

Graphs in Machine Learning

Michal Valko

Inria Lille - Nord Europe, France

TA: Pierre Perrault

Partially based on material by: Branislav Kveton, Partha Niyogi, Rob Fergus

November 20, 2017

MVA 2017/2018

Last Lecture

- Inductive and transductive semi-supervised learning
- Manifold regularization
- Theory of Laplacian-based manifold methods
- Transductive learning stability based bounds
- Online semi-supervised learning
- Online incremental k-centers
- Examples of applications of online SSL

This Lecture

- Analysis of online SSL
- SSL Learnability
- When does graph-based SSL provably help?
- Scaling harmonic functions to millions of samples

Previous Lab Session

- 13. 11. 2017 by Pierre Perrault
- Content
 - Semi-supervised learning
 - Graph quantization
 - Online face recognizer
- AR: record a video with faces
- Install VM (in case you have not done it yet for TD1)
- Short written report
- Questions to piazza
- Deadline: 27. 11. 2017

Next Lab Session/Lecture

- > 27. 11. 2016 by Pierre Perrault
- Content (this time lecture in class + coding at home)
 - Large-scale graph construction and processing (in class)
 - Scalable algorithms:
 - Online face recognizer (to code in Matlab)
 - Iterative label propagation (to code in Matlab)
 - Graph sparsification (presented in class)
- AR: record a video with faces
- Short written report
- Questions to piazza
- Deadline: 11. 12. 2016

Final Class projects

- detailed description on the class website
- preferred option: you come up with the topic
- theory/implementation/review or a combination
- one or two people per project (exceptionally three)
- ▶ grade 60%: report + short presentation of the team
- deadlines
 - ▶ 20. 11. 2017 strongly recommended DL for taking projects
 - > 27. 11. 2017 hard DL for taking projects
 - ▶ 08. 01. 2018 submission of the project report
 - 09. 01. 2018 or later project presentation
- list of suggested topics on piazza

DELTA: MVA internship + PhD proposal

Dynamically Evolving Long-Term Autonomy

- join project between 4 partners, UPF Barcelona, MUL Austria, ULG Belgium, and Inria
- Jonsson, Neu, Gomez, Valko, Kaufmann, Lazaric, Auer, Ortner, Cornelusse, Ernst
- PhD position at SequeL team at Inria
- project starts on 1.1.2018, PhD student expected to start September/October 2018
- 4 postdocs, one in each center
- Inria will lead the effort on adaptive planning with a model that can adapt to changes. Inria will work with MUL on the hierarchical state partitioning
- ▶ contact: (Emilie Kaufmann & Michal Valko) @ SequeL @ Inria

What can we guarantee?

Three sources of error

- generalization error if all data: $(\ell_t^{\star} y_t)^2$
- online error data only incrementally: $(\ell_t^{\circ}[t] \ell_t^{\star})^2$
- quantization error memory limitation: $(\ell_t^{q}[t] \ell_t^{o}[t])^2$

All together:

$$\frac{1}{N} \sum_{t=1}^{N} (\ell_t^{q}[t] - y_t)^2 \le \frac{9}{2N} \sum_{t=1}^{N} (\ell_t^{\star} - y_t)^2 + \frac{9}{2N} \sum_{t=1}^{N} (\ell_t^{o}[t] - \ell_t^{\star})^2 + \frac{9}{2N} \sum_{t=1}^{N} (\ell_t^{q}[t] - \ell_t^{o}[t])$$
Since for any *a*, *b*, *c*, *d* ∈ [-1, 1]:
$$(a - b)^2 \le \frac{9}{2} \left[(a - c)^2 + (c - d)^2 + (d - b)^2 \right]$$

Online SSL with Graphs: Analysis Bounding transduction error $(\ell_t^* - \gamma_t)^2$

