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» Graph bandits

_ RL/BANDITS ~ SEQUENTIAL DECISION-MAKING
» Spectral bandits

. unsupervised - supervised-semisupervised-active
» Observability graphs

» Side information ! | ey

» Influence Maximization

LAS VEGAS

ps: several course projects are on this topic
3 P22



PREVIOUS LAB SESSION 7

27. 11. 2017 by Pierre Perrault

Content (this time lecture in class + coding at home)

» Large-scale graph construction and processing (in class
» Scalable algorithms:

> Online face recognizer (to code in Matlab)
> lIterative label propagation (to code in Matlab)
> Graph sparsification (presented in class)

AR: record a video with faces
Short written report

Questions to piazza
Deadline: 11. 12. 2017 (today)



FINAL CLASS PROJECTS s

» time and formatting description on the class website

» grade: report + short presentation of the team

» deadlines

» 8. 1. 2018 final report (for all projects)
» from 9. 1. 2018, presentations (mostly over Skype/Hangout)
» AR: sign-up for the presentation (info already there)

» project report: 5-10 pages in NIPS format
> presentation: 15+5 minutes (time it!)
» everybody has to present

» book presentation time slot on the website

» explicitly state your contributions report + talk



Open PhD positions at Inria Lille (Magnet team). Lille
is 1 hour away from Paris, 30 minutes from Brussels,
1.5 hours from Llondon and 2.5 hours from
Amsterdam.

> The topic is decentralized machine learning. Consider a P2P network with many devices,
each with a local dataset. How can we design/analyze algorithms allowing the devices to
learn from the union of their datasets without leaRing too much sensitive information
about individual data points?

> We also have Master internship positions (in decentralized/private machine learning, and
natural l[anguage processing)

> Check hitps://team.inria.fr/magnet/job-offers/ or contact aurelien.bellet@inria.fr
6 B2


https://team.inria.fr/magnet/job-offers/
mailto:aurelien.bellet@inria.fr

Dynamically Evolving Long-Term Autonomy

> join project between 4 partners, UPF Barcelona, MUL Austria,
ULG Belgium, and Inria

» Jonsson, Neu, Gomez, Valko, Kaufmann, Lazaric, Auer,
Ortner, Cornelusse, Ernst

» PhD position at SequelL team at Inria

» project starts on 1.1.2018, PhD student expected to start
September/October 2018

» 4 postdocs, one in each center

» Inria will lead the effort on adaptive planning with a model
that can adapt to changes. Inria will work with MUL on the
hierarchical state partitioning

» contact: (Emilie Kaufmann & Michal Valko) @ SequelL @ Inria
Internship position: extending TrailBlazer with BAI-M(TS

- [ 4
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https://project.inria.fr/badass/students/

Structured set of Bandits

Structured Bandits: Should Optimism strike back?

Optimal exploration in Multi-armed bandits

Computational complexity in Multi-armed Bandits

Sensitivity analysis and intrinsic horizons in MarRov Decision Processes
Reinforcement Learning with Predictive State Representations

Yy vV vV VvV VvV V

Please, send a message directly to the contact email provided in the document detailing each proposal.



https://project.inria.fr/badass/files/2017/11/Internship_StructuredSetBandits.pdf
https://project.inria.fr/badass/files/2017/11/Internship_M2_StructuredBandits.pdf
https://project.inria.fr/badass/files/2017/11/Internship_ExplorationMABs.pdf
https://project.inria.fr/badass/files/2017/11/internship_ComplexityMABS.pdf
https://project.inria.fr/badass/files/2017/11/Internship_SensitivityHorizon.pdf
https://project.inria.fr/badass/files/2017/11/Internship_PredictiveStateRepresentations.pdf
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Example of a graph bandit problem

o movie recommendation
. > recommend movies to a single user

T L, B > goal: maximise the sum of the ratings
g est " .
Fomest GUIR i koo’ X (minimise regret)

Towers
9!?1&116 ‘Ii\oerﬁ of the RIngs: The TwO

e
dfellas
(S}toa(; Wars: Episode IV - A New Hope

. The Motrix > good prediction after just a few steps

Seven Samurai

City of God

SeT7en

The Usual Suspects
llilieSgence of the Lambg

e WI;ZIC’; a Time ip the Wegt

o 4 erful [ ifa

e Profo...
4Sablan,, fessionay

1 I'< N

s o > extra information
5, Ligon > ratings are smooth on a graph

i > main question: can we learn faster?

