GRAPHS IN MACHINE LEARNING

Michal Valko, SequeL, Inria Lille - Nord Europe

TA: Pierre Perrault

MVA 2017/2018 Partially based on material by Tomáš Kocák

PREVIOUS LECTURE BY PIERRE

Questions?

THIS LECTURE LAST LECTURE OF THE COURSE

- Graph bandits
- Spectral bandits
- Observability graphs
- Side information
- Influence Maximization

MULII-ARM BANDIITS IN LAS VEGAS

 DECEMBER 2017
RL/BANDITS ~ SEQUENTIAL DECISION-MAKING

unsupervised - supervised-semisupervised-active

ps: several course projects are on this topic
27. 11. 2017 by Pierre Perrault

Content (this time lecture in class + coding at home)

- Large-scale graph construction and processing (in class
- Scalable algorithms:
- Online face recognizer (to code in Matlab)
- Iterative label propagation (to code in Matlab)
- Graph sparsification (presented in class)

AR: record a video with faces
Short written report
Questions to piazza
Deadline: 11. 12. 2017 (today)

- time and formatting description on the class website
- grade: report + short presentation of the team
- deadlines
- 8. 9. 2018 final report (for all projects)
- from 9. 1. 2018, presentations (mostly over Skype/Hangout)
- AR: sign-up for the presentation (info already there)
- project report: 5-10 pages in NIPS format
- presentation: 15+5 minutes (time it!)
- everybody has to present
- book presentation time slot on the website
- explicitly state your contributions report + talk

PHD POSITIONS AT INRIA LILLE - MAGNET

Open PhD positions at Inria Lille (Magnet team). Lille is 1 hour away from Paris, 30 minutes from Brussels, 1.5 hours from London and 2.5 hours from Amsterdam.

- The topic is decentralized machine learning. Consider a P2P network with many devices, each with a local dataset. How can we design/analyze algorithms allowing the devices to learn from the union of their datasets without leaking too much sensitive information about individual data points?
- We also have Master internship positions (in decentralized/private machine learning, and natural language processing)
- Check https://team.inria.fr/magnet/job-offers/ or contact aurelien.bellet@inria.fr

PHD + INTERNSHIP AT INRIA LILLE - SEQUEL

Dynamically Evolving Long-Term Autonomy

- join project between 4 partners, UPF Barcelona, MUL Austria, ULG Belgium, and Inria
- Jonsson, Neu, Gomez, Valko, Kaufmann, Lazaric, Auer, Ortner, Cornelusse, Ernst
- PhD position at SequeL team at Inria
- project starts on 1.1.2018, PhD student expected to start September/October 2018
- 4 postdocs, one in each center
- Inria will lead the effort on adaptive planning with a model that can adapt to changes. Inria will work with MUL on the hierarchical state partitioning
- contact: (Emilie Kaufmann \& Michal Valko) @ SequeL © Inria Internship position: extending TrailBlazer with BAI-MCTS

BADASS INTERNSHIPS AT LILLE AND SACLAY

https:///project.inria.fr/badass/students/

- Structured set of Bandits
- Structured Bandits: Should Optimism strike back?
- Optimal exploration in Multi-armed bandits
- Computational complexity in Multi-armed Bandits
- Sensitivity analysis and intrinsic horizons in Markov Decision Processes
- Reinforcement Learning with Predictive State Representations

Please, send a message directly to the contact email provided in the document detailing each proposal.

Example of a graph bandit problem

movie recommendation

- recommend movies to a single user
- goal: maximise the sum of the ratings (minimise regret)
- good prediction after just a few steps

$$
T \ll N
$$

- extra information
- ratings are smooth on a graph
- main question: can we learn faster?

GETIING REAL

Let's be lazy and ignore the structure

Multi-armed bandit problem!
Worst case regret (to the best fixed strategy)
Matching lower bound (Auer, Cess-Biandi, Freund, Schapire 2002)
How big is N? Number of movies on http://www.imdb.com/stats: 4,029,967
Problem: Too many actions!

LEARNING FASTER

$R_{T}=\mathcal{O}(\sqrt{N T})$

- Arm independence is too strong and unnecessary
- Replace N with something much smaller
- problem/instance/data dependent
- example: linear bandits N to D
- Today: Graph Bandits!
- sequential problems where actions are nodes on a graph
- find strategies that replace N with a smaller graph-dependent quantity

GRAPH BANDITS: GENERAL SETUP

Every round t the learner

- picksanode $I_{t} \in[N]$
- incursa loss $\ell_{t, l_{t}}$
- optional feedback

The performance is total expected regret

$$
R_{T}=\max _{i \in[N]} \mathbb{E}\left[\sum_{t=1}^{T}\left(\ell_{t, l_{t}}-\ell_{t, i}\right)\right]
$$

1. loss

Specific problems differ in 2. feedback
3. guarantees

UPPER CONFIDENCE BOUND BASED ALGOS

\qquad

multi-ARM bandits in café culture

Video recorded March 30th, 2015, 13h50, Université de Lille, Susie \& the Piggy Bones Band

UPPER CONFIDENCE BOUND BASED ALGOS

\qquad

UPPER CONFIDENCE BOUND BASED ALGOS

UPPER CONFIDENCE BOUND BASED ALGOS

STRUCTURES IN BANDIT PROBLEMS

GRAPHS

KERNELS

POLYMATROIITS

BLACK-BOX FUNCTIONS

STRUCTURES WITHOUT TOPOLOGY

SPECIFIC GRAPH BANDIT SETTINGS

SPECTRAL BANDITS

exploiting smoothness of rewards on graphs

Assumptions

- Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies \Rightarrow similar preferences.
- Similar preferences \nRightarrow neighboring movies.

Desiderata

An algorithm useful in the case $T \ll N$!

Eigenvectors from the Flixster data corresponding to the smallest few eigenvalues of the graph Laplacian projected onto the first principal component of data. Colors indicate the values.

