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Previous Lecture

v

Manifold learning with Laplacian eigenmaps

» Semi-Supervised Learning

» Why and when it helps?
» Self-training
» Semi-supervised SVMs

Graph-based semi-supervised learning

SSL with MinCuts

Gaussian random fields and harmonic solution
Regularization of harmonic solution

Soft-harmonic solution

Inductive and transductive semi-supervised learning

Manifold regularization
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This Lecture

v

Max-Margin Graph Cuts

v

Theory of Laplacian-based manifold methods

v

Transductive learning stability based bounds

v

Online Semi-Supervised Learning

Online incremental k-centers

v

. Crzia—~
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Previous Lab Session

v

23. 10. 2017 by Pierre Perrault
Content

» Graph Construction
Test sensitivity to parameters: o, k,
Spectral Clustering
Spectral Clustering vs. k-means
Image Segmentation

v

vV vy vy

v

Short written report

v

Questions to piazza (without giving away solutions)
Deadline: 6. 11. 2017 Today!

v

-
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Next Lab Session

v

13. 11. 2017 by Pierre Perrault
Content

» Semi-supervised learning
» Graph quantization
» Online face recognizer

v

AR: record a video with faces

v

v

Install VM (in case you have not done it yet for TD1)

v

Short written report

v

Questions to piazza
Deadline: 27. 11. 2017

v

. brezia~
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Final Class projects

. brezia~

detailed description on the class website

preferred option: you come up with the topic

theory /implementation /review or a combination

one or two people per project (exceptionally three)

grade 60%: report + short presentation of the team
» deadlines

>

vV vYyy

20. 11. 2017 - strongly recommended DL for taking projects
27. 11. 2017 - hard DL for taking projects

08. 01. 2018 - submission of the project report

09. 01. 2018 or later - project presentation

list of suggested topics on piazza
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Checkpoint 1

Semi-supervised learning with graphs:

min ZW,J — Y+ A

fe{:l:l}”l+"“

Regularized harmonic Solution:

fu = (Luu + 'Vgl)_l (Wulfl)

-
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Checkpoint 2

Unconstrained regularization in general:

f* = min (f —y)'C(f —y) +
feRN

Out of sample extension: Laplacian SVMs

ny
= argmianax (0,1 —yf (x)) + A1 + A2

fEH i

-
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SSL with Graphs: Laplacian SVMs

n

*= argmianax (0,1 —yf(x))+ A1 + X2

fEHK i

Hyc is nice and expressive.
Can there be a problem with certain Hx?

We look for f only in Hg.

If it is simple (e.g., linear) minimization of f'Lf can perform badly.

Con5|der again this 2D data and linear K.

1, = 1.000 1,= 0200 1,=0.040

%
o
Hh N o o
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SSL with Graphs: Laplacian SVMs

Linear IC = functions with slope a3 and intercept as.
ny
min > V(F.xi i) +
1
For this simple case we can write down fTLf explicitly.
1 2
= 3wl — )
i7j

1
=5 > wi(aa(xin — xj1) + 02(xi2 — x12))?
i

_ 0‘1 )2
= WU Xj1 — le 2 Wl_/ Xj2 — XJ2

A=218.351 A=218.351
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SSL with Graphs: Laplacian SVMs

2D data and linear K objective

n

i V(f, is Vi
min 2 VIFxiy)+

Setting \* = ()\1 + %):

nj
Sll(gzz V(faxiv)/i) +
1

What does this objective function correspond to?

The only influence of unlabeled data is through A*.

The same value of the objective as for supervised learning for some
A without the unlabeled data! This is not good.
. lrzia—
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SSL with Graphs: Laplacian SVMs

MR for 2D data and linear K only changes the slope

Linear MR
h Lo o

v =5.000 v =1.000 v =0.200 v =0.040
9 9 9 9

What would we like to see?

y,=5.000 ¥ =1.000 y =0200 y,=0.040
g g g g

Linear GC
[3; BN W

Sequel - 12/41



SSL with Graphs: Max-Margin Graph Cuts

Let's take the confident data and use them as true!

fr€n7|_[n’C MZ*'&C (f,xi,sgn(47)) +Ifllx

s.t. £ =arg min £7(L + 1)
geeR’V ( Yel)
st.li=yiforalli=1,...,n
Wait, but this is what we did not like in self-training!
Will we get into the same trouble?

Representer theorem is still cool:
)= Y afK(xi,x)
AR

. brezia~
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SSL with Graphs: Generalization Bounds

Why |S thIS not a WItChCI’aft7 We take GC as an example. MR or HFS are similar

What kind of guarantees we want?

