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Last Lecture

» Inductive and transductive semi-supervised learning
» Manifold regularization

» Theory of Laplacian-based manifold methods

» Transductive learning stability based bounds

» Online semi-supervised learning

» Online incremental k-centers

» Examples of applications of online SSL
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This Lecture

v

Analysis of online SSL

v

SSL Learnability

v

When does graph-based SSL provably help?

v

Scaling harmonic functions to millions of samples

. Crzia—~
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Previous Lab Session

v

13. 11. 2017 by Pierre Perrault
Content

» Semi-supervised learning
» Graph quantization
» Online face recognizer

v

AR: record a video with faces

v

v

Install VM (in case you have not done it yet for TD1)

v

Short written report

v

Questions to piazza
Deadline: 27. 11. 2017

v

-
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Next Lab Session/Lecture

» 27. 11. 2016 by Pierre Perrault
» Content (this time lecture in class + coding at home)
» Large-scale graph construction and processing (in class)
» Scalable algorithms:
> Online face recognizer (to code in Matlab)
> lterative label propagation (to code in Matlab)
> Graph sparsification (presented in class)
» AR: record a video with faces
» Short written report
» Questions to piazza
» Deadline: 11. 12. 2016

. Crzia—~
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Final Class projects

. brezia~

detailed description on the class website

preferred option: you come up with the topic

theory /implementation /review or a combination

one or two people per project (exceptionally three)

grade 60%: report + short presentation of the team
» deadlines

>

vV vYyy

20. 11. 2017 - strongly recommended DL for taking projects
27. 11. 2017 - hard DL for taking projects

08. 01. 2018 - submission of the project report

09. 01. 2018 or later - project presentation

list of suggested topics on piazza
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DELTA: MVA internship + PhD proposal

Dynamically Evolving Long-Term Autonomy

> join project between 4 partners, UPF Barcelona, MUL Austria,
ULG Belgium, and Inria

» Jonsson, Neu, Gomez, Valko, Kaufmann, Lazaric, Auer,
Ortner, Cornelusse, Ernst

» PhD position at SequelL team at Inria

> project starts on 1.1.2018, PhD student expected to start
September/October 2018

» 4 postdocs, one in each center

> Inria will lead the effort on adaptive planning with a model
that can adapt to changes. Inria will work with MUL on the
hierarchical state partitioning

» contact: (Emilie Kaufmann & Michal Valko) @ Sequel @ Inria

Michal Valko — Graphs in Machine Learning Sequel - 7/36



Online SSL with Graphs: Analysis

What can we guarantee?

Three sources of error
» generalization error — if all data: (£} — y;)?
» online error — data only incrementally: (£7[t] — £5)?

> quantization error — memory limitation:

All together:
N N N N
1 2= <y D (6 —ye) o D (Gl €3 )
t=1 t=1 t=1 t=1

Since for any a, b, ¢, d € [-1,1]:

(a—b)2<2[(a—c)?+(c—d)?+ ]
.&zu&»
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Online SSL with Graphs: Analysis

Bounding transduction error (£} — y;)?

If all labeled examples / are i.i.d., ¢, =1 and ¢; > ¢, then

RE) < RE)+ 5+ 2020 (51 4)

transductive error Ar(8,n;,8)

+\/7 Cu)\M )+’Yg

f}/g‘i_]. CU 7g+1

g <2

holds with the probability of 1 — §, where

1 ~ 1
= Wyl and R =S8 -y
t

How should we set 47

. Cbreia—
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Online SSL with Graphs: Analysis
Bounding online error (£9[t] — £;)?

Idea: If L and L° are regularized, then HFSs get closer together.

since they get closer to zero
Recall £ = (C1Q + 1)y, where Q = L + 7,4l

and also v € ™1 X (A)|lvll2 < [|Av]l2 < Ap(A)lv]l2

Iyl llyll o vm

-1 _)\mQ -
€+~ 2@

lell < -

Difference between offline and online solutions:

0 * o * 0 * 2y/n; 2
(&1 - 6 < €T - 1% < el - 13 < (200
Again, how should we set ~g?

