixes uniform distribution

more general algorithm for settings beyond bandits

high-probability bound

 Neu 2015: high-probability bound for EXP3-IX

70

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT)

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 14/67

Graph bandits: Side observation - Directed case
Side observation (Directed case)

I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = eO(

p
↵T)

Exp3-IX - Kocák et. al
I No need to know graph
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 15/67

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT)

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T)

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 14/67

COMPLEX GRAPH ACTIONSGraph bandits: Complex actions

A B C

DEF

G H I

JKL

I Play action Vt 2 S ⇢ {0, 1}N , kvk
1

 m from all v 2 S
I Obtain losses VT

t `t

I Observe additional losses according to the graph

Michal Valko – Graphs in Machine Learning SequeL - 30/66

Graph bandits: Complex actions

FPL-IX - regret bound

RT = eO
0

@m3/2

vuut
TX

t=1

↵t

1

A = eO
⇣

m3/2

p
↵T

⌘

Michal Valko – Graphs in Machine Learning SequeL - 32/66

71

Example: online shortest path semi-bandits with observing traffic on the side streets

GRAPH
BANDITS WITH

NOISY SIDE
OBSERVATIONS
exploiting side observations that can

be perturbed by certain level of noise

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016

NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε

reliable: use as exact

unreliable: rubbish

then we can improve over pure bandit setting!

2) Treating noisy observation induces bias

What can we hope for?

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

Can we learn without knowing either ε or α* ?

� "

� "

� "

� "

< "

� "

73

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

effective independence number

30 Chapter 2. Side observations

Here we used the fact that Ot,i is independent of Kt,i and has expectation ot,i given Ft�1. We
call this algorithm Follow-the-Perturbed-Leader with Implicit eXploration (FPL-IX, Kocák et al.
2014a). Note that the geometric resampling procedure can be terminated as soon as Kt,i becomes
well-defined for all i with Ot,i = 1. As noted by Neu and Bartók (2013), this requires generating
at most N copies of OOOt on expectation. As each of these copies requires one access to the linear
optimization oracle over S , we conclude that the expected running time of FPL-IX is at most N
times that of the expected running time of the oracle. A high-probability guarantee of the running
time can be obtained by observing that Ut,i  log

� 1
d

�

/gt holds with probability at least 1�d and
thus we can stop sampling after at most d log

�N
d

�

/gt steps with probability at least 1� d . The
regret guarantee for FPL-IX using the approximation e

at of at is stated below.

Theorem 2.2.2 — Regret of FPL-IX by Kocák et al. (2014a). Assume that for all t 2 [T],

at/C  e

at  at  N for some C > 1. Setting ht = gt =
q

(logN +1)/
�

m
�

N +Ât�1
s=1 eas

��

and
assuming mN > 4, the regret of FPL-IX satisfies

RT  Hm3/2
q

�

N +C ÂT
t=1 at

�

(logN +1), where H = O(log(mNT)).

2.3 Noisy side observations

Until now in this chapter, we studied situations when the learner observes losses associated with
some additional actions besides its own loss. This setting fails to address one important practical
concern: in reality, one can rarely expect perfect side-observations to be available. In the current
section, we propose a similar model that can incorporate imperfect side-observations corrupted by
various levels of noise, depending on the problem structure.

As an illustration of noisy setting, consider the problem of controlling solar panels so as to
maximize their power production. In this problem, the learner has to repeatedly decide about the
orientation of the panels so as to find alignments with strong sunshine. Besides the amount of
the energy being actually produced in the current alignment, the learner can also possibly base
its decisions on measurements of sensors installed on the solar panel. However, the observations
generated by these sensors can be of variable quality depending on visibility conditions, the quality
of the sensors and the alignment of the panels. Overall, this problem can be seen as a bandit problem
with noisy side-observations fitting into our framework, where actions correspond to alignments
and the noisy side observations give information about similar alignments.

Formally, the learning protocol (Figure 2.5) additionally assumes the knowledge of the weight
of each arc i ! j in Gt , which is denoted as st,(i, j) and assumed to lie in [0,1]. The feedback that
the learner in the noisy setting is

ct,i = st,(It ,i) · `t,i +
�

1� st,(It ,i)
�

·xt,i

for every arm i, where xt,i is the observation noise. We assume that each xt,i is zero-mean, satisfies
|xt,i| R for some known constant R � 0, and is generated independently of all other noise terms
and the history of the process2.

2We are mainly interested in the setting where R = Q(1), that is, we are neither in the easy case where R is close to
zero or the hard one where it may be as large as W(

p
T).

known weight

zero-mean noise

NOISY SIDE OBSERVATIONS

� "

� "

� "

< "

� "

� "

G: weighted graph

G(ε): graph with only ≥ε edges

α(ε): independence number of G(ε)

effective independence number of G:

Manuscript under review by AISTATS 2016

" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t)
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:

Manuscript under review by AISTATS 2016

Theorem 1. For all t, let ↵

⇤
t be the e↵ective inde-

pendence number of Gt. Then, there exists a setting
of (⌘t) and (�t) for which the regret of Exp3-IXt is
bounded as

RT = eO
0

@(1 +R)

vuut
TX

t=1

↵(Gt("t))

"

2
t

1

A
.

The theorem is proved in the Appendix. Note that
if we choose "t = argmin"2[0,1]

↵(Gt("))
"2 for all t, the

above bound essentially becomes eO(
p
↵

⇤
avgT) where

↵

⇤
avg = 1

T

PT
t=1 ↵

⇤
t is the average e↵ective indepen-

dence number of the sequence of graphs played by the
environment. Note however that tuning "t can be a
very challenging task in practice, since computing in-
dependence numbers in general is known to be NP-
hard. Even worse, computing the e↵ective indepen-
dence number of a weighted graph can require com-
puting up to N

2 independence numbers. In the next
section, we propose an adaptive algorithm that does
not need to tune this parameter and still manages to
guarantee the same regret bound.

3.2 An adaptive algorithm:

This section presents our main algorithm that obtains
strong regret bounds without having to estimate any
e↵ective independence numbers. The key element of
this algorithm is using loss estimates of the form

b̀
t,i =

st,(It,i) · ct,iPN
j=1 pt,js

2
t,(j,i) + �t

, (3)

where �t � 0 is again the so-called implicit exploration
parameter already introduced in the previous section.
Notice that the di↵erence from the estimates (1) is that
the observation ct,i is multiplied by the weight of useful
information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when
setting �t = 0 since

E
⇥
st,(It,i) · ct,i

��Ft�1

⇤
=

0

@
NX

j=1

pt,js
2
t,(j,i)

1

A · `t,i.

The role of this scaling is pulling the noise term ⇠t,i

toward zero for actions i with small weights sIt,i, and
thus achieving a similar variance-reducing e↵ect as the
truncations employed by Exp3-IXt.