SPECTRAL BANDIT: LEARNING SETTING

Learning setting for a bandit algorithm π

- In each time t step choose a node $\pi(t)$.
- the $\pi(t)$-th row $\mathbf{x}_{\pi(t)}$ of the matrix \mathbf{Q} corresponds to the arm $\pi(t)$.
- Obtain noisy reward $r_{t}=\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}+\varepsilon_{t} . \quad$ Note: $\mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}=f_{\pi(t)}$
- ε_{t} is R-sub-Gaussian noise. $\quad \forall \xi \in \mathbb{R}, \mathbb{E}\left[e^{\xi \varepsilon_{t}}\right] \leq \exp \left(\xi^{2} R^{2} / 2\right)$
- Minimize cumulative regret

$$
R_{T}=T \max _{a}\left(\mathbf{x}_{a}^{\top} \boldsymbol{\alpha}^{*}\right)-\sum_{t=1}^{T} \mathbf{x}_{\pi(t)}^{\top} \boldsymbol{\alpha}^{*}
$$

Can we just use linear bandits?

LINEAR VS. SPECTRAL BANDITS

- Linear bandit algorithms
- LinUCB
- Regret bound $\approx D \sqrt{T \ln T}$
- LinearTS
- Regret bound $\approx D \sqrt{T \ln N}$

Note: D is ambient dimension, in our case N, length of x_{i}.
Number of actions, e.g., all possible movies \rightarrow HUGE!

- Spectral bandit algorithms
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- Operations per step: $D^{2} N$
- SpectralTS
(Kocák et al., AAAI 2014)
- Regret bound $\approx d \sqrt{T \ln N}$
- Operations per step: $D^{2}+D N$

Note: d is effective dimension, usually much smaller than D.

SPECTRAL BANDITS - EFFECTIVE DIMENSION

- Effective dimension: Largest d such that

$$
(d-1) \lambda_{d} \leq \frac{T}{\log (1+T / \lambda)} .
$$

- Function of time horizon and graph properties
- $\lambda_{i}: i$-th smallest eigenvalue of $\boldsymbol{\Lambda}$.
- λ : Regularization parameter of the algorithm.

Properties:

- d is small when the coefficients λ_{i} grow rapidly above time.
- d is related to the number of "non-negligible" dimensions.
- Usually d is much smaller than D in real world graphs.
- Can be computed beforehand.

$$
d \ll D
$$

Note: In our setting $T<N=D$.

Given a vector of weights $\boldsymbol{\alpha}$, we define its $\boldsymbol{\Lambda}$ norm as

$$
\|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}=\sqrt{\sum_{k=1}^{N} \lambda_{k} \alpha_{k}^{2}}=\sqrt{\boldsymbol{\alpha}^{\top} \boldsymbol{\Lambda} \boldsymbol{\alpha}}
$$

and fit the ratings r_{v} with a (regularized) least-squares estimate

$$
\widehat{\boldsymbol{\alpha}}_{t}=\underset{\boldsymbol{\alpha}}{\arg \min }\left(\sum_{v=1}^{t}\left[\left\langle\mathbf{x}_{v}, \boldsymbol{\alpha}\right\rangle-r_{v}\right]^{2}+\|\boldsymbol{\alpha}\|_{\Lambda}^{2}\right) .
$$

$\|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}$ is a penalty for non-smooth combinations of eigenvectors.

1: Input:
2: $\quad N, T,\left\{\boldsymbol{\Lambda}_{\mathbf{L}}, \mathbf{Q}\right\}, \lambda, \delta, R, C$
3: Run:
4: $\quad \Lambda \leftarrow \boldsymbol{\Lambda}_{\mathbf{L}}+\lambda \mathbf{I}$
5: $\quad d \leftarrow \max \left\{d:(d-1) \lambda_{d} \leq T / \ln (1+T / \lambda)\right\}$
6: for $t=1$ to T do
7: Update the basis coefficients $\widehat{\alpha}$:
8: $\quad \mathbf{X}_{t} \leftarrow\left[\mathbf{x}_{\pi(1)}, \ldots, \mathbf{x}_{\pi(t-1)}\right]^{\top}$
9: $\quad \mathbf{r} \leftarrow\left[r_{1}, \ldots, r_{t-1}\right]^{\top}$
10: $\quad \mathbf{V}_{t} \leftarrow \mathbf{X}_{t} \mathbf{X}_{t}^{\top}+\boldsymbol{\Lambda}$
11: $\quad \widehat{\boldsymbol{\alpha}}_{t} \leftarrow \mathbf{V}_{t}^{-1} \mathbf{X}_{t}^{\top} r$
12: $\quad c_{t} \leftarrow 2 R \sqrt{d \ln (1+t / \lambda)+2 \ln (1 / \delta)}+C$
13: $\pi(t) \leftarrow \arg \max _{a}\left(\mathbf{x}_{a}^{\top} \widehat{\boldsymbol{\alpha}}+c_{t}\left\|\mathbf{x}_{a}\right\|_{\mathbf{v}_{t}^{-1}}\right)$
14: Observe the reward r_{t}
15: end for

- d: Effective dimension.
- λ : Minimal eigenvalue of $\boldsymbol{\Lambda}=\boldsymbol{\Lambda}_{\mathbf{L}}+\lambda \mathbf{I}$.
- C: Smoothness upper bound, $\left\|\boldsymbol{\alpha}^{*}\right\|_{\Lambda} \leq C$.

- $\mathbf{x}_{i}^{\top} \boldsymbol{\alpha}^{*} \in[-1,1]$ for all i.