10 220NN
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GETTING REAL V2

Multi-armed bandit problem!
Worst case regret (to the best fixed strategy) Rr =0 (\/_ /\/_T>

Matching lower bound (Auer, Cesa-Bianchi, Freund, Schapire 2002)

How big is N? Number of movies on http:/www.imdb.com/stats: 4,029,967

Problem: Too many actions!

informatics , mathematics
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http://www.imdb.com/stats

LEARNING FASTER V% 77
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> Armindependence is too strong and unnecessary

> Replace N with something much smaller

> problem/instance/data depend

> example: linear bandits NtoD

> Today: Graph Bandits!
> sequential problems where actions are nodes on a graph

> find strategies that replace N with a smaller graph-dependent quantity

12 BEE



GRAPH BANDITS: GENERAL SETUP

Every round t the learner

> picksanode It € [N]
> incursaloss £t,1,

> optional feedback

The performance is total expected regret

- i
R+ = K Or ) — ¥y ;
T fg[a/\ﬁ ;( t,l; t, )_

1. loss
Specific problems differin 2. feedback

3. guarantees
13 B220080



UPPER CONFIDENCE BOUND BASED ALGOS
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Video recorded March 30th, 2015, 13h50,
Université de Lille, Susie & the Piggy Bones Band




UPPER CONFIDENCE BOUND BASED ALGOS

f ics 7 i

: informatics mathematics
® & & O & & 0 & 0 0 0 O 0 o o o o o o O O 0 0 o

/N

pIemol pajoodxny




UPPER CONFIDENCE BOUND BASED ALGOS
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UPPER CONFIDENCE BOUND BASED ALGOS

f ics 7 i

: informatics mathematics
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STRUCTURES IN BANDIT PROBLEMS
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BLACK-BOX FUNCTIONS

STRUCTURES WITHOUT 0POLOGY _ [RLakAb e
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Arm 4 Arm 5 etc...

_ Armﬁ




SPECIFIC GRAPH BANDIT SETTINGS (2570

Independence

number

Smoothness
Spectral bandits

Rr = 6(0’%)

side observations
On graphs

#relevant
eigenvectors

noisy Side
observationg

ONn graphs
Rr =0 (Va"Tnn)

Influence Maximisation
revealing bandits

"1 =0 (VrTD;)

detectable affective

Independence number

dimension




MV, Munos, Kveton, Kocak: Spectral Bandits for Smooth Graph Functions, ICML 2014
Kocak, MV, Munos, Agrawal: Spectral Thompson Sampling, AAAI 2014
Hanawal, Saligrama, MV, Munos: Cheap Bandits, ICML 2015

SPECTRAL
BANDITS

exploiting smoothness of
rewards on graphs




SPECTRAL BANDITS brsia

Assumptions

» Unknown reward function f : V(G) — R.

. . gt 0
» Function f is smooth on a graph. F ord o

» Similar preferences #% neighboring movies. )

The Matrix
Seven Samurai
City of God
SeT7en

The Usual Suspects

Tﬁe S[i}ence of the Lambg
. .
e ae Wgon a Time iy the Wegt
Légy, . nderfy] Life

Casab]an ZP T Ofessiona]

Desiderata

An algorithm useful in the case T < N!

2 T



FLIXSTER DATA

Eigenvector 1

0.2
O commmmmm o
-0.2 -
-1 0 1
Eigenvector 4
0.2
o~
O
-0.2 -
-1 0 1

Eigenvector 2

0.2
"
O xM
-0.2 -
-1 0 1
Eigenvector 5
0.2
- o
0) o W
-0.2 -
-1 0 1

Eigenvector 3

informatics g#”mathematics
’? s b

-0.2

~1

0.2

0
Eigenvector 6

e -~

~0.2
~1

0

1

Eigenvectors from the Flixster data corresponding to the smallest
few eigenvalues of the graph Laplacian projected onto the first

principal component of data. Colors indicate the values.

\)\
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SPECTRAL BANDIT: LEARNING SETTING lrrsia
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Learning setting for a bandit algorithm 7
> In each time t step choose a node 7(t).
> the m(t)-th row x.(; of the matrix Q corresponds to the arm 7(t).
» Obtain noisy reward r; = x;(t)a* + €¢. Note: x; ™ = fr)

> &; is R-sub-Gaussian noise. VE € R, E[e*f] < exp (£?R?/2)

» Minimize cumulative regret

-
Rr = T max (x;a*) = » xpe”,

t=1

(an we just use linear bandits?

24 .. "‘/‘IJ)‘\“ :



LINEAR VS. SPECTRAL BANDITS V10X 77
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» Linear bandit algorithms

» LinUCB (Li et al., 2010)
» Regret bound =~ DV TInT
» LinearTS (Agrawal and Goyal, 2013)

» Regret bound =~ DV T InN

Note: D is ambient dimension, in our case N, length of x;.
Number of actions, e.g., all possible movies — HUGE!

» Spectral bandit algorithms

» SpectralUCB (Valko et al., ICML 2014)

» Regret bound =~ dv TInT
» Operations per step: D*N
» SpectralTS (Kocék et al., AAAI 2014)

» Regret bound =~ dv T InN
» Operations per step: D? + DN

Note: d is effective dimension, usually much smaller than D.