. Crzia—~
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Online SSL with Graphs: Analysis

Bounding quantization error
How are the quantized and full solution different?

25 = min (£—y)"C(L—y)+£'QL
mnin (£-y)'Clt-y)+£Q

In Q! Q° (online) vs. Q% (quantized)
We have: £° = (C71Q°+ )7ty vs. £4= (C1Q4+ 1)1y
Let Z9=C!Q%+1land Z°=C1Q° + I
£ = @)y - (20) Ty = (220) 20 - 2y
= (292°)7'CHQ° - QY)y

. brezia~
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Online SSL with Graphs: Analysis

Bounding quantization error
o = (29 Yy - (20) Ty = (292°) (20 - 2%y
= (292°)'cH(Q° - Q)
Am(CH(Q - Q°)yl
Am(Z9)Am(Z°)

|| - ||F and || - ||2 are compatible and y; is zero when unlabeled:

Q" = Q%)yll2 < 1Q% = @[~ - llyll2 < v [|Q% — Q%

€% = €°]]2 <

Am(Q°)
Am(C)

Furthermore, \p,(Z°) > +1>v; and Ay (Cfl) <ct

u

n
We get [[€9 — €], < Y Q% — Q||

- CLI’Yg
.&zv@
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Online SSL with Graphs: Analysis

Bounding quantization error

The quantization error depends on ||Q% — Q°||r = ||[LY — L°||¢.
When can we keep ||LY — L°||r under control?

Charikar guarantees distortion error of at most Rm/(m — 1)
For what kind of data {x;}i=1,n is the distortion small?
Assume manifold M

» all {xj}i>1 lie on a smooth s-dimensional compact M

» with boundary of bounded geometry Def. 11 of Hein [HALO7]
» should not intersect itself

should not fold back onto itself

has finite volume V

has finite surface area A

vV vy

-
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Online SSL with Graphs: Analysis

Bounding quantization error
Bounding ||LY — L°||r when x; € M

Consider k-sphere packing* of radius r with centers contained

n M *only the centers are packed, not necessarily the entire ball

What is the maximum volume of this packing*?
kcsr® < V 4+ Acypr with cs, caq depending on dimension and M.

If k is large — r < injectivity radius of M [HALO7] and r < 1:
r<((V+ Acn) / (keo) ' = 0 (k1)
r-packing is a 2r-covering:

_max_[[xj—clla < Rm/(m—1) < 2(1+¢)0O (k‘1/5> —0 (k—l/S)

ey

- But what about ||LY — L°||£7?
.&zu&»
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Online SSL with Graphs: Analysis

Bounding quantization error

If similarity is M-Lipschitz, L is normalized, c,-cj? =, /D‘,?,-D;?j > CminlN
q o q o .

|W;; — Wi < 2MRm/(m —1) and |c; — cj| < 2nMRm/(m —1) :

Lq LS = W’CJ1 W?I'
i ot 4 - ?
- WE- - Wg N W‘,j(cfj’ — c,f})
- c,-(} c,?}c;}
4AMRm AM(NMRm)

= (m—Demall  (m— DemmlV)?
R
=0 <N)
Finally, [[L9 — L°|2 < N2O(R?/N?) = O(k=%/%).

Are the assumptions reasonable?
. bezia—
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Online SSL with Graphs: Analysis

Bounding quantization error
We showed ||L9 — L°||%2 < N2O(R?/N?) = O(k2/%) = O(1).
n

q [¢] o112
Zﬁ[t] e1t))? 7674“_01 LHFSCTY

4
- g g

This converges to zero at the rate of O(N~Y/?) with
Ve = Q(Nl/s)-

With properly setting g, e.g., 7g = Q(Nl/s), we can have:

1 ¢ 2 12
Y@y = o (v2)

What does that mean?
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SSL with Graphs: What is behind it?

Why and when it helps?
Can we guarantee benefit of SSL over SL?

Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:

» SL: does not know about M and only knows (x;, y;)

» SSL: perfect knowledge of M = humongous amounts of x;

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf

. brezia~
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SSL with Graphs: What is behind it?

Set of learning problems - collections P of probability distributions:

P =UmPm = Upm{p € Plpx is uniform on M}

+1

M, M,
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SSL with Graphs: What is behind it?

Set of problems P = UpPrq = {p € P|px is uniform on M}
Regression function m, = E [y |x] when x € M

Algorithm A and labeled examples z = {z;}!"; = {(x;,yi)} 1,
Minimax rate

R(ny, P) = inf sup Ez [IAZ) = mpll 2(py)]
pEP

Since P = UpmPum

R(m. P) =inf 0o sup Bz [IIA®) = mpll 2]

PEP M

(SSL) When A is allowed to know M

Q(ny, P) = sup inf sup Ez IAZ) = mp |l 2(py)]
A pePpm

In which cases there is a gap between Q(n;,P) and R(n;, P)?

-
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. Michal Valko — Graphs in Machine Learning Sequel - 19/36



SSL with Graphs: What is behind it?
Hypothesis space #: half of the circle as +1 and the rest as —1

+1 1
/ \\ / ST N
+
\ / \ /
\ \
\\\ / \\\ +1///
I
M, M,
Case 1: M is known to the learner (H 1)
What is a VC dimension of H4?
) 3log ny
Optimal rate Q(n,P) < 24/ ———
n

. Crzia—~
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SSL with Graphs: What is behind it?

Case 2: M is unknown to the learner

R(m,P) = inf sup Ez [ A(2) = my 2] = Q(1)
peEP

We consider 29 manifolds of the form

M = Loops U Links U C where C = U,('l:1 G

Loops (A) Loops (A)

Main idea: d segments in C, d — / with no data, 2/ possible
choices for labels, which helps us to lower bound [|A(Z) — mp||12(py)

. Crzia—~
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SSL with Graphs: What is behind it?

Loops (A) Loops (A)
~

Links

Links

Knowing the manifold helps
» C; and (4 are close
» (; and G5 are far
> we also need: target function varies smoothly

» altogether: closeness on manifold — similarity in labels

-
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SSL with Graphs: What is behind it?

What does it mean to know M7?

Different degrees of knowing M

>

set membership oracle: x é M
approximate oracle

knowing the harmonic functions on M
knowing the Laplacian £ 4

knowing eigenvalues and eigenfunctions
topological invariants, e.g., dimension

metric information: geodesic distance
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Scaling SSL with Graphs to Millions

Semi-supervised learning with graphs

f*=min (f—y)'C(f—y)+
feRN
Let us see the same in eigenbasis of L= UAUT, ie,, f = Ux

a*= min (Ua—y)'C(Ua —y)+
acRV

What is the problem with scalability?
Diagonalization of NV x /N matrix

What can we do? Let's take only first k eigenvectors f = Ua!

. Cbreia—
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Scaling SSL with Graphs to Millions

U is now a n X k matrix
a*= min (Uax—y)'C(Ua—y)+
acRV

Closed form solution is (N + U"CU)a = U'Cy

What is the size of this system of equation now?
Cool! Any problem with this approach?
Are there any reasonable assumptions when this is feasible?

Let's see what happens when N — oc!

-
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Scaling SSL with Graphs to Millions

Density

Landmarks

G—

Limitasn — oo Reduce n
Linear in number Polynomial in number of
of data-points landmarks

https://cs.nyu.edu/~fergus/papers/fut_ssl.pdf

. Cbreia—
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Scaling SSL with Graphs to Millions
What happens to L when N — oco?

We have data x; € R sampled from p (x).
When n — oo, instead of vectors f, we consider functions F(x).

Instead of L, we define £, - weighted smoothness operator
Lo (F) =3 [ (F ) = F () Wix sa)p () p (s2) e

_ _ 2
with W(xy, xp) = 2 2ell) ”2);12 2lf)

L defined the eigenvectors of increasing smoothness.