The cumulative regret R_{T} of SpectralUCB is with probability $1-\delta$ bounded as

$$
R_{T} \leq\left(8 R \sqrt{d \ln \frac{\lambda+T}{\lambda}+2 \ln \frac{1}{\delta}}+4 C+4\right) \sqrt{d T \ln \frac{\lambda+T}{\lambda}} .
$$

SPECTRAL UCN ON BA GRAPH

Barabasi-Albert $\mathrm{N}=250$, basis size $=3$, effective $\mathrm{d}=1$

SPECTRAL UCN ON REAL DATA

Movielens: Cumulative regret for randomly sampled users. T = 100

Flixster: Cumulative regret for randomly sampled users. T=100

- Derivation of the confidence ellipsoid for $\widehat{\boldsymbol{\alpha}}$ with probability $1-\delta$.
- Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$
\left|\mathbf{x}^{\top}\left(\widehat{\boldsymbol{\alpha}}-\boldsymbol{\alpha}^{*}\right)\right| \leq\|\mathbf{x}\|_{\mathbf{v}_{t}^{-1}}\left(R \sqrt{2 \ln \left(\frac{\left|\mathbf{V}_{t}\right|^{1 / 2}}{\delta|\Lambda|^{1 / 2}}\right)}+C\right)
$$

- Regret in one time step: $\left.r_{t}=\mathbf{x}_{*}^{\top} \boldsymbol{\alpha}^{*}-\mathbf{x}_{\pi}^{\top} / t\right) \boldsymbol{\alpha}^{*} \leq 2 c_{t}\left\|\mathbf{x}_{\pi(t)}\right\|_{\mathbf{v}_{t}^{-1}}$
- Cumulative regret:

$$
R_{T}=\sum_{t=1}^{T} r_{t} \leq \sqrt{T \sum_{t=1}^{T} r_{t}^{2}} \leq 2\left(\frac{\downarrow}{c_{T}}+1\right) \sqrt{2 T \ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|}}
$$

- Upperbound for $\ln \left(\left|\mathbf{V}_{t}\right| /|\boldsymbol{\Lambda}|\right)$

$$
\ln \frac{\left|\mathbf{V}_{t}\right|}{|\boldsymbol{\Lambda}|} \leq \ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|} \leq 2 d \ln \left(\frac{\lambda+T}{\lambda}\right)
$$

Sylvester's determinant theorem:

$$
\left|\mathbf{A}+\mathbf{x x}^{\top}\right|=|\mathbf{A}|\left|\mathbf{I}+\mathbf{A}^{-1} \mathbf{x x}^{\top}\right|=|\mathbf{A}|\left(1+\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}\right)
$$

Goal:

- Upperbound determinant $\left|\mathbf{A}+\mathbf{x x}^{\top}\right|$ for $\|\mathbf{x}\|_{2} \leq 1$
- Upperbound $\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}$

$$
\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}=\mathbf{x}^{\top} \mathbf{Q} \boldsymbol{\Lambda}^{-1} \mathbf{Q}^{\top} \mathbf{x}=\mathbf{y}^{\top} \boldsymbol{\Lambda}^{-1} \mathbf{y}=\sum_{i=1}^{N} \lambda_{i}^{-1} y_{i}^{2}
$$

- $\|\boldsymbol{y}\|_{2} \leq 1$.
- y is a canonical vector.
- $\mathbf{x}=\mathbf{Q y}$ is an eigenvector of \mathbf{A}.

Corollary: Determinant $\left|\mathbf{V}_{T}\right|$ of $\mathbf{V}_{T}=\mathbf{\Lambda}+\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\top}$ is maximized when all \mathbf{x}_{t} are aligned with axes.

$$
\begin{aligned}
\left|\mathbf{V}_{T}\right| & \leq \max _{\sum_{t_{i}=T} \prod\left(\lambda_{i}+t_{i}\right)}^{\ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|}} \leq \leq \max _{\sum_{t_{i}=T}} \sum \ln \left(1+\frac{t_{i}}{\lambda_{i}}\right) \\
\ln \frac{\left|\mathbf{V}_{T}\right|}{|\boldsymbol{\Lambda}|} & \leq \sum_{i=1}^{d} \ln \left(1+\frac{T}{\lambda}\right)+\sum_{i=d+1}^{N} \ln \left(1+\frac{t_{i}}{\lambda_{d+1}}\right) \\
& \leq d \ln \left(1+\frac{T}{\lambda}\right)+\frac{T}{\lambda_{d+1}} \\
& \leq 2 d \ln \left(1+\frac{T}{\lambda}\right)
\end{aligned}
$$

INFLUENCE MAXIMISATION

 looking for the influential nodes

 looking for the influential nodes while exploring the graph

 while exploring the graph}

HOW TO RULE THE WORLD?

Influence the influential!

Religion

Politics

September 1, 2009
Culture

EXAMPLE: INFLUENCE IN SOCIAL NETWORKS [KEMPE, KLEINBERG, TARDOS KDD '03]

Who should get free cell phones?
V = \{Alice,Bob,Charlie,Dorothy,Eric,Fiona\}
$\mathrm{F}(\mathrm{A})=$ Expected number of people influenced when targeting A

REVEALING BANDITS FOR LOCAL INFLUENCE

Unknown ($\mathrm{pij}_{\mathrm{j}} \mathrm{l}_{\mathrm{ij}}$ - (symmetric) probability of influences In each time step $t=1, \ldots, T$
learner picks a node k_{t}
environment reveals the set of influenced node $S_{k t}$
Select influential people $=$ Find the strategy maximising

$$
L_{T}=\sum_{t=1}^{T}\left|S_{k_{t}, t}\right|
$$

Why this is a bandit problem?