I ,'
25 Bagqaas
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SPECTRAL BANDITS - EFFECTIVE DIMENSION 2LaA—

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Effective dimension: Largest d such that

Ay < I
= log(l+ T/A)

(d—1)

» Function of time horizon and graph properties
» )\;: i-th smallest eigenvalue of A.

> \: Regularization parameter of the algorithm.

Properties:
» d is small when the coefficients \; grow rapidly above time.
» d is related to the number of “non-negligible” dimensions.
» Usually d is much smaller than D in real world graphs.

» Can be computed beforehand.



SPECTRAL BANDITS - EFFECTIVE DIMENSION

informatics , mathematics

A
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effective dimenstion

0 50

Barabasi—Albert graph N=500
T T T T T T T T T 1 .1

Flixster graph: N=4546

10

effective dimenstion
»

100 150 200 250 300 350 400 450

d <D

500

Note: In our setting T < N =D.

500

2000 2500 3000 3500 4000 4500

time T

1000 1500

G

~
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SPECTRAL UCB ent e

Given a vector of weights o, we define its A norm as

Z )\kozk = \/aTI\a

|l —\

and fit the ratings r, with a (regularized) least-squares estimate

t
Q; = arg min (Z [(x,, ) — r]° + a,%) .
(87
v=1

||| is a penalty for non-smooth combinations of eigenvectors.

28 B=E {4 AN



SPECTRAL UCB V77
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1: Input:
2 N, T,{A,,Q}, \, 4, R, C
3: Run:
4 N <— AN+ N
5: d+<max{d:(d—DXg < T/In(L+T/N\)}
6: fort=1to T do
7 Update the basis coefficients a:
3 X: [Xﬁ(l), c. ,Xw(t_l)]T
9 r<[n,...,r-1]"
10: Vi< X X; +A
11: & <~ V' X]r
12: ¢ <+ 2R+\/dIn(1 +t/A) +2In(1/5) + C
13:  7(t) < argmax, (xg& — ctHxaHvt_1>

14: Observe the reward r;
15: end for



SPECTRALUCB REGRET BOUND -y 7,

Barabasi—Albert N=250, basis size=3, effective d=1

» d: Effective dimension.
» A Minimal eigenvalue of A = A + Al
» C: Smoothness upper bound, ||a*|x < C. i

> xja* € [—1,1] for all /.

The cumulative regret Rt of SpectralUCB is with probability 1 — ¢
bounded as

Rt < 8R\/dln¥+2ln%—l—4C+4 \/dTlﬂ?.

Movielens: Cumulative regret for randomly sampled users. T = 100
T 1T T T T T T T T T T T T T

0 e s s S S N S S B e S |
I SpectralUCB
p—. ;
© 200 [__JLinuCB
[@)]
o
150 [+ —
[0
2
=
8 100H .
£
3
O 50H —
0
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm © o
DD 95K VY LTI N VSOOI ONCO LRINTFTODT OO TFTONDIOITT TS EINDSOSTITSRN I
¥ T T NN O TG R O PO I NG OISV LEI VIR INFITOFLLVGRIKN
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SPECTRAL UCN ON BA GRAPH 2

informatics g#”mathematics
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Barabasi—Albert N=250, basis size=3, effective d=1

50 I I I I I I I I

' P
,°*
SpectralEliminator L -
40+ | ™ ™ = SpectralUCB s” _
- = = = |inUCB L=’
o o
@) '4‘
O 30 _* —
o v
= s
© 20 ’4'
S - _
= L2
3 ot
- ’ m - - - m =
10 ”’ '---------- g
m = -
P L R - W =
- m v
wa="
0! | | | | | | l l l
0 20 40 60 80 100 120 140 160 180 200
time T
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SPECTRAL UCN ON REAL DATA

Movielens: Cumulative regret for randomly sampled users. T = 100
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SPECTRAL UCB: REGRET ANALYSIS V10X 77

000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000

» Derivation of the confidence ellipsoid for ax with probability 1 — 6.
» Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

"(a— o™ < 1 V|12 |
X" (@ —a")| < x|y (R\/2In<5|/\|1/2) | C)

" " . N~ ! * T k
> Regret in one time step: ry = x,a” — x_fya" < 2¢¢[|[Xq () [y

» Cumulative regret:

-
R+ = re <
T ; t \

-
V
TY 2 <2 CT—I—l)\/2TIn ’\/\T\‘

t=1

» Upperbound for In(|V:|/|A])

o Vel
LA

V7|
A

< In

< 2dlIn <)\+T>

A

" 1
33 BEgqaa



SPECTRAL UCB: REGRET ANALYSIS ZicH—
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Sylvester’s determinant theorem:
A+ xx"| = |A|[l + A Ixx"| = |A|(1 + x"Ax)

Goal:
» Upperbound determinant |A + xx'| for ||x]|2 <1

» Upperbound x"A~1x

N
XA Ix=x"QA Q' x =y'A 'y = Z A7
i=1
> [yl < 1.
> vy is a canonical vector.