Armed with the loss estimates (3), we are ready to de-
fine our algorithm: Exp3 (presented as Algorithm 1)
with Weighted observations and Implicit eXploration,
or, in short, Exp3-WIX. Overall, Exp3-WIX has
two set of parameters to tune: the sequence of learn-
ing rates (⌘t)t and the sequence of IX parameters

(�t)t. Our main theorem below states the performance
guarantees of Exp3-WIX with an adaptive learning-
rate sequence that does not need any prior knowledge
about the number of rounds or the nature of the side-
observation graphs. The key quantity for computing
the parameters ⌘t and �t is

Qt =
NX

i=1

pt,iPN
j=1 pt,js

2
t,(j,i) + �t

,

defined for all t.

Theorem 2. For all t, let ↵⇤
t be the e↵ective indepen-

dence number of Gt. Then, setting

⌘t =

s
logN

2(1 +R+R

2)(N +
Pt�1

s=1 Qs)

and �t = R⌘t, the regret of Exp3-WIX is bounded as

RT = eO
0

@(1 +R)

vuut
N +

TX

t=1

↵

⇤
t

1

A
.

The theorem is proved in Section 5. In plain words,
Theorem 2 guarantees that the regret of Exp3-WIX

grows as eO(
p

↵

⇤
avgT). Notice that in order to obtain

this regret bound, Exp3-WIX never needs to com-
pute the e↵ective independence number of any of the
observation graphs. This saves us from a significant
computational overhead as compared to the näıve al-
gorithm Exp3-IXt that needed to set a truncation
parameter to discard unreliable observations.

4 The e↵ective independence number

The previous section has established that the perfor-
mance guarantees of our algorithms can be expressed
in terms of the e↵ective independence number of the
observation graphs. In this section, we provide some
basic insights about the nature of this quantity and
describe some graph structures with small e↵ective in-
dependence numbers.

The first observation we make is that the e↵ective in-
dependence number is always well-defined, as the func-
tion ↵(")/"2 can be easily shown to be piecewise de-
creasing and lower semicontinuous with at most N

discontinuities. Thanks to these properties, this ex-
pression takes its minimum within the closed interval
[0, 1]. Second, we note that the e↵ective independence
number of any weighted graph is trivially bounded by
the number N of the nodes in the graph. This follows
from the fact that ↵

⇤  ↵(1)/1  N . This essen-
tially guarantees that incorporating side-observations
can never be harmful to the performance of the learner:

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

Since

incorporating noisy observations does not hurt

But how much does it help?

74

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

RT = eO
⇣p

↵?T
⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

Threshold estimate

Manuscript under review by AISTATS 2016

" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t)
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:

Manuscript under review by AISTATS 2016

Theorem 1. For all t, let ↵

⇤
t be the e↵ective inde-

pendence number of Gt. Then, there exists a setting
of (⌘t) and (�t) for which the regret of Exp3-IXt is
bounded as

RT = eO
0

@(1 +R)

vuut
TX

t=1

↵(Gt("t))

"

2
t

1

A
.

The theorem is proved in the Appendix. Note that
if we choose "t = argmin"2[0,1]

↵(Gt("))
"2 for all t, the

above bound essentially becomes eO(
p
↵

⇤
avgT) where

↵

⇤
avg = 1

T

PT
t=1 ↵

⇤
t is the average e↵ective indepen-

dence number of the sequence of graphs played by the
environment. Note however that tuning "t can be a
very challenging task in practice, since computing in-
dependence numbers in general is known to be NP-
hard. Even worse, computing the e↵ective indepen-
dence number of a weighted graph can require com-
puting up to N

2 independence numbers. In the next
section, we propose an adaptive algorithm that does
not need to tune this parameter and still manages to
guarantee the same regret bound.

3.2 An adaptive algorithm:

This section presents our main algorithm that obtains
strong regret bounds without having to estimate any
e↵ective independence numbers. The key element of
this algorithm is using loss estimates of the form

b̀
t,i =

st,(It,i) · ct,iPN
j=1 pt,js

2
t,(j,i) + �t

, (3)

where �t � 0 is again the so-called implicit exploration
parameter already introduced in the previous section.
Notice that the di↵erence from the estimates (1) is that
the observation ct,i is multiplied by the weight of useful
information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when
setting �t = 0 since

E
⇥
st,(It,i) · ct,i

��Ft�1

⇤
=

0

@
NX

j=1

pt,js
2
t,(j,i)

1

A · `t,i.

The role of this scaling is pulling the noise term ⇠t,i

toward zero for actions i with small weights sIt,i, and
thus achieving a similar variance-reducing e↵ect as the
truncations employed by Exp3-IXt.

Armed with the loss estimates (3), we are ready to de-
fine our algorithm: Exp3 (presented as Algorithm 1)
with Weighted observations and Implicit eXploration,
or, in short, Exp3-WIX. Overall, Exp3-WIX has
two set of parameters to tune: the sequence of learn-
ing rates (⌘t)t and the sequence of IX parameters

(�t)t. Our main theorem below states the performance
guarantees of Exp3-WIX with an adaptive learning-
rate sequence that does not need any prior knowledge
about the number of rounds or the nature of the side-
observation graphs. The key quantity for computing
the parameters ⌘t and �t is

Qt =
NX

i=1

pt,iPN
j=1 pt,js

2
t,(j,i) + �t

,

defined for all t.

Theorem 2. For all t, let ↵⇤
t be the e↵ective indepen-

dence number of Gt. Then, setting

⌘t =

s
logN

2(1 +R+R

2)(N +
Pt�1

s=1 Qs)

and �t = R⌘t, the regret of Exp3-WIX is bounded as

RT = eO
0

@(1 +R)

vuut
N +

TX

t=1

↵

⇤
t

1

A
.

The theorem is proved in Section 5. In plain words,
Theorem 2 guarantees that the regret of Exp3-WIX

grows as eO(
p

↵

⇤
avgT). Notice that in order to obtain

this regret bound, Exp3-WIX never needs to com-
pute the e↵ective independence number of any of the
observation graphs. This saves us from a significant
computational overhead as compared to the näıve al-
gorithm Exp3-IXt that needed to set a truncation
parameter to discard unreliable observations.

4 The e↵ective independence number

The previous section has established that the perfor-
mance guarantees of our algorithms can be expressed
in terms of the e↵ective independence number of the
observation graphs. In this section, we provide some
basic insights about the nature of this quantity and
describe some graph structures with small e↵ective in-
dependence numbers.