If all labeled examples / are i.i.d., $c_l = 1$ and $c_l \gg c_u$, then

$$R(\ell^{\star}) \leq \widehat{R}(\ell^{\star}) + \underbrace{\beta + \sqrt{\frac{2\ln(2/\delta)}{n_{l}}}(n_{l}\beta + 4)}_{\text{transductive error } \Delta_{T}(\beta, n_{l}, \delta)}$$
$$\beta \leq 2\left[\frac{\sqrt{2}}{\gamma_{g} + 1} + \sqrt{2n_{l}}\frac{1 - c_{u}}{c_{u}}\frac{\lambda_{M}(\mathbf{L}) + \gamma_{g}}{\gamma_{g}^{2} + 1}\right]$$

holds with the probability of $1-\delta$, where

$$R(\ell^{\star}) = \frac{1}{N} \sum_{t} (\ell_t^{\star} - y_t)^2 \quad \text{and} \quad \widehat{R}(\ell^{\star}) = \frac{1}{n_l} \sum_{t \in I} (\ell_t^{\star} - y_t)^2$$

How should we set γ_g ?

Bounding online error $(\ell_t^{\circ}[t] - \ell_t^{\star})^2$

Idea: If L and L^o are regularized, then HFSs get closer together.

since they get closer to zero

Recall $\boldsymbol{\ell} = (\mathbf{C}^{-1}\mathbf{Q} + \mathbf{I})^{-1}\mathbf{y}$, where $\mathbf{Q} = \mathbf{L} + \gamma_g \mathbf{I}$

and also $\mathbf{v} \in \mathbb{R}^{n \times 1}$, $\lambda_m(A) \|\mathbf{v}\|_2 \le \|A\mathbf{v}\|_2 \le \lambda_M(A) \|\mathbf{v}\|_2$

$$\|\boldsymbol{\ell}\|_2 \leq \frac{\|\boldsymbol{\mathsf{y}}\|_2}{\lambda_m(\boldsymbol{\mathsf{C}}^{-1}\boldsymbol{\mathsf{Q}}+\boldsymbol{\mathsf{I}})} = \frac{\|\boldsymbol{\mathsf{y}}\|_2}{\frac{\lambda_m(\boldsymbol{\mathsf{Q}})}{\lambda_M(\boldsymbol{\mathsf{C}})}+1} \leq \frac{\sqrt{n_l}}{\gamma_g+1}$$

Difference between offline and online solutions:

$$(\boldsymbol{\ell}^{\mathrm{o}}_t[t] - \boldsymbol{\ell}^{\star}_t)^2 \leq \|\boldsymbol{\ell}^{\mathrm{o}}[t] - \boldsymbol{\ell}^{\star}\|_{\infty}^2 \leq \|\boldsymbol{\ell}^{\mathrm{o}}[t] - \boldsymbol{\ell}^{\star}\|_2^2 \leq \left(rac{2\sqrt{n_l}}{\gamma_{g}+1}
ight)^2$$

Again, how should we set γ_g ?

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

How are the quantized and full solution different?

$$\boldsymbol{\ell}^{\star} = \min_{\boldsymbol{\ell} \in \mathbb{R}^{N}} \ (\boldsymbol{\ell} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\boldsymbol{\ell} - \mathbf{y}) + \boldsymbol{\ell}^{\mathsf{T}} \mathbf{Q} \boldsymbol{\ell}$$

In \mathbf{Q} ! \mathbf{Q}^{o} (online) vs. \mathbf{Q}^{q} (quantized)

We have:
$$\boldsymbol{\ell}^{\mathrm{o}} = (\mathbf{C}^{-1}\mathbf{Q}^{\mathrm{o}} + \mathbf{I})^{-1}\mathbf{y}$$
 vs. $\boldsymbol{\ell}^{\mathrm{q}} = (\mathbf{C}^{-1}\mathbf{Q}^{\mathrm{q}} + \mathbf{I})^{-1}\mathbf{y}$