» x = Qy is an eigenvector of A.

g .
34 i ;l‘f.lu.)'\'-



SPECTRAL UCB: REGRET ANALYSIS Flr
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Corollary: Determinant V7| of V= A+ ZtT:l XX, iS
maximized when all x; are aligned with axes.

Vrl < max [J(+6)
V7|

VN T s beT Zln (H;_I,)
‘T;\T“ Zln(l—l— ) 3 In(ll i )

i=d+1 )\d+1
T T
< dln {1+ —) |
( A Ad+1

T
<2dIn{14 —
< 2din(1+ 1 )

= B
35 | 5'.""1 AN



Carpentier, MV: Revealing Graph Bandits for Maximising Local Influence, AISTATS 2016
Wen, Kveton, MV: Influence Maximization with Semi-Bandit Feedbach, (arXiv:1605.06593)

INFLUENCE
MAXIMISATION

looking for the influential nodes
while exploring the graph




HOW TO RULE THE WORLD? (2570

JULY 18, 2016 March 26, 2017 September 1, 2009
Religion Politics Culture

37 B221050
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EXAMPLE: INFLUENCE IN SOCIAL NETWORKS ;o _
[KEMPE, KLEINBERG, TARDOS KDD "03] é ”Z oy

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Prob. of
influencing

/

Who should get free cell phones?
\/ = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}

F(A) = Expected number of people influenced when targeting A

ok f
39 F2gqua
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Unknown (pj)ij — (symmetric) probability of influences

-;» Lo - Ineachtimestept=1,...,T
\ /" learner picks a node kt
Fo 0
L il Qi & environment reveals the set of influenced node S
* { . Select influential people = Find the strategy maximising
- T
- LT:Z|Skt,t|
t=1
Why this is a bandit problem?
(aseT<N

i g
40 BEEqUO0S



PERFORMANCE CRITERION Y77

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

The number of expected influences of node k is by definition

re =E[|Skell = ) vy

J<N B
Oracle strategy always selects the best W \ »i
. o
k* = argmax E Z |Sk.t|| = argmax Try wmiﬁgif.
k =1 k ‘i { [ "J

Expected regret of the oracle strategy

C L =Ty

Expected regret of any adaptive strategy unaware of (pj);

U |Ry| = E[L7| —E[L7]

= B
41 | 5'.""1 AN



informatics g#”mathematics
BASELINE ZLA—

> Weonly receive |S| instead of S “ U3U

> (an be mapped to multi-arm bandits € £9
® rewardsareO, ..., N
® variance bounded with rxt

> We adapt MOSS to GraphMOSS

> Regret upper bound of GraphMOSS

E|Rr] < U min (T*T, r N + \/T*TN)
Crash course on stochastic bandits?
> matching lower bound

= B
42 ;"/ , 4 ')o\o



GRAPHMOSS FOR THE RESTRICTED SETTING ~ £rz*zca~

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

GraphMOSS

Input
d: the number of nodes
n: time horizon
Initialization
Sample each arm twice
Update ?k,ch; 8k,2d7 and Ty 24 < 2, for Vk < d
fort=2d+1,....,n do

max(log(n/(dTr.1)),0)
Tyt

4 2mexlos(n/(@Te).0) for vk, < d

kt < arg max;, ?k,t + Ck,t

Sample node k; and receive |Sy, ¢|

Update 7k 141, Ok t+1, and Ty ¢4+1, for Vk < d
end for

C]{’t < 2814’75 \/

i g
43 B2E1U008



BACK TO THE REAL SETTING (2500

> (anwe actually do better?

® Well, not really.....
® Minimax optimal rate is still the same

> But the bad cases are somehow pathological

® jsolated nodes

® uncorrelated being influenced and being influential

® Barabasi-Albert etc tell us that the real-world graphs are not like that

> et think of some measure of difficulty
® to define some non-degenerate cases

® deas?’




DETECTABLE DIMENSION Zia—

> number of nodes we can efficiently extract in less than n rounds

> function D controls number of nodes given a gap
DA)={i <N :r; —r; <A}
> D(r) =N for r r and D(0) = number of most influenced nodes

> Detectable dimension D = D(A-)

> Detectable gap A« constants coming from the analysis and the Bernstein inequality

°N log (T'N 144N log (I'N

Il T,
> Detectable horizon T+, smallest integer st. 77, y-© > \/ D, Tre,

> Equivalently: D+ corresponding to smallest T« such that

°Nlog (TN) 144N log (TN
>\D<16\/T* (;?( ) | ;g( )>T7"i’

T, r

*

" T
45 RN



HOW DOES D* BEHAVE? (2550

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

> For (easy, structured) star graphs D=1 even for smalln (big gain)

> For (difficult) empty graphs D«= N even for large T (no gain)