PERFORMANCE CRITERION

The number of expected influences of node \boldsymbol{k} is by definition

$$
r_{k}=\mathbb{E}\left[\left|S_{k, t}\right|\right]=\sum_{j \leq N} p_{k, j}
$$

Oracle strategy always selects the best
$k^{\star}=\underset{k}{\arg \max } \mathbb{E}\left[\sum_{t=1}^{T}\left|S_{k, t}\right|\right]=\underset{k}{\arg \max } T r_{k}$
Expected regret of the oracle strategy
$\mathbb{E}\left[L_{T}^{\star}\right]=T r_{\star}$
Expected regret of any adaptive strategy unaware of $\left(\mathrm{pij}_{\mathrm{j}}\right)_{\mathrm{j}}$
$\mathbb{E}\left[R_{T}\right]=\mathbb{E}\left[L_{T}^{\star}\right]-\mathbb{E}\left[L_{T}\right]$

- We only receive $|S|$ instead of S
- Can be mapped to multi-arm bandits

- rewards are $0, \ldots, \mathrm{~N}$
- variance bounded with $\mathrm{rkt}_{\mathrm{kt}}$
- We adapt MOSS to GraphMOSS
- Regret upper bound of GraphMOSS
$\mathbb{E}\left[R_{T}\right] \leq U \min \left(r_{\star} T, r_{\star} N+\sqrt{r_{\star} T N}\right)$
- matching lower bound

GraphMOSS

Input

d : the number of nodes
n : time horizon

Initialization

Sample each arm twice
Update $\widehat{r}_{k, 2 d}, \widehat{\sigma}_{k, 2 d}$, and $T_{k, 2 d} \leftarrow 2$, for $\forall k \leq d$

$$
\text { for } t=2 d+1, \ldots, n \text { do }
$$

$$
C_{k, t} \leftarrow 2 \widehat{\sigma}_{k, t} \sqrt{\frac{\max \left(\log \left(n /\left(d T_{k, t}\right)\right), 0\right)}{T_{k, t}}}
$$

$$
+\frac{2 \max \left(\log \left(n /\left(d T_{k, t}\right)\right), 0\right)}{T_{k, t}}, \text { for } \forall k \leq d
$$

$k_{t} \leftarrow \arg \max _{k} \widehat{r}_{k, t}+C_{k, t}$
Sample node k_{t} and receive $\left|S_{k_{t}, t}\right|$
Update $\widehat{r}_{k, t+1}, \widehat{\sigma}_{k, t+1}$, and $T_{k, t+1}$, for $\forall k \leq d$ end for

BACK TO THE REAL SETTING

- Can we actually do better?
- Well, not really.....
- Minimax optimal rate is still the same
- But the bad cases are somehow pathological
- isolated nodes
- uncorrelated being influenced and being influential
- Barabási-Albert etc tell us that the real-world graphs are not like that
- Let's think of some measure of difficulty
- to define some non-degenerate cases
- ideas?
- number of nodes we can efficiently extract in less than n rounds
- function D controls number of nodes given a gap

$$
D(\Delta)=\left|\left\{i \leq N: r_{\star}^{\circ}-r_{i}^{\circ} \leq \Delta\right\}\right|
$$

- $D(r)=N$ for $r \geq r *$ and $D(0)=$ number of most influenced nodes
- Detectable dimension $D *=D\left(\Delta_{*}\right)$
- Detectable gap $\Delta *$ constants coming from the analysis and the Bernstein inequality

$$
\Delta_{\star}=16 \sqrt{\frac{r_{\star}^{\circ} N \log (T N)}{T_{\star}}}+\frac{144 N \log (T N)}{T_{\star}}
$$

- Detectable horizon T_{*}, smallest integer s.t. $T_{\star} r_{\star}^{\circ} \geq \sqrt{D_{\star} T r_{\star}^{\circ}}$,
- Equivalently: $\mathrm{D} *$ corresponding to smallest $\mathrm{T} *$ such that

$$
T_{\star} r_{\star}^{\circ} \geq \sqrt{D\left(16 \sqrt{\frac{r_{\star}^{\circ} N \log (T N)}{T_{\star}}}+\frac{144 N \log (T N)}{T_{\star}}\right) T r_{\star}^{\circ}}
$$

- For (easy, structured) star graphs $\mathrm{D} *=1$ even for small n (big gain)
- For (difficult) empty graphs $D \approx=$ N even for large T (no gain)
- In general: D* roughly decreases with n and it is small when D decreases quickly
- For n large enough $\mathrm{D} *$ is the number of the most influences nodes
- Example: D* for Barabási-Albert model \& Enron graph as a function of T

BAndit REvelator: 2-phase algorithm

- global exploration phase
- super-efficient exploration th
- linear regret - needs to be short!

- extracts D: nodes
- bandit phase
- uses a minimax-optimal bandit algorithm
- GraphMOSS is a little brother of MOSS
- has a "square root" regret on D* nodes
- D $\#$ realizes the optimal trade-off!
- different from exploration/exploitation tradeoff

BARE - BAndit REvelator

Input

d : the number of nodes
n : time horizon

Initialization

$$
\begin{aligned}
& \frac{T_{k, t}}{r_{k, t}^{\circ}} \leftarrow 0, \text { for } \forall k \leq d \\
& t \leftarrow 1, \text { for } \forall k \leq d \\
& \widehat{T}_{\star} \leftarrow 0, \widehat{D}_{\star, t} \leftarrow d, \widehat{\sigma}_{\star, 1} \leftarrow d
\end{aligned}
$$

Global exploration phase

while $t\left(\widehat{\sigma}_{\star, t}-4 \sqrt{d \log (d n) / t}\right) \leq \sqrt{\widehat{D}_{\star, t} n}$ do
Influence a node at random (choose k_{t} uniformly at random) and get $S_{k_{t}, t}$ from this node
$\widehat{r_{k, t+1}^{\circ}} \leftarrow \frac{t}{t+1} \widehat{r_{k, t}^{\circ}}+\frac{d}{t+1} S_{k_{t}, t}(k)$
$\widehat{\sigma}_{\star, t+1} \leftarrow \max _{k^{\prime}} \sqrt{r_{k^{\prime}, t+1}^{0}}+8 d \log (n d) /(t+1)$
$w_{\star, t+1} \leftarrow 8 \widehat{\sigma}_{\star, t+1} \sqrt{\frac{d \log (n d)}{t+1}}+\frac{24 d \log (n d)}{t+1}$
$\widehat{D}_{\star, t+1} \leftarrow\left|\left\{k: \max _{k^{\prime}} \widehat{r_{k^{\prime}, t+1}^{\circ}}-\widehat{r_{k, t+1}^{\circ}} \leq w_{\star, t+1}\right\}\right|$
$t \leftarrow t+1$
end while
$\widehat{T}_{\star} \leftarrow t$.