What defines £,7 Eigenfunctions!

. Cbreia—
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Scaling SSL with Graphs to Millions

Lo(F) = [ (F(x) — F (x2))? Wit () p(s2)
First eigenfunction

o = arg min L, (F)
F:f F2(x)p(x)D(x) dx=1

where D (x) = [ W (x,x2) p(x2) dx2

What is the solution? ®;(x) =1 because £, (1) =0

How to define ®2? same, constraining to be orthogonal to ®;

/F(X)‘Dl (x) p(x) D(x)dx =0
.&'ma,
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Scaling SSL with Graphs to Millions

Eigenfunctions of £,
®3 as before, orthogonal to ®; and ®; etc.
How to define eigenvalues? A, = £, (Py)

Relationship to the discrete Laplacian

1 eTpge__ 1 ( f. -\ 2
L = oL ) Wy(fi - ) o Le(F)
i
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg04_diss.pdf

http://arxiv.org/pdf/1510.08110v1.pdf

Isn't estimating eigenfunctions p (x) more difficult?
Are there some “easy” distributions?

Can we compute it numerically?

-
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Scaling SSL with Graphs to Millions

Eigenvectors

Data

002 03,03 =0.038

CXYS
-.f.o {.

o}. o
TN

Eigenfunctions
Density

®,0,=0 Dy,0,

Graphs in Machine Learning

=0.0002 @, c;=0.035
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Scaling SSL with Graphs to Millions
Factorized data distribution What if

p(s)=p(s)p(s2)---p(sd)

In general, this is not true. But we can rotate data with s = Rx.

7 2

PCA

Treating each factor individually
pkd:ef marginal distribution of sj

0¥ (sk)déf eigenfunction of £, with eigenvalue );
Then: ®;(s) = ®; (sk) is eigenfunction of £, with \;

We only considered single-coordinate eigenfunctions.

. Cbreia—
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Scaling SSL with Graphs to Millions

How to approximate 1D density? Histograms!

Algorithm of Fergus et al. [FWTQ9] for eigenfunctions
» Find R such that s = Rx
» For each “independent” s, approximate p(sk)
> Given p(s,) numerically solve for eigensystem of L,

(IS — PWP) g = )\Pﬁg (generalized eigensystem)

g - vector of length B = number of bins
P - density at discrete points

D diagonal sum of PWP

D - diagonal sum of PW

Order eigenfunctions by increasing eigenvalues

v

https://cs.nyu.edu/~fergus/papers/fut_ssl.pdf

-
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Scaling SSL with Graphs to Millions

Numerical 1D Eigenfunctions

1%t Eigenfunction 2" Eigenfunction 3" Eigenfunction
of h(x,) of h(x,) of h(x,)

https://cs.nyu.edu/~fergus/papers/fut_ssl.pdf
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Scaling SSL with Graphs to Millions

Computational complexity for N x d dataset

Typical harmonic approach

one diagonalization of NV x N system

Numerical eigenfunctions with B bins and k eigenvectors

d eigenvector problems of B x B
(D-PWP) g = APDg

one k X k least squares problem
(N+U'CU)a = U'Cy

some details: several approximation, eigenvectors only linear combinations single-coordinate eigenvectors,

When d is not too big then // can be in millions!

. Crzia—~
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Scaling SSL with Graphs to Millions

0.7 : . . T . . .
I 1 I 1 I i I

065 - -+ - - - -, - - - - - - 5k - 1
= 0.6 = = - 1-1
®© »n
g 8
© @ 055 - - - 1-1
D ©°
-~ ©
®T 05 = I = =
s g === Figenfunction
2045 -
8B
05
a® g _ Nystrom
c O
s = Least-squares
= 035 ~| m— Eigenvector

EEEEEEEN SVM
0.3 | s— NN

= = = Chance

0.25
=Inf 0

1 2 3 .. 4 5 6
Log2 number of +ve training examples/class

CIFAR experiments https://cs.nyu.edu/~fergus/papers/fwt_ssl.pdf
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