> In general: D roughly decreases with nand it is small when D decreases quickly
> For n large enough D+ is the number of the most influences nodes

> Example: D= for Barabasi-Albert model & Enron graph as a function of T

Barabasi-Albert - Number of nodes: 1000 - Number of runs: 10 - revelation p = 0.80 , >Enfon - Number of nodes: 36692 - Number of runs: 1 - revelation p = 0.80
1000 1 1 1 1 1 1 1 T \ 1 \ \ 1 \ \ \

500 [ ] a8

T s - ———__—t

L e e S e e e

) A N S —————

D.- detectable dimension
3
o

D.- detectable dimension

1.5
B A S B R 1
800 T A A A i T T A ) 05
200 | | | | | | | | 0 ‘ ‘ ‘ ‘ ‘
1000 2000 3000 4000 500 000 7000 8000 9000 10000
n- num%er oProunds 5000 10000 15000 20000 25008 C%OOOO 35000 40000 45000 50000
n - number of rounds



BARE SOLUTION 7
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BAndit REvelator: 2-phase algorithm
- global exploration phase
- super-efficient exploration &

- linear regret & — needs to be short!

- extracts D:nodes
- bandit phase
- uses a minimax-optimal bandit algorithm
- GraphMOSS is a little brother of MOSS
- has a “square root” regret on D+ nodes
- D« realizes the optimal trade-off!
- different from exploration/exploitation tradeoff

- [ 4
47 | 5':”"1 AN



Algorithm

BARE - BAndit REvelator

Input -
d: the number of nodes s
n: time horizon ﬁq

Initialization v
Tkt<—() for Vk < d

’rkt%() for Vk < d

t <+ 1, T + 0, D*t%d Oy1 — d
Global exploration phase

while ¢ (a)t — 4\/dlog(dn) /t) < \/D,n do

Influence a node at random (choose k; uniformly
at random) and get Sk, ; from this node

A

o t —o d
Tht1 S 1Tkt T t—|—1Sktat(k)

Grti1 ¢ MmAX) \/7{; +8dlog(nd)/(t + 1)

~ dlog(nd 24d log(nd
w*,t_|_]_ < 80-*7t+1\/ t—l—(l ) -+ t—|—]_( )
5 T o
t<—t+1
end while
1T, +t.

Bandit phase
Run minimax-optimal bandit algorithm on the

D, 7 chosen nodes (e.g., Algorithm 1)

informatics g#”mathematics

2L —
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regret

EMPIRICAL RESULTS

6 X 10 Graph: Barabasi-Albert - Number of runs: 100 - revelation p = 0.80

x 10

s

Graph: Facebook - Number of runs: 100 - revelation p = 0.80

7

informatics , mathematics

s o X 10 Graph: Enron - Number of runs: 100 - revelation p = 0.80 o X 10° Graph: Gnutella - Number of runs: 100 - revelation p = 0.80
BARE 5 BARE BARE ; BARE
==='GraphMOSS s ==='GraphMOSS s |=== GraphMOSS s |=7= GraphMOSS s
- 3 o ”
e / P " /
~ ~ )2 ~ —~ Ve 7 ; e ’ -
D, =134, T, = 36~ o Dy =125, Ty = 28 D, = 564, T, = 107 _~ Ds = 3916, Tx = 7797
# 6 - 6
(/" ) r// /
Ve B ° el B
’ . . e 2 pa
S5 P =4 " =4
B 'l
el
1 / : ~ ¢
/ 2 "/ 2
4
05 / "/ } /
: 4 Y 'r' i
’I
,&
. . . . . . . . Vd
o i i i i i i i i i 0 0
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> Ignoring the structure again? Regret of BARE
> BAndit REvelator: 2-phase algorithm O ( \/’r' TD )
* *
> global exploration phase reward of the
. . best node
® super-efficient exploration
® linear regret — needs to be short! > D* - detectable dimension

® oxtracts D«nodes (depends on T and the S’[I‘UC’[UI‘E)

® good case: star-shaped graph

> bandit phase can have D% = 1

® yses a minimax-optimal bandit algorithm (GraphMOSS) d - with
® bad case: a graph with many

® hasa ‘square root” regret on D« nodes small cligues

«redli i -off!
> D« realizes the optimal trade-off! o theworst case: 3l nodes are

® (ifferent from exploration/exploitation tradeoff disconnected except 2




NEXT: GLOBAL INFLUENCE MODELS (2570

> Kempe, Kleinberg, Tardos, 2003, 2015: Independence (ascades, Linear Threshold models
® global and multiple-source models
> Different feed-back models
® Full bandit (only the number of influenced nodes)
® Node-level semi-bandit (identities of influenced nodes)
® Edge-level semi-bandit (identities of influenced edges)
® Wen, Kveton, Vialko, Vaswani, NIP$ 2017
® |MLinUCB with linear parametrization of edge weights