Bandit phase

Run minimax-optimal bandit algorithm on the $\widehat{D}_{\star, \widehat{T}_{\star}}$ chosen nodes (e.g., Algorithm 1)

EMPIRICAL RESULTS

Figure 1: Left: Barabási-Albert. Mi~ left: Facebook. Middle right: Enron. Right: Gny lla.

Enron and Facebook vs. Gnutella (decentralised)

Varying a (constant) probability of influence

- Ignoring the structure again?
$\widetilde{\mathcal{O}}\left(\sqrt{r_{*} T N}\right)$
- BAndit REvelator: 2-phase algorithm
- global exploration phase
- super-efficient exploration
- linear regret - needs to be short!
- extracts $\mathrm{D} *$ nodes
- bandit phase
- uses a minimax-optimal bandit algorithm (GraphMOSS)
- has a "square root" regret on D* nodes
- $\quad \mathbf{D}$; realizes the optimal trade-off!
- different from exploration/exploitation tradeoff

Regret of BARE
 $$
\mathcal{O}\left(\sqrt{r_{\star} T D_{\star}}\right)
$$

D* - detectable dimension (depends on T and the structure)

- good case: star-shaped graph can have $\mathrm{D}^{*}=1$
- bad case: a graph with many small cliques.
- the worst case: all nodes are disconnected except 2

NEXT: GLOBAL INFLUENCE MODELS

- Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models
- global and multiple-source models
- Different feed-back models
- Full bandit (only the number of influenced nodes)
- Node-level semi-bandit (identities of influenced nodes)
- Edge-level semi-bandit (identities of influenced edges)
- Wen, Kveton, Valko, Vaswani, NIPS 2017
- IMLinUCB with linear parametrization of edge weights
- Regret analysis for general graphs, cascading model, and multiple-sources

Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback

Zheng Wen
Adobe Research
San Jose, CA 95110
zwen@adobe.com

Michal Valko
Inria Lille-Nord Europe
59650 Villeneuve d’Ascq, France
michal.valko@inria.fr

Branislav Kveton
Adobe Research
San Jose, CA 95110
kveton@adobe.com

Sharan Vaswani
University of British Columbia
Vancouver, B.C., Canada
sharanv@cs.ubc.ca

Presented 5 days ago

at NIPS 2017, Long Beach, CA

Abstract

We study the stochastic online problem of learning to influence in a social network with semi-bandit feedback, where we observe how users influence each other. The problem combines challenges of limited feedback, because the learning agent only observes the influenced portion of the network, and combinatorial number of actions, because the cardinality of the feasible set is exponential in the maximum number of influencers. We propose a computationally efficient UCB-like algorithm, IMLinUCB, and analyze it. Our regret bounds are polynomial in all quantities of interest; reflect the structure of the network and the probabilities of influence. Moreover, they do not depend on inherently large quantities, such as the cardinality of the action set. To the best of our knowledge, these are the first such results. IMLinUCB permits linear generalization and therefore is suitable for large-scale problems. Our experiments show that the regret of IMLinUCB scales as suggested by our upper bounds in several representative graph topologies; and based on linear generalization, IMLinUCB can significantly reduce regret of real-world influence maximization semi-bandits.

CHALLENGES AND SOLUTIONS

- Already the offline problem is NP hard
- solution: approximation/randomized algorithms
- Lots of edges $\max _{\mathcal{S}}:|\mathcal{S}|=K$.
- lots of parameters to learn, if we want to scale, we need to reduce this complexity
- solution: linear approximation of probabilities
- Combinatorial size of possible seed-sets
- Combinatorial Bandits: IMLinUCB
- Understanding what's going on?
- known analyses VERY loose (e.g., scaling with 1/pmin, or only assymptotic)

APPROXIMATION ORACLE

- the optimal offline solution

$$
\max _{\mathcal{S}}:|\mathcal{S}|=K f(\mathcal{S}, \bar{w})
$$

- the oracle solution that is γ-optimal with probability at least α

$$
\mathcal{S}^{*}=\operatorname{ORACLE}(\mathcal{G}, K, \bar{w})
$$

- γ-optimal

$$
f\left(\mathcal{S}^{*}, \bar{w}\right) \geq \gamma f\left(\mathcal{S}^{\mathrm{opt}}, \bar{w}\right)
$$

- γ-optimal with probability at least α

$$
\mathbb{E}\left[f\left(\mathcal{S}^{*}, \bar{w}\right)\right] \geq \alpha \gamma f\left(\mathcal{S}^{\circ \mathrm{opt}}, \bar{w}\right)
$$

- Our problem is a triple:

LINEAR GENERALIZATION

- learning the only network (weights) is VERY impractical

linear approximation
- by choosing the dimension (size of θ^{*}) we can reduce this complexity
- if we do not want to lose generality we set dto the number of edges

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB

Input: graph \mathcal{G}, source node set cardinality K, oracle ORACLE, feature vector x_{e} 's, and algorithm parameters $\sigma, c>0$,
Initialization: $B_{0} \leftarrow 0 \in \Re^{d}, \mathbf{M}_{0} \leftarrow I \in \Re^{d \times d}$
for $t=1,2, \ldots, n$ do