The first observation we make is that the e↵ective in-
dependence number is always well-defined, as the func-
tion ↵(")/"2 can be easily shown to be piecewise de-
creasing and lower semicontinuous with at most N

discontinuities. Thanks to these properties, this ex-
pression takes its minimum within the closed interval
[0, 1]. Second, we note that the e↵ective independence
number of any weighted graph is trivially bounded by
the number N of the nodes in the graph. This follows
from the fact that ↵

⇤  ↵(1)/1  N . This essen-
tially guarantees that incorporating side-observations
can never be harmful to the performance of the learner:

WIX estimate

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

RT = eO
⇣p

↵?T
⌘

Michal Valko – Graphs in Machine Learning SequeL - 34/67

EMPIRICAL RESULTS
Manuscript under review by AISTATS 2016

100 101 102
0

2

4

6

8

10

12

14

16

Number of nodes

in
f (
α

(ε
)/ε

2)

(a) U(0, 1) weights

100 101 102
1

1.5

2

2.5

3

3.5

4

Number of nodes

in
f (
α

(ε
)/ε

2)

(b) U(

1
2 , 1) weights

100 101 102
0

10

20

30

40

50

60

70

Number of nodes

in
f (
α

(ε
)/ε

2)

(c) U(0, 1
2) weights

Figure 2: Dependence of ↵⇤ on the size of the graph with random weights, 100 graphs for each size.

the regret of Exp3-WIX is always within logarithmic
factors of the minimax regret of order

p
NT for the

standard multi-armed bandit problem without side ob-
servations.

It is also easy to see that the e↵ective independence
number exactly matches the independence number if
all edge weights are binary. This in particular implies
that for such graphs, the regret of Exp3-WIX grows
at the minimax rate established by Alon et al. (2013)
up to logarithmic factors, matching the performance
guarantees of the algorithms of Alon et al. (2013) and
Kocák et al. (2014). Another interesting case is when
all weights are either zero or equal to a fixed constant
", also assuming si,i = ". In this case, the e↵ective in-
dependence number becomes ↵

"2 , where ↵ is the inde-
pendence number of the underlying unweighted graph.
This case was studied in the recent paper of Wu et al.
(2015), who show (in their Corollary 4) that the mini-
max regret in this case is of ⇥(

p
↵T/")—implying that

our performance bounds for this case are again near-
optimal4. Also observe that whenever all weights are
bounded by some constant c > 0 from below, the ef-
fective independence number becomes upper-bounded
by 1/c2, irrespective of the number of actions. That
is, our algorithm can achieve an exponential perfor-
mance gain over bandit algorithms in terms of N by
leveraging such feedback structures.

Let us now describe a class of weighted graphs with
bounded e↵ective independence numbers. Consider
a geometric graph whose nodes represent vertices of
a uniform k ⇥ k grid on [0, 1]2. The weight of edge
(i, j) is given as 1/(1 + d

2
i,j), where di,j is the Eu-

clidean distance of the respective vertices represented
by i and j. This graph can be used to model a sen-
sor network where the measurement accuracy of mea-
surements degrades with the distance. Thus, reading

4
While we prove our bounds for the case where si,i = 1

for all i, it is easy to extend our results to the case where

all such weights equal a constant in [0, 1].

the measurements from one sensor will give informa-
tion about the measurements of nearby sensors as well.
Intuitively, increasing the number of sensors (i.e., re-
fining the grid) should only improve the information-
sharing between sensors up to a certain level. It is
natural to expect a reasonable graph property quanti-
fying the information-sharing e�ciency to capture this
intuition. We have numerically evaluated the e↵ec-
tive independence number of a number of graphs from
the above family to test if it satisfies the above crite-
rion. We have found that the e↵ective independence
numbers remain bounded by a constant (roughly 30)
even when refining the grid infinitely, confirming that
the e↵ective independence number captures the above
phenomenon.

Finally, we conducted some numerical simulations to
evaluate the average e↵ective independence numbers
of certain types of weighted random graphs. In partic-
ular, we considered random graphs with i.i.d. weights
distributed uniformly on [0, 1], [12 , 1] and [0, 1

2]. The
distributions of the e↵ective independence numbers are
illustrated as scatter plots for di↵erent graph sizes on
Figure 2. First, observe that the average ↵⇤ of U(0, 1)-
weighted graphs shows a logarithmic trend in terms of
N . The results concerning U(12 , 1)-weighted graphs
are not surprising given that we have already estab-
lished that graphs with bounded weights have finite
e↵ective independence numbers. For U(0, 1

2)-weighted
graphs, we see that ↵

⇤ grows linearly up until a cer-
tain threshold, when it starts to follow a logarithmic
trend. The intuition behind this linear behavior for
small graphs is the following. First, observe that the
optimal value of " is greater than 1/

p
N . That is, un-

til N is large enough so that a critical mass of edges
are above this quantity, the optimal value of ↵(")/"2

remains N . Once N is beyond this critical value, ↵⇤

starts following a logarithmic trend.

special case: if sij is either 0 or ε than α*= α/ε2

For this special case, there is a matches  
Θ(√(αT)/ε) by Wu, György, Szepesvári, 2015.

EMPIRICAL 𝛂* FOR RANDOM GRAPHS WITH IID WEIGHTS

75

Manuscript under review by AISTATS 2016

Value of ε

C
um

ul
at

iv
e

re
gr

et

Adaptive learning rate

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Exp3-WIX
Exp3
Exp3-IXb
Exp3-IXt

Figure 3: Comparison of total regrets of the algorithms at time T for static and adaptive learning rates.

6 Experiments

In this section, we empirically compare Exp3-WIX

to some of its natural competitors: Exp3-IXt, vanilla
Exp3 that ignores all side observations and a straight-
forward variation of the Exp3-IX algorithm of Kocák
et al. (2014). This latter algorithm, referred to as
Exp3-IXb (with “b” standing for “basic”), uses a
threshold " to decide which observations are too noisy
to use and which are the ones to be retained: All
the edges with weights smaller than a parameter " are
deleted and the rest of the weights are set to 1. The
algorithm then plays basic Exp3-IX for the resulting
binary graph. That is, the di↵erence between Exp3-

IXt and Exp3-IXb is that the latter does not adjust
for the bias arising from using unreliable side observa-
tions. Note that Exp3-IXb comes without any formal
performance guarantee.

For the purpose of the experiments, we assumed to
have 25 actions forming 5⇥5 grid embedded in a plane.
The distance of neighbors in the grid was set to be 1.
Using this structure, we defined the weight connect-
ing two nodes as min

�
3/d2, 1

, and d is the Euclidean

distance between actions in the grid. This choice is
motivated by the fact that the intensity of many phys-
ical phenomena decays proportionally to the inverse
square of the distance (e.g., gravitational force, elec-
tromagnetic phenomena).