® Regret analysis for general graphs, cascading model, and multiple-sources




Online Influence Maximization under Independent ot thenatc
Cascade Model with Semi-Bandit Feedback 22

Zheng Wen Branislav Kveton
Adobe Research Adobe Research
San Jose, CA 95110 San Jose, CA 95110
zwen@adobe.com kveton@adobe.com
Michal Valko Sharan Vaswani
Inria Lille-Nord Europe University of British Columbia
59650 Villeneuve d’ Ascq, France Vancouver, B.C., Canada
michal.valko@inria.fr sharanv@cs.ubc.ca PresentEd 5 days ago
at NIPS 2017, Long Beach, (A
Abstract

We study the stochastic online problem of learning to influence in a social network
with semi-bandit feedback, where we observe how users influence each other. The
problem combines challenges of limited feedback, because the learning agent
only observes the influenced portion of the network, and combinatorial number of
actions, because the cardinality of the feasible set is exponential in the maximum
number of influencers. We propose a computationally efficient UCB-like algorithm,
IMLinUCB, and analyze it. Our regret bounds are polynomial in all quantities
of interest; reﬂect the structure ot the network and the Qrobabilities Ot inﬂuence.
Moreover, they do not depend on inherently large quantities, such as the cardinality
of the action set. To the best of our knowledge, these are the first such results.
IMLinUCB permits linear generalization and therefore is suitable for large-scale
problems. Our experiments show that the regret of IMLinUCB scales as suggested
by our upper bounds in several representative graph topologies; and based on linear
generalization, IMLinUCB can significantly reduce regret of real-world influence
maximization semi-bandits.

\\
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CHALLENGES AND SOLUTIONS (2576

> Already the offline problem is NP hard
® solution: approximation/randomized algorithms
> Lots of edges MaxXs: |S|=K f(S,w)
® |ots of parameters to learn, if we want to scale, we need to reduce this complexity
® solution: linear approximation of probabilities
> Combinatorial size of possible seed-sets
®  (ombinatorial Bandits: IMLinUCB
> Understanding what's going on?

® known analyses VERY loose (e.g., scaling with 1/pmin, or only assymptotic)

= BZi i



APPROXIMATION ORACLE 7

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

> the optimal offline solution

maxgs. |s|=xk (S, W)
> the oracle solution that is y-optimal with probability at least «

S* = ORACLE(G, K, w)
> y-optimal

f(8*,w) = 7 f(S7, w)
> y-optimal with probability at least
L f(ST,w)] 2 ay f(SOP, W)

> Qur problem is a triple:

(G, K, w)

e =



LINEAR GENERALIZATION V0 77

— learning the only network (weights) is VERY impractical

0 2 maXece |w(e) — xL 0™

ke wim

— by choosing the dimension (size of %) we can reduce this complexity

linear approximation

— if we do not want to lose generality we set d to the number of edges

o5 Bz (15



informatics g#”mathematics

ALGORITHM AND PERFORMANCE MEASURE ZaA—

Algorithm 1 IMLinUCB: Influence Maximization Linear UCB

Input: graph G, source node set cardinality K, oracle ORACLE, feature vector z.’s, and algorithm
parameters o, ¢ > 0,

Initialization: By + 0 € R4, M + I € R4
fort=1,2,...,ndo
1. set;_y < o~2M; !, B;_; and the UCBs as U, (e) + Proj 0.1] (3?29151 + C\/@Mtlﬁe)

foralle € £
2. choose S; € ORACLE(G, K, U;), and observe the edge-level semi-bandit feedback
3. update statistics:
(a) initialize M; «+ M;_; and B; + B;_;
(b) for all observed edges e € £, update M; < M; + 0~z 2] and By < B; + z.w¢(e)

RM(n) = > i B[R]

R = f(8, we) — L f(S;,we)

56 5'.'"'1'),\,



MAXIMUM OBSERVED RELEVANCE (2506

> VS 1{eisrelevantto v under S} and Ps,.= IP’ (e is observed | S)

only depends on topology tepends on both

C* — IMaXg. |S\—K \/2665 ePS,e

> Worst-case upper bound:
A 2 , 2
C. < Cg = maxs. 51k \/Soee N3 < (L= K)V/[E] = O (L\/\Sl) — 0 (1?)

57 B2gq44)




WORST-CASE BOUNDS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

informatics g#”mathematics

@—O % % }
O—O
O0—O
Oo—O O
(a) (b) (c) (d)
_=number of nodes, K = size of seed set, n = number of rounds, d = dimension
topology Cg (worst-case C) | R*7(n) for general X R (n) for X =1
bar graph O(VE) O (dKn/(a7)) | O(LVEn/(av))
star graph O(LVK) 2 (dL% \/7/(04’7)) 0 <L2 \/7/(04’7))
ray graph (’)(L%\/?) ( g\/i/(a’y)) (L%F/(av))
tree graph O(L%) (dL2 \/ﬁ/(OW)) (L% vn/( 7))
grid graph O(L?) O (dL*v/n/(am)) (L2 Vvn/( 7))
complete graph O(L?) O (dL*v/n/(a)) O (L*v/n/(av))

Table 1: Cg and worst-case regret bounds for different graph topologies



R ES U LTS hinformatiCS,mathematics

R (n) < 2¢C \/dn5| log, (1 | nf\) +1=0 (dC’*\/|8|n/(cw))
<O (d(L - K)[E[Vn/ (o).