1. set $\bar{\theta}_{t-1} \leftarrow \sigma^{-2} \mathbf{M}_{t-1}^{-1} B_{t-1}$ and the UCBs as $U_{t}(e) \leftarrow \operatorname{Proj}_{[0,1]}\left(x_{e}^{\top} \bar{\theta}_{t-1}+c \sqrt{x_{e}^{\top} \mathbf{M}_{t-1}^{-1} x_{e}}\right)$ for all $e \in \mathcal{E}$
2. choose $\mathcal{S}_{t} \in \operatorname{ORACLE}\left(\mathcal{G}, K, U_{t}\right)$, and observe the edge-level semi-bandit feedback
3. update statistics:
(a) initialize $\mathbf{M}_{t} \leftarrow \mathbf{M}_{t-1}$ and $B_{t} \leftarrow B_{t-1}$
(b) for all observed edges $e \in \mathcal{E}$, update $\mathbf{M}_{t} \leftarrow \mathbf{M}_{t}+\sigma^{-2} x_{e} x_{e}^{\top}$ and $B_{t} \leftarrow B_{t}+x_{e} \mathbf{w}_{t}(e)$

$$
\begin{aligned}
R^{\eta}(n) & =\sum_{t=1}^{n} \mathbb{E}\left[R_{t}^{\eta}\right] \\
R_{t}^{\eta} & =f\left(\mathcal{S}^{\mathrm{opt}}, \mathbf{w}_{t}\right)-\frac{1}{\eta} f\left(\mathcal{S}_{t}, \mathbf{w}_{t}\right)
\end{aligned}
$$

MAXIMUM OBSERVED RELEVANCE

$N_{\mathcal{S}, e} \triangleq \sum_{v \in \mathcal{V} \backslash \mathcal{S}} \mathbf{1}\{e$ is relevant to v under $\mathcal{S}\} \quad$ and $\quad P_{\mathcal{S}, e} \triangleq \mathbb{P}(e$ is observed $\mid \mathcal{S})$
only depends on topology
depends on both

$$
C_{*} \triangleq \max _{\mathcal{S}:|\mathcal{S}|=K} \sqrt{\sum_{e \in \mathcal{E}} N_{\mathcal{S}, e}^{2} P_{\mathcal{S}, e}}
$$

max (over) 2-norm of N weighted by P

- Worst-case upper bound:
$C_{*} \leq C_{\mathcal{G}} \triangleq \max _{\mathcal{S}:|\mathcal{S}|=K} \sqrt{\sum_{e \in \mathcal{E}} N_{\mathcal{S}, e}^{2}} \leq(L-K) \sqrt{\mid \mathcal{E}} \mid=\mathcal{O}(L \sqrt{|\mathcal{E}|})=\mathcal{O}\left(L^{2}\right)$

(a)

(b)

(c)

(d)
$\mathrm{L}=$ number of nodes, $\mathrm{K}=$ size of seed set, $\mathrm{n}=$ number of rounds, $\mathrm{d}=$ dimension

topology	$C_{\mathcal{G}}$ (worst-case $\left.C_{*}\right)$	$R^{\alpha \gamma}(n)$ for general X	$R^{\alpha \gamma}(n)$ for X $=\mathbf{I}$
bar graph	$\mathcal{O}(\sqrt{K})$	$\widetilde{\mathcal{O}}(d K \sqrt{n} /(\alpha \gamma))$	$\widetilde{\mathcal{O}}(L \sqrt{K n} /(\alpha \gamma))$
star graph	$\mathcal{O}(L \sqrt{K})$	$\widetilde{\mathcal{O}}\left(d L^{\frac{3}{2}} \sqrt{K n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{2} \sqrt{K n} /(\alpha \gamma)\right)$
ray graph	$\mathcal{O}\left(L^{\frac{5}{4}} \sqrt{K}\right)$	$\widetilde{\mathcal{O}}\left(d L^{\frac{7}{4}} \sqrt{K n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{9}{4}} \sqrt{K n} /(\alpha \gamma)\right)$
tree graph	$\mathcal{O}\left(L^{\frac{3}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d L^{2} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}} \sqrt{n} /(\alpha \gamma)\right)$
grid graph	$\mathcal{O}\left(L^{\frac{3}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d L^{2} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}} \sqrt{n} /(\alpha \gamma)\right)$
complete graph	$\mathcal{O}\left(L^{2}\right)$	$\widetilde{\mathcal{O}}\left(d L^{3} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{4} \sqrt{n} /(\alpha \gamma)\right)$

Table 1: $C_{\mathcal{G}}$ and worst-case regret bounds for different graph topologies

$$
\begin{aligned}
R^{\alpha \gamma}(n) & \leq \frac{2 c C_{*}}{\alpha \gamma} \sqrt{d n|\mathcal{E}| \log _{2}\left(1+\frac{n|\mathcal{E}|}{d}\right)}+1=\widetilde{\mathcal{O}}\left(d C_{*} \sqrt{|\mathcal{E}| n} /(\alpha \gamma)\right) \\
& \leq \widetilde{\mathcal{O}}(d(L-K)|\mathcal{E}| \sqrt{n} /(\alpha \gamma)) .
\end{aligned}
$$

How good (tight) is this?

- comparison with linear bandits
- comparison with general combinatorial bandits
- (L-K) factor
- How good is C $*$?
- when are our upper bounds on the estimates right?

$$
\xi_{t-1}=\left\{\left|x_{e}^{\top}\left(\bar{\theta}_{\tau-1}-\theta^{*}\right)\right| \leq c \sqrt{x_{e}^{\top} \mathbf{M}_{\tau-1}^{-1} x_{e}}, \forall e \in \mathcal{E}, \forall \tau \leq t\right\}
$$

- decomposes the regret at round t

$$
\mathbb{E}\left[R_{t}^{\alpha \gamma}\right] \leq \mathbb{P}\left(\xi_{t-1}\right) \mathbb{E}\left[R_{t}^{\alpha \gamma} \mid \xi_{t-1}\right]+\mathbb{P}\left(\bar{\xi}_{t-1}\right)[L-K]
$$

- monotonicity of f

$$
\mathbb{E}\left[R_{t}^{\alpha \gamma} \mid \xi_{t-1}\right] \leq \mathbb{E}\left[f\left(\mathcal{S}_{t}, U_{t}\right)-f\left(\mathcal{S}_{t}, \bar{w}\right) \mid \xi_{t-1}\right] /(\alpha \gamma)
$$