A simple idea for constructing synthetic loss sequences
is letting the instantaneous loss of each action evolve as
a random walk with small Gaussian increments (with
appropriate truncations when the loss goes beyond the
[0, 1] interval). In our experiments, we took this idea
one step further: We constructed 20 independent ran-
dom walks for each action and alternated them, that
is, we used one random walk each to define every twen-
tieth loss. Using this procedure, we generated a sin-
gle loss sequence of T = 5, 000 steps to test the algo-
rithms. For a fair comparison, we ran each algorithm
for their respective theoretically motivated adaptive
learning rates, and also for a number of static learning
rates between 0.001 and 1. For static learning rates,

we observed the best performance of Exp3 for learn-
ing rates around 0.01, all the other algorithms did well
for learning rates around 0.1. Due to the lack of space,
we included plots only for these two learning rates.

We ran Exp3-IXb and Exp3-IXt for several values of
" from 0 to 1. In all experiments, we set the implicit
exploration parameters to zero. This is well-justified
in the case of undirected graphs, as shown by the anal-
ysis of Alon et al. (2013). Figure 3 shows the perfor-
mance of the algorithms for ⌘ = 0.01, ⌘ = 0.1 and the
adaptive learning rates for each algorithm as a func-
tion of the threshold parameter ". Each curve on this
graph is the average of the total regrets measured in
10 independent runs with error bars proportional to
the empirical standard deviation.

Our experiments confirm that guessing the right value
for the threshold parameter is indeed a very di�cult
problem: while Exp3-WIX performs consistently well
for all parameter settings, Exp3-IXt and Exp3-IXb

only perform reasonably well for moderate values of "
that are not supported by theory. In fact, the value
of " optimizing ↵(")/"2 is 1, which is shown to per-
form poorly in the experiments. Perhaps surprisingly,
Exp3-IXb performs well despite the obvious bias in
its loss estimates. The performance of Exp3 is signifi-
cantly worse than Exp3-WIX, confirming the benefit
of side-observations, however noisy they are.

7 Conclusions and open problems

The main contribution of our work is introducing a
new partial-observability model for adversarial online
learning and proposing an e�cient learning algorithm
with rigorous performance guarantees for this setting.
Our regret bounds depend on a newly introduced
graph property that we call the e↵ective independence
number. While the recent results of Wu et al. (2015)
suggest that our bounds are minimax optimal in some
special cases of our framework, it is not yet known
whether the e↵ective independence number is the ex-
act quantity that characterizes the minimax regret in
general—we leave this exciting question open for fu-
ture investigation.

BETTER

NEW DIRECTIONS

Learning on the graph while learning the graph?

most of algorithms require (some) knowledge of the graph

not always available to the learner

Question: Can we learn faster without knowing the graphs?

example: social network provider has little incentive to reveal the
graphs to advertisers

Answer: Cohen, Hazan, and Koren: Online learning with feedback graphs
without the graphs (ICML June 19-24, 2016)

NO! (in general we cannot, but possible in the stochastic case)

Coming up next:

Erdös-Rényi side observation graphs (UAI June 25-26, 2016)

76

: UNKNOWN GRAPHS!

GRAPH
BANDITS WITH  
ERDÖS-RÉNYI

OBSERVATIONS
side observations from graph

generators

Kocák, Neu, MV: Online learning with Erdos-Rényi side-observation graphs  
UAI 2016

PROTOCOL FOR ERDÖS-RÉNYI GRAPHS

78

Every round t the learner

picks a node It

suffers loss for It

receives feedback

for It
for every other node with probability rt

2 PROBLEM DEFINITION

We now formalize our learning problem. We consider a
sequential interaction scheme between a learner and an en-
vironment, where the following steps are repeated in every
round t = 1, 2, . . . , T :

1. The environment chooses r
t

2 [0, 1] and a loss func-
tion over the arms, with `

t,i

being the loss associated
with arm i 2 [N]

def= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some
randomness), the learner draws an arm I

t

2 [N].

3. The learner suffers loss `
t,It .

4. For all i 6= I
t

, O
t,i

is independently drawn from
a Bernoulli distribution with mean r

t

. Furthermore,
O

t,It is set as 1.

5. For all i 2 [N] such that O
t,i

= 1, the learner observes
the loss `

t,i

.

The goal of the learner is to minimize its total expected
losses, or, equivalently, to minimize the total expected re-

gret (or, in short, regret) defined as

R
T

= max

i2[N]

E
"

TX

t=1

(`
t,It � `

t,i

)

#
.

We will denote the interaction history between the learner
and the environment up to the beginning of round t
by F

t�1

. We also define p
t,i

= P [I
t

= i| F
t�1

].

The main challenge in our setting is leveraging side obser-
vations without knowing r

t

. Had we had access to the exact
value of r

t

, we would be able to define the following esti-
mate of `

t,i

:

b̀?
t,i

=

O
t,i

`
t,i

p
t,i

+ (1� p
t,i

)r
t

(1)

It is easy to see that the loss estimates defined this way
are unbiased in the sense that E

h
b̀
t,i

���F
t�1

i
= `

t,i

for
all t and i. It is also straightforward to show that an ap-
propriately tuned instance of the Exp3 algorithm of Auer
et al. (2002a) fed with these loss estimates is guaranteed to
achieve a regret of O(

pP
t

(1/r
t

) logN) (see also Seldin
et al. 2014).

Then, one might consider a simple algorithm that devotes
a number of observations to obtain an estimate br

t

of r
t

and
plug this estimate into (1). However, notice that since r

t

is
allowed to change arbitrarily over time, we can only work
with a severely limited sample budget for estimating r

t

:
only N �1 independent observations! Thus, we can obtain
only very loose confidence intervals around r

t

which trans-
late to even more useless confidence intervals around b̀?

t,i

.

Below, we describe a simple trick for obtaining loss esti-
mates that have similar properties to the ones defined in (1)
without requiring exact knowledge or even explicit estima-
tion of r

t

. Our procedure is based on the geometric resam-
pling method of Neu and Bartók (2013). To get an intuition
of the method, let us assume that we have access to the in-
dependent geometrically distributed random variable G?

t,i

with parameter o
t,i

= p
t,i

+ (1 � p
t,i

)r
t

. Then, replac-
ing 1/o

t,i

by G?

t,i

in the definition of b̀?
t

and ensuring that
G?

t,i

is independent of O
t,i

, we can obtain an unbiased loss
estimate essentially equivalent to b̀?

t

.

The challenge posed by this approach is that in our set-
ting, we do not have exact sample access to the geometric
random variable G?

t,i

. In the next section, we describe our
algorithm that is based on replacing G?

t,i

in the above defi-
nition by an appropriate surrogate.

3 ALGORITHM

Our algorithm is called Exp3-Res and displayed as Algo-
rithm 1. It is based on the Exp3 algorithm of Auer et al.
(2002a) and crucially relies on the construction of a surro-
gate G

t,i

of G?

t,i

. Throughout this section, we will assume
that r

t

� log T

2N�2

, which implies that the probability of hav-
ing no side observations in round t is of order 1/

p
T .