Let $\mathbf{Z}^{q} = \mathbf{C}^{-1}\mathbf{Q}^{q} + \mathbf{I}$ and $\mathbf{Z}^{o} = \mathbf{C}^{-1}\mathbf{Q}^{o} + \mathbf{I}$.

$$\ell^{q} - \ell^{o} = (\mathsf{Z}^{q})^{-1}\mathsf{y} - (\mathsf{Z}^{o})^{-1}\mathsf{y} = (\mathsf{Z}^{q}\mathsf{Z}^{o})^{-1}(\mathsf{Z}^{o} - \mathsf{Z}^{q})\mathsf{y}$$

= $(\mathsf{Z}^{q}\mathsf{Z}^{o})^{-1}\mathsf{C}^{-1}(\mathsf{Q}^{o} - \mathsf{Q}^{q})\mathsf{y}$

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

$$\ell^{\mathrm{q}} - \ell^{\mathrm{o}} = (\mathsf{Z}^{\mathrm{q}})^{-1}\mathsf{y} - (\mathsf{Z}^{\mathrm{o}})^{-1}\mathsf{y} = (\mathsf{Z}^{\mathrm{q}}\mathsf{Z}^{\mathrm{o}})^{-1}(\mathsf{Z}^{\mathrm{o}} - \mathsf{Z}^{\mathrm{q}})\mathsf{y}$$

= $(\mathsf{Z}^{\mathrm{q}}\mathsf{Z}^{\mathrm{o}})^{-1}\mathsf{C}^{-1}(\mathsf{Q}^{\mathrm{o}} - \mathsf{Q}^{\mathrm{q}})\mathsf{y}$

$$\|\boldsymbol{\ell}^{\mathrm{q}} - \boldsymbol{\ell}^{\mathrm{o}}\|_{2} \leq rac{\lambda_{M}(\mathbf{C}^{-1})\|(\mathbf{Q}^{\mathrm{q}} - \mathbf{Q}^{\mathrm{o}})\mathbf{y}\|_{2}}{\lambda_{m}(\mathbf{Z}^{\mathrm{q}})\lambda_{m}(\mathbf{Z}^{\mathrm{o}})}$$

 $||\cdot||_F$ and $||\cdot||_2$ are compatible and y_i is zero when unlabeled:

$$\|(\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}})\mathbf{y}\|_{2} \leq \|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\|_{\textit{F}}\cdot\|\mathbf{y}\|_{2} \leq \sqrt{\textit{n}_{\textit{l}}}\|\mathbf{Q}^{\mathrm{q}}-\mathbf{Q}^{\mathrm{o}}\|_{\textit{F}}$$

Furthermore,
$$\lambda_m(\mathbf{Z}^{\circ}) \geq \frac{\lambda_m(\mathbf{Q}^{\circ})}{\lambda_M(\mathbf{C})} + 1 \geq \gamma_g$$
 and $\lambda_M(\mathbf{C}^{-1}) \leq c_u^{-1}$

We get
$$\|\boldsymbol{\ell}^{\mathrm{q}} - \boldsymbol{\ell}^{\mathrm{o}}\|_{2} \leq rac{\sqrt{n_{l}}}{c_{u}\gamma_{g}^{2}}\|\mathbf{Q}^{\mathrm{q}} - \mathbf{Q}^{\mathrm{o}}\|_{F}$$

1
Inría

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

The quantization error depends on $\|\mathbf{Q}^{q} - \mathbf{Q}^{o}\|_{F} = \|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}$. When can we keep $\|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}$ under control? Charikar guarantees **distortion** error of at most Rm/(m-1)For what kind of data $\{\mathbf{x}_{i}\}_{i=1,...,n}$ is the distortion small? Assume manifold M

- ▶ all $\{\mathbf{x}_i\}_{i \ge 1}$ lie on a smooth *s*-dimensional compact \mathcal{M}
- with boundary of bounded geometry Def. 11 of Hein [HAL07]
 - should not intersect itself
 - should not fold back onto itself
 - has finite volume V
 - has finite surface area A