- studying the Markov process of propagation
- consider non-overlaping layers
- random stopping time

$$
f\left(\mathcal{S}_{t}, U_{t}, v\right)-f\left(\mathcal{S}_{t}, \bar{w}, v\right) \leq \sum_{e \in \mathcal{E}_{\mathcal{S}_{t}, v}} \mathbb{E}\left[\mathbf{1}\left\{O_{t}(e)\right\}\left[U_{t}(e)-\bar{w}(e)\right] \mid \mathcal{H}_{t-1}, \mathcal{S}_{t}\right]
$$

EXPERIMENTS

- Objective: "Check" how good is our C*
- Tabular case, $K=1$, exact comparison possible, all weights are same $=\omega$

Star $\quad \widetilde{\mathcal{O}}\left(L^{2}\right)$ vs. $\mathcal{O}\left(L^{2.040}\right)$ and $\mathcal{O}\left(L^{2.056}\right)$
Ray $\quad \widetilde{\mathcal{O}}\left(L^{\frac{9}{4}}\right)$ vs. $\mathcal{O}\left(L^{2.488}\right)$ and $\mathcal{O}\left(L^{2.467}\right)$

- Conclusion: evidence that our C* is a reasonable complexity measure

FACEBOOK EXPERIMENT

- real Facebook (a small subgraph)
- weights from $\mathrm{U}(0,0.1)$
* nodetovec with $\mathrm{d}=10$
- imperfect
- $K=10$
- CUCB with no linear generalisation

CONCLUSION AND NEXT STEPS

- Active learning on graphs
- learning the graph while acting on it optimal
- difficulty of the problem and scaling with it
- online influence maximization
- local model (minimax optimal algorithm)
- global cascading model
- What is next?
- dynamic/evolving graphs
- realistic accessibility constraints

Kocák, Neu, MV, Munos: Efficient learning by implicit exploration in bandit problems with side observations, NIPS 2014

Kocák, Neu, MV: Online learning with Erdos-Rényi side-observation graphs UAI 2016

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016

SIDE OBSERVATIONS: UNDIRECTED

Example 1: undirected observations

SIDE OBSERVATIONS: DIRECTED

Example 2: Directed observation

SIDE OBSERVATIONS - AN INTERMEDIATE GAME

Full-information

- observe losses of all actions
- example:Hedge

$$
R_{T}=\widetilde{\mathcal{O}}(\sqrt{T})
$$

Bandits

- observe losses of the chosen action
- example: EXP3

$$
R_{T}=\widetilde{\mathcal{O}}(\sqrt{N T})
$$

(E)
(C)
(A) (B)
(F)

From Experts to Bandits
Mannor and Shamir 2011

KNOWLEDGE OF OBSERVATION GRAPHS

- ELP (Mannor and Shamir 2011)
- EXP3 - with "LP balanced exploration"
- undirected $0(J(\alpha T)) \geqslant$-needs to know $G t$
- directed case $0(J(C T))$ - needs to know G_{t}
- EXP3-SET (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)
- undirected $O(N(\alpha T)) \geqslant$ does not need to know $G_{t} \nabla$
- EXP3-DOM (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)
- directed $0\left(\sqrt{(\alpha T))} \nabla^{\bullet}\right.$-need to know G_{t}
- calculates dominating set

EXP3-IX: IMPLICIT EXPLORATION

```
Algorithm 1 ExP3-IX
    Input: Set of actions \(\mathcal{S}=[d]\),
        parameters \(\gamma_{t} \in(0,1), \eta_{t}>0\) for \(t \in[T]\).
    for \(t=1\) to \(T\) do
        \(w_{t, i} \leftarrow(1 / d) \exp \left(-\eta_{t} \widehat{L}_{t-1, i}\right)\) for \(i \in[d]\)
        An adversary privately chooses losses \(\ell_{t, i}\)
        for \(i \in[d]\) and generates a graph \(G_{t}\)
        \(W_{t} \leftarrow \sum_{i=1}^{d} w_{t, i}\)
        \(p_{t, i} \leftarrow w_{t, i} / W_{t}\)
        Choose \(I_{t} \sim \boldsymbol{p}_{t}=\left(p_{t, 1}, \ldots, p_{t, d}\right)\)
        Observe graph \(G_{t}\)
        Observe pairs \(\left\{i, \ell_{t, i}\right\}\) for \(\left(I_{t} \rightarrow i\right) \in G_{t}\)
        \(o_{t, i} \leftarrow \sum_{(j \rightarrow i) \in G_{t}} p_{t, j}\) for \(i \in[d]\)
        \(\hat{\ell}_{t, i} \leftarrow \frac{\ell_{t, i}}{o_{t, i}+\gamma_{t}} \mathbb{1}_{\left\{\left(I_{t} \rightarrow i\right) \in G_{t}\right\}}\) for \(i \in[d]\)
    end for
```

 Benefits of the implicit exploration
 no need to know the graph before
 - no need to estimate dominating set
 - no need for doubling trick
 no need for aggregation
 \(R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \ln N})\)
 Optimistic bias for the loss estimates
$\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}+\gamma} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}-\ell_{t, i} \frac{\gamma}{o_{t, i}+\gamma} \leq \ell_{t, i}$

FOLLOW UPS

- EXP3-IX (Kocák, Neu, MV, Munos, 2014)
- directed $0(\sqrt{ }(\alpha T)) \nabla$ does not need to know $G_{t} \nabla$
- EXP3.G (Alon, Cesa-Bianchi, Dekel, Koren, 2015)
- directed $O(J(\alpha T)) \nabla$ does not need to know $G t \geqslant$
- mixes uniform distribution
- more general algorithm for settings beyond bandits
- high-probability bound
- Neu 2015: high-probability bound for EXP3-IX

COMPLEX GRAPH ACTIONS

Example: online shortest path semi-bandits with observing traffic on the side streets

- Play action $\mathbf{V}_{t} \in S \subset\{0,1\}^{N},\|\mathbf{v}\|_{1} \leq m$ from all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_{t}^{\top} \ell_{t}$
- Observe additional losses according to the graph

$$
R_{T}=\tilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\tilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\bar{\alpha} T}\right)
$$

GRAPH BANDITS WITH NOISY SIDE OBSERVATIONS

exploiting side observations that can be perturbed by certain level of noise

NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε

- reliable: use as exact
* unreliable: rubbish then we can improve over pure bandit setting!

