
November 27, 2017 MVA 2017/2018

Graphs in Machine Learning
Michal Valko
Inria Lille - Nord Europe, France
TA: Pierre Perrault

Partially based on material by: Daniele Calandriello, Nikhil Srivastava,
Yiannis Koutis, Joshua Batson, Daniel Spielman

Last Lecture

I Examples of applications of online SSL
I Analysis of online SSL
I SSL Learnability
I When does graph-based SSL provably help?
I Scaling harmonic functions to millions of samples

Michal Valko – Graphs in Machine Learning SequeL - 2/45

This Lecture

I Large-scale graph construction and processing (in class)
I Scalable algorithms:

I Graph sparsification (presented in class)
I Online face recognizer (to code in Matlab)
I Iterative label propagation (to code in Matlab)

Michal Valko – Graphs in Machine Learning SequeL - 3/45

This Lecture/Lab Session

I AR: record a video with faces

I Short written report

I Questions to piazza

I Deadline: 11. 12. 2017

Michal Valko – Graphs in Machine Learning SequeL - 4/45

This Lecture/Lab Session

I AR: record a video with faces

I Short written report

I Questions to piazza

I Deadline: 11. 12. 2017

Michal Valko – Graphs in Machine Learning SequeL - 4/45

This Lecture/Lab Session

I AR: record a video with faces

I Short written report

I Questions to piazza

I Deadline: 11. 12. 2017

Michal Valko – Graphs in Machine Learning SequeL - 4/45

This Lecture/Lab Session

I AR: record a video with faces

I Short written report

I Questions to piazza

I Deadline: 11. 12. 2017

Michal Valko – Graphs in Machine Learning SequeL - 4/45

Large scale Machine Learning on Graphs

http://blog.carsten-eickhoff.com Botstein et al.

Michal Valko – Graphs in Machine Learning SequeL - 5/45

http://blog.carsten-eickhoff.com

Are we large yet?

”One trillion edges: graph processing at Facebook-scale.”
Ching et al., VLDB 2015

Michal Valko – Graphs in Machine Learning SequeL - 6/45

Computational bottlenecks

In theory:
Space Time

[O(m),O(n2)] to store O(n2) to construct
O(n3) to run algorithms

In practice:
I 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB)
128 Billion edges (331 GB)

I Pagerank on Facebook Graph:
3 minutes per iteration, hundreds of iterations, tens of hours
on 200 machines, run once per day

Michal Valko – Graphs in Machine Learning SequeL - 7/45

Computational bottlenecks

In theory:
Space Time

[O(m),O(n2)] to store O(n2) to construct
O(n3) to run algorithms

In practice:
I 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB)
128 Billion edges (331 GB)

I Pagerank on Facebook Graph:
3 minutes per iteration, hundreds of iterations, tens of hours
on 200 machines, run once per day

Michal Valko – Graphs in Machine Learning SequeL - 7/45

Computational bottlenecks

In theory:
Space Time

[O(m),O(n2)] to store O(n2) to construct
O(n3) to run algorithms

In practice:
I 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB)
128 Billion edges (331 GB)

I Pagerank on Facebook Graph:
3 minutes per iteration, hundreds of iterations, tens of hours
on 200 machines, run once per day

Michal Valko – Graphs in Machine Learning SequeL - 7/45

Two phases

1 Preprocessing:

From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph

Michal Valko – Graphs in Machine Learning SequeL - 8/45

Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function

Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph

Michal Valko – Graphs in Machine Learning SequeL - 8/45

Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian

Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph

Michal Valko – Graphs in Machine Learning SequeL - 8/45

Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph

Michal Valko – Graphs in Machine Learning SequeL - 8/45

Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph

Michal Valko – Graphs in Machine Learning SequeL - 8/45

Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow

I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Michal Valko – Graphs in Machine Learning SequeL - 9/45

Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow

I In both cases bottleneck is the same, given a node finding
close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Michal Valko – Graphs in Machine Learning SequeL - 9/45

Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Michal Valko – Graphs in Machine Learning SequeL - 9/45

Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Michal Valko – Graphs in Machine Learning SequeL - 9/45

Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Michal Valko – Graphs in Machine Learning SequeL - 9/45

Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Michal Valko – Graphs in Machine Learning SequeL - 9/45

Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.