How good (tight) is this?

> comparison with linear bandits

> comparison with general combinatorial bandits
> (L-K) factor

> How good is (*?

59 BZ210NE
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PROOF SKETCH? V% 77

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

> when are our upper bounds on the estimates right?

é—1 = {JoL (01 — )] < ey faIM; Lz, Ye € €, Vr < 1)

> ....decomposes the regret at round t
O[R7] < P (&) B[RS [§-1] + P (§—1) [L — K]

> monotonicity of f

R §e ] S E[f(Se, Us) — f(Se, )€1 /(ay)

> studying the Markov process of propagation

® consider non-overlaping layers

® random stopping time
f(Se, Upv) = f(Se,w,v) < 3 ece,  E(110c(€)} [Uile) —w(e)|[H-1, 5]

s §
| P LgVU0\
60 E=Equaus



EXPERIMENTS V77
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> Objective: “Check” how good is our C*

> Tabular case, K = 1, exact comparison possible, all weights are same = w

~

star - O(L2) vs. O(L*%49) and O(L2956)
Ry O(LE) 'S O(L2488) and O(L2-467)

w=08X=1

w=07X=1

| Star
| Ray
14 13 ¢
© 2 @ 2 ° |
(@)] ' @) '
o) : o) |
T 512 T 511}
210 ' - - — 29E ! , , A R
8 16 24 32 8 16 24 32
L L

> Conclusion: evidence that our C* is a reasonable complexity measure

i s
61 B=Zquo0s



FACEBOOK EXPERIMENT

Cumulative Regret

0.5

—h
6)
I

—h
I

x105

= =CUCB

— |MLinUCB with d=10

0 1000

2000 3000
Number of Rounds

4000

5000

y 4

: informatics , mathematics

real Facebook (a small subgraph)
weights from U(0,0.1)
nodetovec with d=10

® imperfect

K=10

CUCB with no linear generalisation

2 RGN



CONCLUSION AND NEXT STEPS (2576

> Active learning on graphs
® |earning the graph while acting on it optimal
® (ifficulty of the problem and scaling with it
® online influence maximization
® |ocal model (minimax optimal algorithm)
® global cascading model
> What is next?
® dynamic/evolving graphs

® realistic accessibility constraints




Kocak, Neu, MV, Munos: Efficient learning by implicit exploration in bandit problems
with side observations, NIPS 2014

Kocak, Neu, MV: Online learning with Erdos-Rényi side-observation graphs
UAI 2016

Kocak, Neu, MV: Online learning with noisy side observations, AISTATS 2016

GRAPH
BANDITS
WITH SIDE
OBSERVATIONS

exploiting free observations from
neighbouring nodes




SIDE OBSERVATIONS: UNDIRECTED V10X 77
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SIDE OBSERVATIONS: DIRECTED lrrsia

Mobile Ultra
64GB micrg




mmmmmmmmmmmm

Full-information Bandits

> observe losses of all actions > observe losses of the chosen action

> example: Hedge N > example: EXP3 N
Rr=0OKT) Rr = O(vNT)

From Experts to Bandits

&7 BEE (15



KNOWLEDGE OF OBSERVATION GRAPHS V10X 77 %

> ELP (Mannor and Shamir 2011)

® EXP3 - with “LP balanced exploration”

o undirected O({(xT)) € -needs to know G

® directed case 0({(cT)) - needs to know Gt
> EXP3-SET (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)

o undirected 0(,(xT)) @ does not need to know Gt
> EXP3-DOM (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)

o directed O({(xT)) €@-need to know Gt

® calculates dominating set




EXP3-IX: IMPLICIT EXPLORATION

0000000000000000000000000000000000000000000000000000000000

Algorithm 1 EXP3-IX

1: Input: Set of actions S = [d],

2:  parameters ; € (0,1),n: > 0 fort € [T].