The algorithm is initialized by setting w
1,i

= 1/N for all
i 2 [N], and then performing the updates

w
t+1,i

=

1

N
exp

⇣
�⌘

t+1

bL
t,i

⌘
(2)

after each round t, where ⌘
t+1

> 0 is a parameter of the
algorithm called the learning rate in round t and bL

t,i

is cu-
mulative sum of the loss estimates b̀

s,i

up to (and including)
time t. In round t, the learner draws its action I

t

such that
I
t

= i holds with probability p
t,i

/ w
t,i

. To simplify some
of the notation below, we introduce the shorthand notations
P
t

[·] = P [·| F
t�1

] and E
t

[·] = E [·| F
t�1

].

For any fixed t, i, we now describe an efficiently com-
putable surrogate G

t,i

for the geometrically distributed ran-
dom variable G?

t,i

with parameter o
t,i

that will be used for
constructing our loss estimates. In particular, our strategy
will be to construct several independent copies

�
O0

t,i

(k)

of O
t,i

and choosing G
t,i

as the index k of the first copy
with O0

t,i

(k) = 1. It is easy to see that with infinitely many
copies, we could exactly recover G?

t,i

; our actual surrogate
is going to be weaker thanks to the smaller sample size. For
clarity of notation, we will omit most explicit references to
t and i, with the understanding that all calculations need to
be independently executed for all pairs t, i.

Let us now describe our mechanism for constructing the
copies {O0

(k)}. Since we need independence of G
t,i

and
O

t,i

for our estimates, we use only side observations from

probability of side observation
probability of picking i

true loss

is loss of i observed?

How to estimate rt in every round when
it is changing?

How to estimate losses without the
knowledge of rt ?

Regret of Exp3-SET (Alon et al. 2013):

came from. Relaxing this assumption, however, has to
come with a price: As the very recent results of Cohen et al.
(2016) show, achieving nontrivial advantages from side
observations may be impossible without perfectly known
side-observation graphs when an adversary is allowed to
pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms
achieving strong improvements over the standard regret
guarantees under the assumption that the losses are gen-
erated in an i.i.d. fashion and the graphs may be gener-
ated adversarially. Complementing these results, we con-
sider the case of adversarial losses and make the assump-
tion that the side-observation graph in round t is gener-
ated from an Erd

˝

os–R

´

enyi model with an unknown and
time-dependent parameter r

t

. The main challenge for the
learner is then the necessity to exploit the side observa-
tions despite not knowing the sequence (r

t

). It is easy to
see that this model can be equivalently understood as each
non-chosen arm revealing its loss with probability r

t

, in-
dependently of all other observations. That said, we still
find it useful to think of the side observations as being
generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particu-
lar, the case of learning with Erdős–Rényi side-observation
graphs was considered before by Alon et al. (2013): Given
full access to the underlying graph structure, their algo-
rithm Exp3-SET can be shown to guarantee a regret bound
of O�pP

t

(1/r
t

)(1� (1� r
t

)

N

) logN
�
. While the as-

sumption of having full access to the graph be dropped rel-
atively easily in this particular case, exact knowledge of r

t

seems to be crucial for constructing reliable loss estimates
and use them to guide the choice of action in each round.

It turns out that the problem of estimating r
t

while striv-
ing to perform efficiently is in fact a major difficulty in our
setting. Indeed, as we allow r

t

to change arbitrarily be-
tween each round, we cannot rely on any past observations
to construct well-concentrated estimates of these parame-
ters. That is, the main challenge is estimating r

t

from only
a handful of samples. The core technical tool underlying
our approach is a direct estimation procedure for the losses
that does not estimate r

t

explicitly.

Armed with this estimation procedure, we propose a learn-
ing algorithm called Exp3-Res that guarantees a regret of
O(

pP
t

(1/r
t

) logN), provided that r
t

� log T/(2N�2)

holds for all rounds t. This assumption essentially corre-
sponds to requiring that, with high probability, at least 1
side observation is produced in every round, or, in other
words, the side-observation graphs encountered are all non-

empty. Notice that for the assumed range of r
t

’s, our regret
bound improves upon the standard regret bound of Exp3,
which is of O(

p
NT logN). It is easy to see that when r

t

becomes smaller than 1/N , side observations become un-
reliable and the bound of Exp3 cannot be improved. That
is, if our assumption cannot be verified a priori, then ignor-

ing all side observations and using the Exp3 algorithm of
Auer et al. (2002a) instead can yield a better performance.
On the other hand, given that our assumption holds, our
bounds cannot be significantly improved as suggested by
the lower-bound of ⌦(

p
T/r) proved for a static r by Alon

et al. 2013.

Many other partial-information settings have been studied
in previous work. One of the simplest of these settings
is the label-efficient prediction game considered by Cesa-
Bianchi et al. (2005), where the learner can observe either
losses of all the actions or none of them, not even the loss
of the chosen action. This observation can be queried by
the learner at most an " < 1 fraction of the total number of
rounds, which means no losses are observed in the remain-
ing rounds. An even more restricted information setting,
label efficient bandit feedback was considered by Allen-
berg et al. (2006), where the learner can only query the loss
of the chosen action, instead of all losses (see also Audibert
and Bubeck, 2010). Algorithms for these two settings have
regret of eO(

p
T/") and eO(

p
NT/"), respectively. While

these bounds may appear very similar to ours, notice that
our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be
much more challenging to exploit. In another related set-
ting, Seldin et al. (2014) consider M side observations that
the learner can proactively choose in each round without
limitations. Seldin et al. deliver an algorithm with regret
of eO(

p
(N/M)T), also proving that choosing M observa-

tions uniformly at random is minimax optimal; given this
sampling scheme, it is not even necessary to observe the
loss of the chosen action. Their result is comparable to
ours and the result by Alon et al. (2013) for Erdős–Rényi
observation graphs with parameter r = M/N . However,
Seldin et al. also assume that M is known, which obviates
the need for estimating r. We provide a more technical dis-
cussion on the related work in Section 6.

In our paper, we assume that, just like the observation prob-
abilities, the losses are adversarial, that is, they can change
at each time step without restrictions. Learning with side
observations and stochastic losses was studied by Caron
et al. (2012) and Buccapatnam et al. (2014). While this
is an easier setting that the adversarial one, the authors as-
sumed, in both cases, that the graphs have to be known
in advance. Recently, Carpentier and Valko (2016) stud-
ied another stochastic setting where the graph is also not
known in advance, however their setting considers differ-
ent feedback and loss structure (influence maximization)
which differs from the side-observation setting.

Furthermore, Alon et al. (2015) considered a strictly more
difficult setting than ours, where the loss of the chosen ac-
tion may not be a part of the received feedback.