I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation

Michal Valko – Graphs in Machine Learning SequeL - 10/45

Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization

I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation

Michal Valko – Graphs in Machine Learning SequeL - 10/45

Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node

I Locality Sensitive Hashing (LSH)
More general problem: learning good codeword representation

Michal Valko – Graphs in Machine Learning SequeL - 10/45

Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation

Michal Valko – Graphs in Machine Learning SequeL - 10/45

Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation

Michal Valko – Graphs in Machine Learning SequeL - 10/45

Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation

Michal Valko – Graphs in Machine Learning SequeL - 10/45

Storing graph in memory

Main bottleneck: space.
As a Fermi (back-of-the-envelope) problem

I Storing a graph with m edges require to store m tuples
(i , j ,wi ,j) of 64 bit (8 bytes) doubles or int.

I For standard cloud providers, the largest compute-optimized
instances has 36 cores, but only 60 GB of memory.

I We can store 60 ∗ 10243/(3 ∗ 8) ∼ 2.6× 109 (2.6 billion)
edges in a single machine memory.

Michal Valko – Graphs in Machine Learning SequeL - 11/45

Storing graph in memory

Main bottleneck: space.
As a Fermi (back-of-the-envelope) problem

I Storing a graph with m edges require to store m tuples
(i , j ,wi ,j) of 64 bit (8 bytes) doubles or int.

I For standard cloud providers, the largest compute-optimized
instances has 36 cores, but only 60 GB of memory.

I We can store 60 ∗ 10243/(3 ∗ 8) ∼ 2.6× 109 (2.6 billion)
edges in a single machine memory.

Michal Valko – Graphs in Machine Learning SequeL - 11/45

Storing graph in memory

Main bottleneck: space.
As a Fermi (back-of-the-envelope) problem

I Storing a graph with m edges require to store m tuples
(i , j ,wi ,j) of 64 bit (8 bytes) doubles or int.

I For standard cloud providers, the largest compute-optimized
instances has 36 cores, but only 60 GB of memory.

I We can store 60 ∗ 10243/(3 ∗ 8) ∼ 2.6× 109 (2.6 billion)
edges in a single machine memory.

Michal Valko – Graphs in Machine Learning SequeL - 11/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse

Losing large scale relationship, losing regularization

I I will split my graph across multiple machines

Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse

Losing large scale relationship, losing regularization

I I will split my graph across multiple machines

Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse

Losing large scale relationship, losing regularization

I I will split my graph across multiple machines

Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines

Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines

Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines
Your algorithm does not know that.

What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines
Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?

More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines
Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning SequeL - 12/45

Graph Sparsification

Goal: Get graph G and find sparse H

Michal Valko – Graphs in Machine Learning SequeL - 13/45

Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse

I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not

Michal Valko – Graphs in Machine Learning SequeL - 14/45

Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok

I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not

Michal Valko – Graphs in Machine Learning SequeL - 14/45

Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not

Michal Valko – Graphs in Machine Learning SequeL - 14/45

Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not

Michal Valko – Graphs in Machine Learning SequeL - 14/45

Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?

in a tree — sure, in a dense graph perhaps not

Michal Valko – Graphs in Machine Learning SequeL - 14/45

Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not

Michal Valko – Graphs in Machine Learning SequeL - 14/45

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 15/45

https://math.berkeley.edu/~nikhil/

Graph Sparsification: What is good sparse?
Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 15/45

https://math.berkeley.edu/~nikhil/

Graph Sparsification: What is good sparse?
Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 15/45

https://math.berkeley.edu/~nikhil/

Graph Sparsification: What is good sparse?
Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 15/45

https://math.berkeley.edu/~nikhil/

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care?

faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning SequeL - 16/45

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning SequeL - 16/45

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =

∑
i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning SequeL - 16/45

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning SequeL - 16/45

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning SequeL - 16/45

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible?

Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning SequeL - 16/45

Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi ,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning SequeL - 16/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)

Michal Valko – Graphs in Machine Learning SequeL - 17/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)

Michal Valko – Graphs in Machine Learning SequeL - 17/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2)

|EH | = O(dn)

Michal Valko – Graphs in Machine Learning SequeL - 17/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)

Michal Valko – Graphs in Machine Learning SequeL - 17/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ n
d

Could be large :(What to do?

Michal Valko – Graphs in Machine Learning SequeL - 18/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ n
d

Could be large :(What to do?

Michal Valko – Graphs in Machine Learning SequeL - 18/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S|

wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ n
d

Could be large :(What to do?

Michal Valko – Graphs in Machine Learning SequeL - 18/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ n
d

Could be large :(What to do?

Michal Valko – Graphs in Machine Learning SequeL - 18/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ n
d

Could be large :(

What to do?

Michal Valko – Graphs in Machine Learning SequeL - 18/45

Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ n
d

Could be large :(What to do?

Michal Valko – Graphs in Machine Learning SequeL - 18/45

Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ 1

Benczúr & Karger: Can find such H quickly for any G!

Michal Valko – Graphs in Machine Learning SequeL - 19/45

Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ 1

Benczúr & Karger: Can find such H quickly for any G!

Michal Valko – Graphs in Machine Learning SequeL - 19/45

Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S|

wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ 1

Benczúr & Karger: Can find such H quickly for any G!

Michal Valko – Graphs in Machine Learning SequeL - 19/45

Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ 1

Benczúr & Karger: Can find such H quickly for any G!

Michal Valko – Graphs in Machine Learning SequeL - 19/45

Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS)

≈ 1

Benczúr & Karger: Can find such H quickly for any G!

Michal Valko – Graphs in Machine Learning SequeL - 19/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f =

cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn →

(1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!

but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning SequeL - 20/45

Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖

Michal Valko – Graphs in Machine Learning SequeL - 21/45

Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖

Michal Valko – Graphs in Machine Learning SequeL - 21/45

Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖

Michal Valko – Graphs in Machine Learning SequeL - 21/45

Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖

Michal Valko – Graphs in Machine Learning SequeL - 21/45

Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖

Michal Valko – Graphs in Machine Learning SequeL - 21/45

Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖

Michal Valko – Graphs in Machine Learning SequeL - 21/45

Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij

=
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 22/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T

=
∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 22/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 22/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e

where se is a new weight of edge e

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 22/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

https://math.berkeley.edu/˜nikhil/
Michal Valko – Graphs in Machine Learning SequeL - 22/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e

find s, s.t. LG �
∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e

find s, s.t. A �
∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e

find s, s.t. I �
∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it?

ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning SequeL - 23/45

Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

Decomposition of identity: ∀u (unit vector):
∑

e∈E (uTve)
2 = 1

moment ellipse is a sphere
https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 24/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

Decomposition of identity: ∀u (unit vector):
∑

e∈E (uTve)
2 = 1

moment ellipse is a sphere
https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 24/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

Decomposition of identity: ∀u (unit vector):
∑

e∈E (uTve)
2 = 1

moment ellipse is a sphere
https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 24/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

We take a subset of these ees and scale them!

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 25/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

We take a subset of these ees and scale them!

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 25/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

We take a subset of these ees and scale them!

https://math.berkeley.edu/˜nikhil/
Michal Valko – Graphs in Machine Learning SequeL - 25/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 26/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 26/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!

the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 26/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/˜nikhil/
Michal Valko – Graphs in Machine Learning SequeL - 26/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 27/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 27/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)

rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 27/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 27/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 28/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 28/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 28/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 28/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/˜nikhil/

Michal Valko – Graphs in Machine Learning SequeL - 28/45

https://math.berkeley.edu/~nikhil/

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2

=
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2

= bT
eL−1

G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be

= Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning SequeL - 29/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:

I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)

I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here?

Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ
(∑

e
sevevT

e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pi s!

Michal Valko – Graphs in Machine Learning SequeL - 30/45

Spectral Graph Sparsification

We want to make this algorithm fast.

How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)

Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:
use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:
use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning SequeL - 31/45

Spectral Graph Sparsification

Chicken and egg problem
We need Reff to compute a sparsifier H

We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with very poor approximation R̃eff and poor sparsifier.
Use R̃eff to compute an improved approximate sparsifier H

Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.

Michal Valko – Graphs in Machine Learning SequeL - 32/45

Spectral Graph Sparsification

Chicken and egg problem
We need Reff to compute a sparsifier H

We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with very poor approximation R̃eff and poor sparsifier.
Use R̃eff to compute an improved approximate sparsifier H

Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.

Michal Valko – Graphs in Machine Learning SequeL - 32/45

Spectral Graph Sparsification

Chicken and egg problem
We need Reff to compute a sparsifier H

We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with very poor approximation R̃eff and poor sparsifier.
Use R̃eff to compute an improved approximate sparsifier H

Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.

Michal Valko – Graphs in Machine Learning SequeL - 32/45

Spectral Graph Sparsification

Chicken and egg problem
We need Reff to compute a sparsifier H

We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with very poor approximation R̃eff and poor sparsifier.
Use R̃eff to compute an improved approximate sparsifier H

Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.

Michal Valko – Graphs in Machine Learning SequeL - 32/45

What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods

I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods

Michal Valko – Graphs in Machine Learning SequeL - 33/45

What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods
I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods

Michal Valko – Graphs in Machine Learning SequeL - 33/45

What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods

I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods

Michal Valko – Graphs in Machine Learning SequeL - 33/45

What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods
I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods

Michal Valko – Graphs in Machine Learning SequeL - 33/45

What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods
I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods

Michal Valko – Graphs in Machine Learning SequeL - 33/45

What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods
I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods

Michal Valko – Graphs in Machine Learning SequeL - 33/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory

Either slower but larger memory
Or fast memory but divided among many machines

Many challenges

Needs to be scalable

minimimize pass over data / communication costs

Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory
Either slower but larger memory

Or fast memory but divided among many machines

Many challenges

Needs to be scalable

minimimize pass over data / communication costs

Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory
Either slower but larger memory
Or fast memory but divided among many machines

Many challenges

Needs to be scalable

minimimize pass over data / communication costs

Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory
Either slower but larger memory
Or fast memory but divided among many machines

Many challenges

Needs to be scalable

minimimize pass over data / communication costs

Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory
Either slower but larger memory
Or fast memory but divided among many machines

Many challenges
Needs to be scalable

minimimize pass over data / communication costs
Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory
Either slower but larger memory
Or fast memory but divided among many machines

Many challenges
Needs to be scalable

minimimize pass over data / communication costs

Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory
Either slower but larger memory
Or fast memory but divided among many machines

Many challenges
Needs to be scalable

minimimize pass over data / communication costs
Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Large graphs do not fit in memory

Get more memory
Either slower but larger memory
Or fast memory but divided among many machines

Many challenges
Needs to be scalable

minimimize pass over data / communication costs
Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning SequeL - 34/45

Distributed graph processing

Different choices have different impacts: for example splitting the
graph according to nodes or according to edges.