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

Bounding $\|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}$ when $\mathbf{x}_{i} \in \mathcal{M}$

Consider k-sphere packing* of radius r with centers contained in \mathcal{M} . *only the centers are packed, not necessarily the entire ball

What is the maximum volume of this packing*? $kc_s r^s \leq V + Ac_M r$ with c_s, c_M depending on dimension and \mathcal{M} . If k is large $\rightarrow r <$ injectivity radius of \mathcal{M} [HAL07] and r < 1: $r < ((V + Ac_M) / (kc_s))^{1/s} = \mathcal{O}(k^{-1/s})$

r-packing is a 2*r*-covering:

$$\max_{i=1,\dots,N} \|\mathbf{x}_i - \mathbf{c}\|_2 \le Rm/(m-1) \le 2(1+\varepsilon)\mathcal{O}\left(k^{-1/s}\right) = \mathcal{O}\left(k^{-1/s}\right)$$

Ínría_

But what about $\|\mathbf{L}^{q} - \mathbf{L}\|$

Bounding quantization error $(\ell_t^{q}[t] - \ell_t^{o}[t])^2$

If similarity is *M*-Lipschitz, **L** is normalized, $c_{ij}^{o} = \sqrt{\mathbf{D}_{ii}^{o} \mathbf{D}_{jj}^{o}} > c_{min}N$

 $|\mathbf{W}^{\mathrm{q}}_{ij}-\mathbf{W}^{\mathrm{o}}_{ij}|<2MRm/(m-1)$ and $|c^{\mathrm{q}}_{ij}-c^{\mathrm{o}}_{ij}|<2nMRm/(m-1)$:

$$\begin{split} \mathbf{L}_{ij}^{\mathrm{q}} - \mathbf{L}_{ij}^{\mathrm{o}} &= \frac{\mathbf{W}_{ij}^{\mathrm{q}}}{c_{ij}^{\mathrm{q}}} - \frac{\mathbf{W}_{ij}^{\mathrm{o}}}{c_{ij}^{\mathrm{o}}} \\ &\leq \frac{\mathbf{W}_{ij}^{\mathrm{q}} - \mathbf{W}_{ij}^{\mathrm{o}}}{c_{ij}^{\mathrm{q}}} + \frac{\mathbf{W}_{ij}^{\mathrm{o}}(c_{ij}^{\mathrm{o}} - c_{ij}^{\mathrm{q}})}{c_{ij}^{\mathrm{o}}c_{ij}^{\mathrm{q}}} \\ &\leq \frac{4MRm}{(m-1)c_{min}N} + \frac{4M(NMRm)}{((m-1)c_{min}N)^2} \\ &= O\left(\frac{R}{N}\right) \end{split}$$

Finally, $\|\mathbf{L}^{\mathbf{q}} - \mathbf{L}^{\mathbf{o}}\|_{F}^{2} \leq N^{2}\mathcal{O}(R^{2}/N^{2}) = \mathcal{O}(k^{-2/s}).$

Are the assumptions reasonable?

Online SSL with Graphs: Analysis Bounding quantization error $(\ell_{\star}^{q}[t] - \ell_{\star}^{o}[t])^{2}$

We showed $\|\mathbf{L}^{q} - \mathbf{L}^{o}\|_{F}^{2} \leq N^{2}\mathcal{O}(R^{2}/N^{2}) = \mathcal{O}(k^{-2/s}) = \mathcal{O}(1).$

$$\frac{1}{N}\sum_{t=1}^{N}(\boldsymbol{\ell}_{t}^{\mathrm{q}}[t]-\boldsymbol{\ell}_{t}^{\mathrm{o}}[t])^{2} \leq \frac{n_{l}}{c_{u}^{2}\gamma_{g}^{4}}\|\mathbf{L}^{\mathrm{q}}-\mathbf{L}^{\mathrm{o}}\|_{F}^{2} \leq \frac{n_{l}}{c_{u}^{2}\gamma_{g}^{4}}$$

This converges to zero at the rate of $\mathcal{O}(N^{-1/2})$ with $\gamma_g = \Omega(N^{1/8})$.