PROTOCOL FOR ERDÖS-RÉNYI GRAPHS

79

2 PROBLEM DEFINITION

We now formalize our learning problem. We consider a
sequential interaction scheme between a learner and an en-
vironment, where the following steps are repeated in every
round t = 1, 2, . . . , T :

1. The environment chooses r
t

2 [0, 1] and a loss func-
tion over the arms, with `

t,i

being the loss associated
with arm i 2 [N]

def= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some
randomness), the learner draws an arm I

t

2 [N].

3. The learner suffers loss `
t,It .

4. For all i 6= I
t

, O
t,i

is independently drawn from
a Bernoulli distribution with mean r

t

. Furthermore,
O

t,It is set as 1.

5. For all i 2 [N] such that O
t,i

= 1, the learner observes
the loss `

t,i

.

The goal of the learner is to minimize its total expected
losses, or, equivalently, to minimize the total expected re-

gret (or, in short, regret) defined as

R
T

= max

i2[N]

E
"

TX

t=1

(`
t,It � `

t,i

)

#
.

We will denote the interaction history between the learner
and the environment up to the beginning of round t
by F

t�1

. We also define p
t,i

= P [I
t

= i| F
t�1

].

The main challenge in our setting is leveraging side obser-
vations without knowing r

t

. Had we had access to the exact
value of r

t

, we would be able to define the following esti-
mate of `

t,i

:

b̀?
t,i

=

O
t,i

`
t,i

p
t,i

+ (1� p
t,i

)r
t

(1)

It is easy to see that the loss estimates defined this way
are unbiased in the sense that E

h
b̀
t,i

���F
t�1

i
= `

t,i

for
all t and i. It is also straightforward to show that an ap-
propriately tuned instance of the Exp3 algorithm of Auer
et al. (2002a) fed with these loss estimates is guaranteed to
achieve a regret of O(

pP
t

(1/r
t

) logN) (see also Seldin
et al. 2014).

Then, one might consider a simple algorithm that devotes
a number of observations to obtain an estimate br

t

of r
t

and
plug this estimate into (1). However, notice that since r

t

is
allowed to change arbitrarily over time, we can only work
with a severely limited sample budget for estimating r

t

:
only N �1 independent observations! Thus, we can obtain
only very loose confidence intervals around r

t

which trans-
late to even more useless confidence intervals around b̀?

t,i

.

Below, we describe a simple trick for obtaining loss esti-
mates that have similar properties to the ones defined in (1)
without requiring exact knowledge or even explicit estima-
tion of r

t

. Our procedure is based on the geometric resam-
pling method of Neu and Bartók (2013). To get an intuition
of the method, let us assume that we have access to the in-
dependent geometrically distributed random variable G?

t,i

with parameter o
t,i

= p
t,i

+ (1 � p
t,i

)r
t

. Then, replac-
ing 1/o

t,i

by G?

t,i

in the definition of b̀?
t

and ensuring that
G?

t,i

is independent of O
t,i

, we can obtain an unbiased loss
estimate essentially equivalent to b̀?

t

.

The challenge posed by this approach is that in our set-
ting, we do not have exact sample access to the geometric
random variable G?

t,i

. In the next section, we describe our
algorithm that is based on replacing G?

t,i

in the above defi-
nition by an appropriate surrogate.

3 ALGORITHM

Our algorithm is called Exp3-Res and displayed as Algo-
rithm 1. It is based on the Exp3 algorithm of Auer et al.
(2002a) and crucially relies on the construction of a surro-
gate G

t,i

of G?

t,i

. Throughout this section, we will assume
that r

t

� log T

2N�2

, which implies that the probability of hav-
ing no side observations in round t is of order 1/

p
T .

The algorithm is initialized by setting w
1,i

= 1/N for all
i 2 [N], and then performing the updates

w
t+1,i

=

1

N
exp

⇣
�⌘

t+1

bL
t,i

⌘
(2)

after each round t, where ⌘
t+1

> 0 is a parameter of the
algorithm called the learning rate in round t and bL

t,i

is cu-
mulative sum of the loss estimates b̀

s,i

up to (and including)
time t. In round t, the learner draws its action I

t

such that
I
t

= i holds with probability p
t,i

/ w
t,i

. To simplify some
of the notation below, we introduce the shorthand notations
P
t

[·] = P [·| F
t�1

] and E
t

[·] = E [·| F
t�1

].

For any fixed t, i, we now describe an efficiently com-
putable surrogate G

t,i

for the geometrically distributed ran-
dom variable G?

t,i

with parameter o
t,i

that will be used for
constructing our loss estimates. In particular, our strategy
will be to construct several independent copies

�
O0

t,i

(k)

of O
t,i

and choosing G
t,i

as the index k of the first copy
with O0

t,i

(k) = 1. It is easy to see that with infinitely many
copies, we could exactly recover G?

t,i

; our actual surrogate
is going to be weaker thanks to the smaller sample size. For
clarity of notation, we will omit most explicit references to
t and i, with the understanding that all calculations need to
be independently executed for all pairs t, i.

Let us now describe our mechanism for constructing the
copies {O0

(k)}. Since we need independence of G
t,i

and
O

t,i

for our estimates, we use only side observations from

probability of side observation
probability of picking i

true loss

is loss of i observed?

i

It

actions [N] \ {I
t

, i}. First, let’s define � as a uniform ran-
dom permutation of [N] \ {I

t

, i}. For all k 2 [N � 2],
we define R(k) = O

t,�(k)

. Note that due to the construc-
tion, {R(k)}N�2

k=1

are pairwise independent Bernoulli ran-
dom variables with parameter r

t

, independent of O
t,i

. Fur-
thermore, knowing p

t,i

we can define P (1), . . . , P (N�2)
as pairwise independent Bernoulli random variables with
parameter p

t,i

. Using P (k) and R(k) we define the ran-
dom variable O0

(k) as

O0
(k) = P (k) + (1� P (k))R(k)

for all k 2 [N � 2]. Using independence of all previously
defined random variables, it is easy to check that the vari-
ables {O0

(k)}N�2

k=1

are pairwise independent Bernoulli ran-
dom variables with expectation o

t,i

= p
t,i

+ (1 � p
t,i

)r
t

.
Now we are ready to define G

t,i

as

G
t,i

= min {k 2 [N � 2] : O(k)0 = 1} [{N � 1} . (3)

The following lemma states some properties of G
t,i

.
Lemma 1. For any value of g we have

E [G
t,i

] =

1

o
t,i

� 1

o
t,i

(1� o
t,i

)

N�1

E
⇥
G2

t,i

⇤
=

2� o
t,i

o2
t,i

+

1

o2
t,i

(1� o
t,i

)

N�2⇥

⇥
⇣
o2
t,i

+ o
t,i

� 2 + 2o
t,i

(N � 2)(o
t,i

� 1)

⌘

Proof. The proof follows directly from using the definition
of G

t,i

and simplifying the sums

E [G
t,i

] =

N�2X

k=1

⇥
ko

t,i

(1� o
t,i

)

k�1

⇤
+

+ (N � 1) (1� o
t,i

)

N�2,

E
⇥
G2

t,i

⇤
=

N�2X

k=1

⇥
k2o

t,i

(1� o
t,i

)

k�1

⇤
+

+ (N � 1)

2

(1� o
t,i

)

N�2.