Many computation models (academic and commercial) each with
its pros and cons

MapReduce
MPI
Pregel
Graphlab

Michal Valko – Graphs in Machine Learning SequeL - 35/45

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning SequeL - 36/45

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning SequeL - 37/45

The GraphLab abstraction

Under the hood: tabular representation
Columns:__id intf float
Rows: 9
Data:+------+------+| __id | f |+------+------+| 5 | 0.51 || 7 | 0.82 || 10 | 0.08 || 2 | 0.82 || 6 | 0.85 || 9 | 0.83 || 3 | 0.18 || 1 | 0.35 || 4 | 0.36 |+------+------+[9 rows x 2 columns]

Columns:__src_id int__dst_id intweight float
Rows: 26
Data:+----------+----------+----------+| __src_id | __dst_id | weight |+----------+----------+----------+| 7 | 5 | 0.13185 || 5 | 7 | 0.13185 || 7 | 7 | 0.026779 || 10 | 7 | 0.57121 || 7 | 10 | 0.57121 || 10 | 2 | 0.94047 || 7 | 6 | 0.64528 || 5 | 3 | 0.93374 || 10 | 3 | 0.31713 || 5 | 1 | 0.57796 |+----------+----------+----------+[26 rows x 3 columns]Note: Only the head of the SFrame is printed.

Michal Valko – Graphs in Machine Learning SequeL - 38/45

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning SequeL - 39/45

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning SequeL - 39/45

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning SequeL - 39/45

The GraphLab abstraction

I The graph is immutable. why?

I All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself

only access local data

I Functional programming approach

Michal Valko – Graphs in Machine Learning SequeL - 40/45

The GraphLab abstraction

I The graph is immutable. why?
I All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself

only access local data

I Functional programming approach

Michal Valko – Graphs in Machine Learning SequeL - 40/45

The GraphLab abstraction

I The graph is immutable. why?
I All computations are executed asyncronously

We do not know the order of execution

We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself

only access local data

I Functional programming approach

Michal Valko – Graphs in Machine Learning SequeL - 40/45

The GraphLab abstraction

I The graph is immutable. why?
I All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself

only access local data

I Functional programming approach

Michal Valko – Graphs in Machine Learning SequeL - 40/45

The GraphLab abstraction

I The graph is immutable. why?
I All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself

only access local data
I Functional programming approach

Michal Valko – Graphs in Machine Learning SequeL - 40/45

The GraphLab abstraction

I The graph is immutable. why?
I All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself
only access local data

I Functional programming approach

Michal Valko – Graphs in Machine Learning SequeL - 40/45

The GraphLab abstraction

I The graph is immutable. why?
I All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

I The data is stored in the graph itself
only access local data

I Functional programming approach

Michal Valko – Graphs in Machine Learning SequeL - 40/45

The GraphLab abstraction

triple_apply(triple_apply_fn, mutated_fields, input_fields=None)
processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:... LOCK (triple.source, triple.target)... (source, edge, target) = triple_apply_fn(triple)... UNLOCK (triple.source, triple.target)... END PARALLEL FOR

I No guarantees on order of execution

I Updating (src,edge,dst) violates immutability
I triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src’,edge’,dst’)
use return values to build a new graph

Michal Valko – Graphs in Machine Learning SequeL - 41/45

The GraphLab abstraction

triple_apply(triple_apply_fn, mutated_fields, input_fields=None)
processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:... LOCK (triple.source, triple.target)... (source, edge, target) = triple_apply_fn(triple)... UNLOCK (triple.source, triple.target)... END PARALLEL FOR

I No guarantees on order of execution
I Updating (src,edge,dst) violates immutability

I triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src’,edge’,dst’)
use return values to build a new graph

Michal Valko – Graphs in Machine Learning SequeL - 41/45

The GraphLab abstraction

triple_apply(triple_apply_fn, mutated_fields, input_fields=None)
processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:... LOCK (triple.source, triple.target)... (source, edge, target) = triple_apply_fn(triple)... UNLOCK (triple.source, triple.target)... END PARALLEL FOR

I No guarantees on order of execution
I Updating (src,edge,dst) violates immutability
I triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src’,edge’,dst’)
use return values to build a new graph