With properly setting γ_g , e.g., $\gamma_g = \Omega(N^{1/8})$, we can have:

$$\frac{1}{N}\sum_{t=1}^{N}\left(\boldsymbol{\ell}_{t}^{\mathrm{q}}[t]-\boldsymbol{y}_{t}\right)^{2}=\mathcal{O}\left(\boldsymbol{N}^{-1/2}\right)$$

What does that mean?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when **manifold** SSL is provably helpful?

Say ${\mathcal X}$ is supported on manifold ${\mathcal M}.$ Compare two cases:

- SL: does not know about \mathcal{M} and only knows (\mathbf{x}_i, y_i)
- ▶ SSL: perfect knowledge of $M \equiv$ humongous amounts of \mathbf{x}_i

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf

Set of learning problems - collections \mathcal{P} of probability distributions:

 $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \cup_{\mathcal{M}} \{ p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M} \}$

Set of problems $\mathcal{P} = \bigcup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$ Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$ Algorithm A and labeled examples $\overline{z} = \{z_i\}_{i=1}^{n_i} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_i}$ Minimax rate

$$R(n_{I},\mathcal{P}) = \inf_{A} \sup_{p \in \mathcal{P}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{p}\|_{L^{2}(p_{\mathbf{X}})} \right]$$

Since $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$

nia

$$R(n_{I},\mathcal{P}) = \inf_{A} \sup_{\mathcal{M}} \sup_{\rho \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{\rho}\|_{L^{2}(\rho_{\mathbf{X}})} \right]$$

(SSL) When A is allowed to know \mathcal{M}

$$Q(n_{l},\mathcal{P}) = \sup_{\mathcal{M}} \inf_{A} \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{p}\|_{L^{2}(p_{\mathbf{X}})} \right]$$

In which cases there is a gap between $Q(n_l, \mathcal{P})$ and $R(n_l, \mathcal{P})$?

Hypothesis space \mathcal{H} : half of the circle as +1 and the rest as -1

Case 1: \mathcal{M} is known to the learner $(\mathcal{H}_{\mathcal{M}})$

What is a VC dimension of $\mathcal{H}_{\mathcal{M}}$?

Optimal rate
$$Q(n, \mathcal{P}) \leq 2\sqrt{rac{3\log n_l}{n_l}}$$

Case 2: \mathcal{M} is unknown to the learner

$$R(n_{l},\mathcal{P}) = \inf_{A} \sup_{p \in \mathcal{P}} \mathbb{E}_{\overline{z}} \left[\|A(\overline{z}) - m_{p}\|_{L^{2}(p_{\mathbf{X}})} \right] = \Omega(1)$$

We consider 2^d manifolds of the form

$$\mathcal{M} = \text{Loops} \cup \text{Links} \cup C$$
 where $C = \cup_{i=1}^{d} C_i$

Main idea: *d* segments in *C*, d - I with no data, 2^{I} possible _______choices for labels, which helps us to lower bound $||A(\overline{z}) - m_p||_{L^2(p_X)}$

Knowing the manifold helps

- C₁ and C₄ are close
- ▶ C₁ and C₃ are far
- we also need: target function varies smoothly
- \blacktriangleright altogether: closeness on manifold \rightarrow similarity in labels

nín

What does it mean to know \mathcal{M} ?