Using Lemma 1, it is easy to see that G
t,i

follows a trun-
cated geometric law in the sense that

P [G
t,i

= m] = P
⇥
min

�
G?

t,i

, N � 1

= m

⇤

holds for all m 2 [N � 1]. Using all this notation, we
construct an estimate of `

t,i

as

b̀
t,i

= G
t,i

O
t,i

`
t,i

. (4)

The rationale underlying this definition of G
t,i

is rather
delicate. First, note that p

t,i

is deterministic given the his-
tory F

t�1

and therefore, does not depend on O
t,i

. Second,

Algorithm 1 Exp3-Res
1: Input:
2: Set of actions [N].
3: Initialization:
4: bL

0,i

 0 for i 2 [N].
5: Run:
6: for t = 1 to T do
7: ⌘

t

r

logN
.⇣

N2

+

P
t�1

s=1

P
N

i=1

p
s,i

(

b̀
s,i

)

2

⌘
.

8: w
t,i

 (1/N) exp(�⌘
t

bL
t�1,i

) for i 2 [N].
9: W

t

 P
N

i=1

w
t,i

.
10: p

t,i

 w
t,i

/W
t

.
11: Choose I

t

⇠ p
t

= (p
t,1

, . . . , p
t,N

).
12: Receive the observation set O

t

.
13: Receive the pairs {i, `

t,i

} for all i s.t. O
t,i

= 1.
14: Compute G

t,i

for all i 2 [N] using (3).
15: b̀

t,i

 `
t,i

O
t,i

G
t,i

for all i 2 [N].
16: bL

t,i

=

bL
t�1,i

+

b̀
t,i

for all i 2 [N].
17: end for

O
t,i

is also independent of O
t,j

for j 62 {i, I
t

}. As a result,
G

t,i

is independent of O
t,i

, and we can use the identity
E
t

[G
t,i

O
t,i

] = E
t

[G
t,i

]E
t

[O
t,i

]. The next lemma relates
the loss estimates (4) to the true losses, relying on the ob-
servations above and the assumption r

t

� log T

2N�2

.

Lemma 2. Assume r
t

� log T

2N�2

. Then, for all t and i,

0  `
t,i

� E
t

h
b̀
t,i

i
 1p

T
.

Proof. Fix an arbitrary t and i. Using Lemma 1 along with
E
t

[O
t,i

] = o
t,i

and the independence of G
t,i

and O
t,i

, we
get

E
t

h
b̀
t,i

i
= E

t

[G
t,i

O
t,i

`
t,i

] = `
t,i

� `
t,i

(1� o
t,i

)

N�1,

which immediately implies the lower bound on `
t,i

�
E
t

h
b̀
t,i

i
. For proving the upper bound, observe that

`
t,i

(1� o
t,i

)

N�1  (1� r
t

)

N�1  e�rt(N�1)  1p
T

holds by our assumption on r
t

, where we used the elemen-
tary inequality 1� x  ex that holds for all x 2 R.

The next theorem states our main result concerning
Exp3-Res with an adaptive learning rate.

Theorem 1. Assume that r
t

� log T

2N�2

holds for all t and

set

⌘
t

=

s
logN

N2

+

P
t�1

s=1

P
N

i=1

p
s,i

(

b̀
s,i

)

2

.

N-2 samples from Bernoulli(rt) … R(k)

N-2 samples from pti … P(k)

O’(k) = P(k) + (1-P(k))R(k)

Gti = min{k : O’(k) = 1} U {N-1}

E[Gti] ≈ 1/(pti +(1-pti)rt)

If rt ≥ (log T)/(2N-2) then

0 100 200 300 400 5000

20

40

60

80

100

120

140

Time

Cu
m

ul
at

ive
 re

gr
et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(a) Static sequence (rt)
T
t , rt = 0

0 100 200 300 400 5000

20

40

60

80

100

120

Time

Cu
m

ul
at

ive
 re

gr
et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(b) Static sequence (rt)
T
t , rt = 0.06 ⇡

log(T)/(2N � 2)

0 100 200 300 400 5000

20

40

60

80

Time

Cu
m

ul
at

ive
 re

gr
et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(c) Changing sequence (rt)
T
t with uni-

formly distributed rt on [0, 0.2]

0 100 200 300 400 5000

20

40

60

80

100

120

Time

Cu
m

ul
at

ive
 re

gr
et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(d) Sequence (rt)
T
t generated as a random

walk on [0, 0.1]

0 100 200 300 400 5000

20

40

60

80

100

120

Time

Cu
m

ul
at

ive
 re

gr
et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(e) Sequence (rt)
T
t generated as a random

walk on [0, 1]

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

140

Fixed value of r

To
ta

l r
eg

re
t

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(f) Total regret for different values of static
(rt)

T
t

Figure 1: Comparison of algorithm for different amount of side information sequences (different sequences (r
t

)

T

t

)

6 CONCLUSION & FUTURE WORK

In this paper, we considered multi-armed bandit prob-
lems with stochastic side observations modeled by Erdős–
Rényi graphs. Our contribution is a computationally effi-
cient algorithm that operates under the assumption r

t

�
log T/(2N � 2), which essentially guarantees that at least
one piece of side observation is generated in every round,
with high probability. In this case, our algorithm guar-

antees a regret bound of O
✓q

logN
P

T

t=1

1

rt

◆
(Theo-

rem 1). In this section, we discuss several open questions
regarding this result.

The most obvious question is whether it is possible to re-
move our assumptions on the values of r

t

. We can only
give a definite answer in the simple case when all r

t

’s are
identical: In this case, one can think of simply computing
the empirical frequency br

t

of all previous side observations
in round t to estimate the constant r, plug the result into (1),
and then use the resulting loss estimates in an exponential-
weighting scheme. It is relatively straightforward (but also
rather tedious) to show that the resulting algorithm satisfies
a regret bound of eO

⇣p
T/r

⌘
for all possible values of r,

thanks to the fact that r̂
t

quickly concentrates around the

true value of r. Notice however that this approach clearly
breaks down if the r

t

’s change over time.