Michal Valko – Graphs in Machine Learning SequeL - 41/45

The GraphLab abstraction

triple_apply(triple_apply_fn, mutated_fields, input_fields=None)
processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:... LOCK (triple.source, triple.target)... (source, edge, target) = triple_apply_fn(triple)... UNLOCK (triple.source, triple.target)... END PARALLEL FOR

I No guarantees on order of execution
I Updating (src,edge,dst) violates immutability
I triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src’,edge’,dst’)

use return values to build a new graph

Michal Valko – Graphs in Machine Learning SequeL - 41/45

The GraphLab abstraction

triple_apply(triple_apply_fn, mutated_fields, input_fields=None)
processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:... LOCK (triple.source, triple.target)... (source, edge, target) = triple_apply_fn(triple)... UNLOCK (triple.source, triple.target)... END PARALLEL FOR

I No guarantees on order of execution
I Updating (src,edge,dst) violates immutability
I triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src’,edge’,dst’)
use return values to build a new graph

Michal Valko – Graphs in Machine Learning SequeL - 41/45

The GraphLab abstraction

triple_apply_fn is a pure function

Function in the mathematical sense, same input gives same output.
1 def triple_apply_fn(src, edge, dst):
2 #can only access data stored in src, edge, and dst,
3 #three dictionaries containing a copy of the
4 #fields indicated in mutated_fields
5 f = dst[’f’]
6
7 #inputs are copies, this does not change original edge
8 edge[’weight’] = g(f)
9

10 return ({’f’: dst[’f’]}, edge, dst)

Michal Valko – Graphs in Machine Learning SequeL - 42/45

The GraphLab abstraction

An example, computing degree of nodes

1 def degree_count_fn (src, edge, dst):
2 src[’degree’] += 1
3 dst[’degree’] += 1
4 return (src, edge, dst)
5
6 G_count = G.triple_apply(degree_count_fn, ’degree’)

Michal Valko – Graphs in Machine Learning SequeL - 43/45

The GraphLab abstraction
Slightly more complicated example, suboptimal pagerank

1 #assume each node in G has a field ’degree’ and ’pagerank’
2 #initialize ’pagerank’ = 1/n for all nodes
3
4 def weight_count_fn (src, edge, dst):
5 dst[’degree’] += edge[’weight’]
6 return (src, edge, dst)
7
8 def pagerank_step_fn (src, edge, dst):
9 dst[’pagerank’] += (edge[’weight’]*src[’pagerank’]

10 /dst[’degree’])
11 return (src, edge, dst)
12
13 G_pagerank = G.triple_apply(weight_count_fn, ’degree’)
14
15 while not converged(G_pagerank):
16 G_pagerank = G_pagerank.triple_apply(
17 pagerank_step_fn, ’pagerank’)

How many iterations to convergence?

Michal Valko – Graphs in Machine Learning SequeL - 44/45

The GraphLab abstraction
Slightly more complicated example, suboptimal pagerank

1 #assume each node in G has a field ’degree’ and ’pagerank’
2 #initialize ’pagerank’ = 1/n for all nodes
3
4 def weight_count_fn (src, edge, dst):
5 dst[’degree’] += edge[’weight’]
6 return (src, edge, dst)
7
8 def pagerank_step_fn (src, edge, dst):
9 dst[’pagerank’] += (edge[’weight’]*src[’pagerank’]

10 /dst[’degree’])
11 return (src, edge, dst)
12
13 G_pagerank = G.triple_apply(weight_count_fn, ’degree’)
14
15 while not converged(G_pagerank):
16 G_pagerank = G_pagerank.triple_apply(
17 pagerank_step_fn, ’pagerank’)

How many iterations to convergence?

Michal Valko – Graphs in Machine Learning SequeL - 44/45

Michal Valko
michal.valko@inria.fr

ENS Paris-Saclay, MVA 2017/2018

SequeL team, Inria Lille — Nord Europe
https://team.inria.fr/sequel/

https://team.inria.fr/sequel/