Different degrees of knowing $\ensuremath{\mathcal{M}}$

- set membership oracle: $\mathbf{x} \stackrel{!}{\in} \mathcal{M}$
- approximate oracle
- \blacktriangleright knowing the harmonic functions on ${\cal M}$
- \blacktriangleright knowing the Laplacian $\mathcal{L}_{\mathcal{M}}$
- knowing eigenvalues and eigenfunctions
- topological invariants, e.g., dimension
- metric information: geodesic distance

Semi-supervised learning with graphs

$$\mathbf{f}^{\star} = \min_{\mathbf{f} \in \mathbb{R}^{N}} \ (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C}(\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

Let us see the same in eigenbasis of $\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$, i.e., $\mathbf{f} = \mathbf{U} \boldsymbol{\alpha}$

$$\boldsymbol{\alpha}^{\star} = \min_{\boldsymbol{\alpha} \in \mathbb{R}^{N}} \ (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y}) + \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\alpha}$$

What is the problem with scalability?

Diagonalization of $N \times N$ matrix

What can we do? Let's take only first k eigenvectors $\mathbf{f} = \mathbf{U} \alpha$!

U is now a $n \times k$ matrix

$$\boldsymbol{\alpha}^{\star} = \min_{\boldsymbol{\alpha} \in \mathbb{R}^{N}} \ (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{U}\boldsymbol{\alpha} - \mathbf{y}) + \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\alpha}$$

Closed form solution is $(\mathbf{\Lambda} + \mathbf{U}^{\mathsf{T}}\mathbf{C}\mathbf{U})\alpha = \mathbf{U}^{\mathsf{T}}\mathbf{C}\mathbf{y}$

What is the size of this system of equation now?

Cool! Any problem with this approach?

Are there any reasonable assumptions when this is feasible?

Let's see what happens when $N \to \infty$!

Limit as $n \rightarrow \infty$

Reduce n

Linear in number of data-points

Polynomial in number of landmarks

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

Scaling SSL with Graphs to Millions What happens to L when $N \rightarrow \infty$?

We have data $\mathbf{x}_i \in \mathbb{R}$ sampled from $p(\mathbf{x})$.

When $n \to \infty$, instead of vectors **f**, we consider functions F(x).

Instead of L, we define \mathcal{L}_p - weighted smoothness operator

$$\mathcal{L}_{p}(F) = \frac{1}{2} \int \left(F(\mathbf{x}_{1}) - F(\mathbf{x}_{2}) \right)^{2} W(\mathbf{x}_{1}, \mathbf{x}_{2}) p(\mathbf{x}_{1}) p(\mathbf{x}_{2}) \, \mathrm{d}\mathbf{x}_{1} \mathbf{x}_{2}$$
with $W(\mathbf{x}_{1}, \mathbf{x}_{2}) = \frac{\exp(-\|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2})}{2\sigma^{2}}$

L defined the eigenvectors of increasing smoothness.

What defines \mathcal{L}_p ? Eigenfunctions!

$$\mathcal{L}_{p}\left(F\right) = \frac{1}{2} \int \left(F\left(\mathbf{x}_{1}\right) - F\left(\mathbf{x}_{2}\right)\right)^{2} W(\mathbf{x}_{1}, \mathbf{x}_{2}) p\left(\mathbf{x}_{1}\right) p\left(\mathbf{x}_{2}\right) \mathrm{d}x_{1} x_{2}$$

First eigenfunction

$$\Phi_{1} = \operatorname*{arg\,min}_{F:\int F^{2}(\mathbf{x})\rho(\mathbf{x})D(\mathbf{x})\,\mathrm{d}x=1} \mathcal{L}_{\rho}\left(F\right)$$

where $D(\mathbf{x}) = \int_{\mathbf{x}_2} W(\mathbf{x}, \mathbf{x}_2) \, p(\mathbf{x}_2) \, \mathrm{d}\mathbf{x}_2$

(

What is the solution? $\Phi_1(\mathbf{x}) = 1$ because $\mathcal{L}_p(1) = 0$ How to define Φ_2 ? same, constraining to be orthogonal to Φ_1

$$\int F(\mathbf{x}) \Phi_1(\mathbf{x}) p(\mathbf{x}) D(\mathbf{x}) \, \mathrm{d}x = 0$$

Scaling SSL with Graphs to Millions Eigenfunctions of \mathcal{L}_p

 Φ_3 as before, orthogonal to Φ_1 and Φ_2 etc.