In the case of changing r
t

’s, the number of observations
we can use to estimate r

t

is severely limited, so much that
we cannot expect any direct estimate of r

t

to concentrate
around the true value. Our algorithm proposed in Section 3
gets around this problem by directly estimating the impor-
tance weights 1/o

t,i

instead of r
t

, which enables us to con-
struct reliable loss estimates, although only at the price of
our assumption on the range of r

t

. While we acknowledge
that this assumption can be difficult to confirm a priori in
practice, we remark that we find it quite surprising that any

algorithm whatsoever can take advantage of such limited
observations, even under such a restriction. We also point
out that for values of r

t

that are consistently below our
bound, it is not possible to substantially improve the regret
bounds of Exp3 which are of eO

⇣p
TN

⌘
, as shown by the

lower bounds of Alon et al. (2013). We expect that in sev-
eral practical applications, one can verify whether the r

t

’s
satisfy our assumption or not, and decide to use Exp3-Res
or Exp3 accordingly. In fact, our experiments suggest that
our algorithm performs well even if neither of these two
assumptions are verified: we have seen that the empirical
performance of Exp3-Res is only slightly worse than that

came from. Relaxing this assumption, however, has to
come with a price: As the very recent results of Cohen et al.
(2016) show, achieving nontrivial advantages from side
observations may be impossible without perfectly known
side-observation graphs when an adversary is allowed to
pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms
achieving strong improvements over the standard regret
guarantees under the assumption that the losses are gen-
erated in an i.i.d. fashion and the graphs may be gener-
ated adversarially. Complementing these results, we con-
sider the case of adversarial losses and make the assump-
tion that the side-observation graph in round t is gener-
ated from an Erd

˝

os–R

´

enyi model with an unknown and
time-dependent parameter r

t

. The main challenge for the
learner is then the necessity to exploit the side observa-
tions despite not knowing the sequence (r

t

). It is easy to
see that this model can be equivalently understood as each
non-chosen arm revealing its loss with probability r

t

, in-
dependently of all other observations. That said, we still
find it useful to think of the side observations as being
generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particu-
lar, the case of learning with Erdős–Rényi side-observation
graphs was considered before by Alon et al. (2013): Given
full access to the underlying graph structure, their algo-
rithm Exp3-SET can be shown to guarantee a regret bound
of O�pP

t

(1/r
t

)(1� (1� r
t

)

N

) logN
�
. While the as-

sumption of having full access to the graph be dropped rel-
atively easily in this particular case, exact knowledge of r

t

seems to be crucial for constructing reliable loss estimates
and use them to guide the choice of action in each round.

It turns out that the problem of estimating r
t

while striv-
ing to perform efficiently is in fact a major difficulty in our
setting. Indeed, as we allow r

t

to change arbitrarily be-
tween each round, we cannot rely on any past observations
to construct well-concentrated estimates of these parame-
ters. That is, the main challenge is estimating r

t

from only
a handful of samples. The core technical tool underlying
our approach is a direct estimation procedure for the losses
that does not estimate r

t

explicitly.

Armed with this estimation procedure, we propose a learn-
ing algorithm called Exp3-Res that guarantees a regret of
O(

pP
t

(1/r
t

) logN), provided that r
t

� log T/(2N�2)

holds for all rounds t. This assumption essentially corre-
sponds to requiring that, with high probability, at least 1
side observation is produced in every round, or, in other
words, the side-observation graphs encountered are all non-

empty. Notice that for the assumed range of r
t

’s, our regret
bound improves upon the standard regret bound of Exp3,
which is of O(

p
NT logN). It is easy to see that when r

t

becomes smaller than 1/N , side observations become un-
reliable and the bound of Exp3 cannot be improved. That
is, if our assumption cannot be verified a priori, then ignor-

ing all side observations and using the Exp3 algorithm of
Auer et al. (2002a) instead can yield a better performance.
On the other hand, given that our assumption holds, our
bounds cannot be significantly improved as suggested by
the lower-bound of ⌦(

p
T/r) proved for a static r by Alon

et al. 2013.

Many other partial-information settings have been studied
in previous work. One of the simplest of these settings
is the label-efficient prediction game considered by Cesa-
Bianchi et al. (2005), where the learner can observe either
losses of all the actions or none of them, not even the loss
of the chosen action. This observation can be queried by
the learner at most an " < 1 fraction of the total number of
rounds, which means no losses are observed in the remain-
ing rounds. An even more restricted information setting,
label efficient bandit feedback was considered by Allen-
berg et al. (2006), where the learner can only query the loss
of the chosen action, instead of all losses (see also Audibert
and Bubeck, 2010). Algorithms for these two settings have
regret of eO(

p
T/") and eO(

p
NT/"), respectively. While

these bounds may appear very similar to ours, notice that
our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be
much more challenging to exploit. In another related set-
ting, Seldin et al. (2014) consider M side observations that
the learner can proactively choose in each round without
limitations. Seldin et al. deliver an algorithm with regret
of eO(

p
(N/M)T), also proving that choosing M observa-

tions uniformly at random is minimax optimal; given this
sampling scheme, it is not even necessary to observe the
loss of the chosen action. Their result is comparable to
ours and the result by Alon et al. (2013) for Erdős–Rényi
observation graphs with parameter r = M/N . However,
Seldin et al. also assume that M is known, which obviates
the need for estimating r. We provide a more technical dis-
cussion on the related work in Section 6.

In our paper, we assume that, just like the observation prob-
abilities, the losses are adversarial, that is, they can change
at each time step without restrictions. Learning with side
observations and stochastic losses was studied by Caron
et al. (2012) and Buccapatnam et al. (2014). While this
is an easier setting that the adversarial one, the authors as-
sumed, in both cases, that the graphs have to be known
in advance. Recently, Carpentier and Valko (2016) stud-
ied another stochastic setting where the graph is also not
known in advance, however their setting considers differ-
ent feedback and loss structure (influence maximization)
which differs from the side-observation setting.

Furthermore, Alon et al. (2015) considered a strictly more
difficult setting than ours, where the loss of the chosen ac-
tion may not be a part of the received feedback.

Lower bound (Alon et al. 2013)

Get rid of rt ≥ (log T)/(2N-2)?

MORE GRAPH BANDITS AND BEYOND!

Noga Alon et al. (2015) Beyond bandits. Complete characterization: Bártok et al. (2014)

80

THAT’S ALL - THANK YOU!
81

Thank you!

Michal Valko – Graphs in Machine Learning SequeL - 74/75

LAST WORDS …

1) good luck with the projects 2) AlteGrad follows this course 3) see you at projects talks

Survey: http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf (Part I)

http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf

 Michal Valko, SequeL, Inria Lille - Nord Europe, michal.valko@inria.fr  
http://researchers.lille.inria.fr/~valko/hp/  

mailto:michal.valko@inria.fr
http://researchers.lille.inria.fr/~valko/hp/