3: fort =1to 7T do R

4:  wy,; < (1/d)exp (—neLi—q ;) fori € [d] :
5:  An adversary privately chooses losses ¢; ; -

for ¢ € [d] and generates a graph G :

6: Wt <— chjlzl Wt 4

T pri — we i/ We ‘
8:  Choose It ~py = (pt.1,---,Pt.d)

9:  Observe graph G; E
10:  Observe pairs {¢, ¢; ; } for (I; — i) € G,
11: Ot,’i < Z(_j—)’L)EGt pt)j fOI‘Z c [d]
12: by 4 Otit_ﬁ% ﬂ{(lt_ﬁ;)egt} for i € [d]
13: end for .
Optimistic bias for the loss estimates

A 0,
]E[Et,,-] — Ot,it:|,‘ fyot,i + 0(1 — Ot,i) — gt,i — ft,i

)

> no need for aggregation

: informatics , mathematics

0000000000000000000000000000000000000000000000

<> noneed to know the graph before

> no need to estimate dominating set

> no need for doubling trick

%
L
%
]
]
$
$
)
L

S Ry = O (\/@Tln N)

s 5
69 E=equas



FOLLOW UPS V7

> EXP3-IX (Kocak, Neu, MV, Munos, 2014)
o directed 0(J(xT)) & does not need to know G
> EXP3.G (Alon, Cesa-Bianchi, Dekel, Koren, 2015)

® directed 0(/(xT)) & does not need to know G
® mixes uniform distribution
® more general algorithm for settings beyond bandits

® high-probability bound

> Neu 2015: high-probability bound for EXP3-IX W

70 Bz 55




COMPLEX GRAPH ACTIONS (2570

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Example: online shortest path semi-bandits with observing traffic on the side streets

>

@

-

» Play action V. € S C {0,1}V, ||v]: < mfromallve S
> Obtain losses V ¢,

» Observe additional losses according to the graph

-
Rt = O (m3/2\ ;at> = 6(m3/2\/§77_)

) s
71 E22quu\



Kocak, Neu, MV: Online learning with noisy side observations, AISTATS 2016

GRAPH
BANDITS WITH
NOISY SIDE
OBSERVATIONS

exploiting side observations that can
be perturbed by certain level of noise




NOISY SIDE OBSERVATIONS (25000

Want: only reliable information!

1) If we know the perfect cutoff €

> reliable: use as exact

» unreliable: rubbish

then we can improve over pure bandit setting!
2) Treating noisy observation induces bias

What can we hope for?
O (ViT) < <O (VNT)

(an we learn without knowing either € or o¢*?

73 B2



NOISY SIDE OBSERVATIONS

Threshold estimate R+ = O ( a* T)

ci 41
Z(T) o £y {St,(It,q;)Zcft}
t,e

N
Z]:]- pt’j8t7(j7i)]:[{8t,(j,i)ZEt} _|_ ’yt

WiX estimate Rr =0 ( — T)

Sta(-[tai) . Ct,’l,

B =
D =1Puisi, Gy e

Since o < «a(l1)/1 < N

incorporating noisy observations does not hurt
O (VaT) <O (VNT)

But how much does it help?

W 5
74 BZETENE



inf (cu(e)/e?)

y 4

EMPIRICAL RESULTS (2505

inf (cu(e)/e?)

(a) U(0,1) weights (b) U(3,1) weights (c) U(0, ) weights
500 Adaptive learning rate
o s
b > special case: if sijis either 0 or € than oc*= ox/€?
£ oA e > For this special case, there is a matches
gzoo _ \~~___\ ‘\\’\/ . o
: g O({(xT)/€) by Wu, Gydrgy, Szepesvari, 2015.

. Value of ¢ .




NEW DIRECTIONS: UNKNOWN GRAPHS!

> Learning on the graph while learning the graph?
® most of algorithms require (some) knowledge of the graph
® not always available to the learner

> Question: Can we learn faster without Rnowing the graphs?

® example: social network provider has little incentive to reveal the
graphs to advertisers

> Answer: Cohen, Hazan, and Koren: Online learning with feedback graphs
without the graphs (ICML June 19-24, 2016)

® NO' (in general we cannot, but possible in the stochastic case)
> Coming up next:

® FErdds-Renyi side observation graphs (UAl June 25-26, 2016)




Kocak, Neu, MV: Online learning with Erdos-Rényi side-observation graphs
UAI 2016

BANDITS WITH
ERDOS-RENYI
OBSERVATIONS

side observations from graph
generators




PROTOCOL FOR ERDOS-RENYI GRAPHS -7

Every round t the learner
> picks a node

> suffers loss for l;

> receives feedback

o forl
® for every other node with probability rt

Is loss of i ohserved?

5 Ot il i
t

Y

e P+ (

probability of picking i

probability of side observation




PROTOCOL FOR ERDOS-RENYI GRAPHS -7

> N-2 samples from Bernoulli(r) ... R(R)

> N-2 samples from pt ... P(R)

S

*x
gtz_

P+ ( 1 —pt/f"“t




MORE GRAPH BANDITS AND BEYOND! (50

Figure 1: Examples of feedback graphs: (a) full feedback, (b) bandit feedback, (c) loopless
clique, (d) apple tasting, (e) revealing action, (f) a clique minus a self-loop and another edge.

80 JEIT



LAST WORDS ... V7

Survey: http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf (Part 1)

1) good luck with the projects 2) AlteGrad follows this course 3) see you at projects talks



http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf
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