How to define eigenvalues? $\lambda_k = \mathcal{L}_p(\Phi_k)$

Relationship to the discrete Laplacian

$$\frac{1}{N^{2}}\mathbf{f}^{\mathsf{T}}\mathbf{L}\mathbf{f} = \frac{1}{2N^{2}}\sum_{ij}W_{ij}(f_{i}-f_{j})^{2}\xrightarrow[N\to\infty]{}\mathcal{L}_{p}\left(F\right)$$

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg04_diss.pdf http://arxiv.org/pdf/1510.08110v1.pdf

Isn't estimating eigenfunctions $p(\mathbf{x})$ more difficult?

Are there some "easy" distributions?

Can we compute it numerically?

Scaling SSL with Graphs to Millions Eigenvectors

Eigenfunctions

nría

Michal Valko – Graphs in Machine Learning

Factorized data distribution What if

$$p(\mathbf{s}) = p(s_1) p(s_2) \dots p(s_d)$$

In general, this is not true. But we can rotate data with $\mathbf{s} = \mathbf{R}\mathbf{x}$.

Treating each factor individually $p_k \stackrel{\text{def}}{=} \text{marginal distribution of } s_k$ $\Phi_i(s_k) \stackrel{\text{def}}{=} \text{eigenfunction of } \mathcal{L}_{p_k} \text{ with eigenvalue } \lambda_i$ **Then:** $\Phi_i(s) = \Phi_i(s_k)$ is eigenfunction of \mathcal{L}_p with λ_i

We only considered single-coordinate eigenfunctions.

How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [FWT09] for eigenfunctions

- Find R such that s = Rx
- For each "independent" s_k approximate $p(s_k)$
- Given $p(s_k)$ numerically solve for eigensystem of \mathcal{L}_{p_k}

$$\left(\widetilde{\mathbf{D}} - \mathbf{P}\widetilde{\mathbf{W}}\mathbf{P}
ight)\mathbf{g} = \lambda\mathbf{P}\widehat{\mathbf{D}}\mathbf{g}$$
 (generalized eigensystem)

- ${f g}$ vector of length $B\equiv$ number of bins
- \mathbf{P} density at discrete points
- $\widetilde{\mathbf{D}}$ diagonal sum of $\widetilde{\mathbf{PWP}}$
- $\widehat{\boldsymbol{D}}$ diagonal sum of $\boldsymbol{P}\widetilde{\boldsymbol{W}}$
- Order eigenfunctions by increasing eigenvalues

Numerical 1D Eigenfunctions

https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

Computational complexity for $N \times d$ dataset

Typical harmonic approach

one diagonalization of $N \times N$ system

Numerical eigenfunctions with *B* bins and *k* eigenvectors *d* eigenvector problems of $B \times B$

$$\left(\widetilde{\mathbf{D}} - \mathbf{P}\widetilde{\mathbf{W}}\mathbf{P}
ight)\mathbf{g} = \lambda\mathbf{P}\widehat{\mathbf{D}}\mathbf{g}$$

one $k \times k$ least squares problem

 $(\mathbf{\Lambda} + \mathbf{U}^{\scriptscriptstyle \mathsf{T}}\mathbf{C}\mathbf{U})\mathbf{lpha} = \mathbf{U}^{\scriptscriptstyle \mathsf{T}}\mathbf{C}\mathbf{y}$

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors, ...

When d is not too big then N can be in millions!

Michal Valko - Graphs in Machine Learning

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf

Michal Valko michal.valko@inria.fr ENS Paris-Saclay, MVA 2017/2018 SequeL team, Inria Lille — Nord Europe https://team.inria.fr/sequel/