2) Treating noisy observation induces bias

What can we hope for?
$\widetilde{\mathcal{O}}(\sqrt{1 T}) \leq$
$\leq \widetilde{\mathcal{O}}(\sqrt{N T})$
effective independence number
Can we learn without knowing either ε or α^{*} ?

NOISY SIDE OBSERVATIONS

$$
\begin{aligned}
& \text { Threshold estimate } \quad R_{T}=\widetilde{\mathcal{O}}\left(\sqrt{\bar{\alpha}^{\star} T}\right) \\
& \widehat{\ell}_{t, i}^{(\mathrm{T})}=\frac{c_{t, i} \mathbb{I}_{\left\{s_{t,\left(I_{t}, i\right)} \geq \varepsilon_{t}\right\}}}{\sum_{j=1}^{N} p_{t, j} s_{t,(j, i)} \mathbb{I}_{\left\{s_{t,(j, i)} \geq \varepsilon_{t}\right\}}+\gamma_{t}}
\end{aligned}
$$

WIX estimate $\quad R_{T}=\widetilde{\mathcal{O}}\left(\sqrt{\bar{\alpha}^{\star} T}\right)$

$$
\widehat{\ell}_{t, i}=\frac{s_{t,\left(I_{t}, i\right)} \cdot c_{t, i}}{\sum_{j=1}^{N} p_{t, j} s_{t,(j, i)}^{2}+\gamma_{t}}
$$

Since $\alpha^{*} \leq \alpha(1) / 1 \leq N$
incorporating noisy observations does not hurt

$$
\widetilde{\mathcal{O}}\left(\sqrt{\grave{\alpha}^{\star} T}\right) \leq \widetilde{\mathcal{O}}(\sqrt{N T})
$$

But how much does it help?

EMPIRICAL RESULTS

EMPIRICAL α^{*} FOR RANDOM GRAPHS WITH IID WEIGHTS

(a) $U(0,1)$ weights

(b) $U\left(\frac{1}{2}, 1\right)$ weights

(c) $U\left(0, \frac{1}{2}\right)$ weights

- special case: if $s_{i j}$ is either 0 or ε than $\alpha^{*}=\alpha / \varepsilon^{2}$
- For this special case, there is a matches $\Theta(\sqrt{(\alpha T) / \varepsilon)}$ by Wu, György, Szepesvári, 2015.

NEW DIRECTIONS: UNKNOWN GRAPHS!

* Learning on the graph while learning the graph?
- most of algorithms require (some) knowledge of the graph
- not always available to the learner
- Question: Can we learn faster without knowing the graphs?
- example: social network provider has little incentive to reveal the graphs to advertisers
- Answer: Cohen, Hazan, and Koren: Online learning with feedback graphs without the graphs (ICML June 19-24, 2016)
- NO! (in general we cannot, but possible in the stochastic case)
- Coming up next:
- Erdös-Rényi side observation graphs (UAI June 25-26, 2016)

GRAPH BANDITS WITH ERDÖS-RÉNYI OBSERVATIONS side observations from graph generators

pROTOCOL FOR ERDÖS-RÉNYI GRAPHS

Every round t the learner

- picksanodelt
- suffers loss for It
- receives feedback
- for I_{t}
- for every other node with probability r_{t}

Regret of Exp3-SET (Alon et al. 2013):
$\mathcal{O}\left(\sqrt{\sum_{t}\left(1 / r_{t}\right)\left(1-\left(1-r_{t}\right)^{N}\right) \log N}\right)$
How to estimate r_{t} in every round when it is changing?

How to estimate losses without the knowledge of rt ?

pROTOCOL FOR ERDÖS-RÉNYI GRAPHS

- N -2 samples from Bernoulli((r)... $R(\mathrm{k})$
- N -2 samples from Pti ... $\mathrm{P}(\mathrm{k})$
$\Rightarrow O^{\prime}(k)=P(k)+(1-P(k)) R(k)$
- $G_{t i}=\min \left\{k: O^{\prime}(k)=1\right\} \cup\{N-1\}$
$\mathrm{E}\left[\mathrm{G}_{\mathrm{ti}}\right] \approx 1 /\left(\mathrm{p}_{\mathrm{ti}}+\left(1-\mathrm{p}_{\mathrm{ti}}\right) \mathrm{rt}_{\mathrm{t}}\right)$

$$
\widehat{\ell}_{t, i}=G_{t, i} O_{t, i} \ell_{t, i}
$$

If $\mathrm{r}_{\mathrm{t}} \geq(\log \mathrm{T}) /(2 \mathrm{~N}-2)$ then
$\mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \frac{1}{r_{t}}}\right)$
Lower bound (Alon et al. 2013) $\quad \Omega(\sqrt{T / r})$
Get rid of $\mathrm{r} \geq(\log \mathrm{T}) /(2 \mathrm{~N}-2)$?

MORE GRAPH BANDITS AND BEYOND!

Noga Alon et al. (2015) Beyond bandits. Complete characterization: Bártok et al. (2014)

(a)

(d)

(b)

(e)

(c)

(f)

Figure 1: Examples of feedback graphs: (a) full feedback, (b) bandit feedback, (c) loopless clique, (d) apple tasting, (e) revealing action, (f) a clique minus a self-loop and another edge.

LAST WORDS ...

Survey: http://researchers.lile.inria.fr/~valko/hp/publications/valko2016bandits.pdf (Part I)

1) good luck with the projects 2) AlteGrad follows this course 3) see you at projects talks

THAT'S ALL - THANK YOU!

Michal Valko, Sequel, Inria Lille - Nord Europe, michal.valko@innia.fr http://researchers.ille.incia.fi/~valko/hp/