We may want to bound the risk

Rp(f) = Epw) [L(f (x),y (x))]

for some loss, e.g., 0/1 loss

L(y', y)=1{sgn(y") #y}

What makes sense to bound Rp(f) with?

empirical risk 4+ error terms
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SSL with Graphs: Generalization Bounds

Irue risk VS. elllpirical riSk
E 2

icl

We look for the bound in the form

~

Rp(f) < Rp(f)+ errors

errors = transductive + inductive
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SSL with Graphs: Generalization Bounds

Bounding inductive error (using classical SLT tools)

With probability 1 — 7, using Equations 3.15 and 3.24 [Vap95]
1
Re(f) < = L(F(xi), 1) + As(h, n,7):

= number of samples , h = VC dimension of the class

\/h(m(z /h) +1) —In(1/4)

Al(hv 577) =

How to bound L(f(x;),y:)? For any y; € {—1,1} and ¢}

E(f(x,-),y,-) < ﬁ(f(x,-)7 sgn(g?)) + (ﬁf o )/i)z-

. Cbreia—
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SSL with Graphs: Generalization Bounds

Bounding transductive error (using stability analysis)

http://www.cs.nyu.edu/~mohri/pub/str.pdf

How to bound (£* — y;)??

Bounding (¢5 — y;)? for hard case is difficult — we bound soft HFS:
£°=min (L—y)'C(L—y)+£'QL
nin (£-y)'Ct—y)+£Q

Closed form solution

=R+ y

. Crzia—~
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SSL with Graphs: Generalization Bounds

Bounding transductive error

£ = min (£—y)"C(L—y)+£Qe
nin (£-y)'Cle-y)+£Q

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point.

Ci=C;'Q+land Co =C,'Q+1

What is the maximal difference in the solutions?

€ — 0 =Cylyr —Ci 'y
=G y2—y1) - (7' =Y
=G y2—y1) - (CH[(CT -6 Q]G Yy
Note that v € RVX1 X (A)|lvllz < [|Av]l2 < Ap(A)||v]|2

ly2 —yillo | Am(Q)ICT = C5 M2 - fly1ll
L5 —£7]2 < R

. Clreia—
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SSL with Graphs: Generalization Bounds

Bounding transductive error

£ = min (£—y)'Cl—y)+£'QL
nin (£-y)'Cl—y)+£Q

B An(Q)ICTE = C M2 - llyall2
gy, < 2=yl QUG —C
€5 — €12 < Am(C2) Am(C2)Am(C1)

Using Am(C) > /\’"((83 +1

||£§ N al(Hz < HY2 - YI||2 )‘M(Q)Hc_l — _1”2 ||y1||2
- m(Q) Am(Q) m(Q)
Am(C1) +1 ()\ () + 1) (AM(C ) + 1)

. Crzia—~
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SSL with Graphs: Generalization Bounds

Bounding transductive error
- 2n(Q) Am(Q) Am(Q)
w(cy T 1 (AM(cg) + 1) ()\ ) 1)

Now, let us plug in the values for our problem.

Take ¢, =1 and ¢; > ¢,. We have |y;| <1 and [£F] < 1.
V2 a Q)
<2 o+ /20
’ [A © ¢ Oml@ +17
Qisreg. L: A\p(Q) = Am(L) + v and Am(Q) = Am(L) + 4

\/71_Cu)‘M L)+

7g+1 Cu +1

B <2

This algorithm is 3-stable!
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SSL with Graphs: Generalization Bounds

Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf

By the generalization bound of Belkin [BMNO04]

Rp(€*) < Rp(€)+ B+ \/ 2Inf5/5)(n,6 +4)

transductive error Ar(8,n;,8)

,8 S 2[ _}_\/7 CCUAM )+’Yg

v +1

holds with probability 1 — §, where

Re(E) = 3 300
Re(£) = - 526 P

iel
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SSL with Graphs: Generalization Bounds
Bounding transductive error

21n(2/9)

Rp(€*) < Rp(€)+ B+ (nB+ 4)

transductive error Ar(8,n;,8)

+r — cu Am(L) + g

7g+1 Cuy yg—l—l

p <2

Does the bound say anything useful?

1) The error is controlled.

_1
2) Practical when error A(/3, nj, ) decreases at rate O(n, ?).

3
Achieved when 3=0(1/n;). Thatis, v,=Q(n}).

We have an idea how to set 7!

.&’m@
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SSL with Graphs: Generalization Bounds

Combining inductive 4 transductive error

With probability 1 — (n + 9).
Rp(f) < 725 i), sgn(f)) +

Rp(z ) + AT(B, ny, 5) + A/(h, N, 77)
We need to account for . With probability 1 — (1 + ¢).
. 2en,
Z L(f(x;),sgn(f7)) + N +
|Z*|>z—:

Rp(£) + AT (B, n1, 8) + Ay(h, N,n)

We should have ¢ < n, 1/2
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and linear KC only changes the slope

Linear MR
S No o

y =25.000 v =5.000 v =1.000 v =0.200 v =0.040
g ] g g9 g
MMGC for 2D data and linear K works as we want

y =25.000 . =5.000 y =1.000 . =0200 y.=0.040
g9 g9 g g9 g9

Linear GC
N A O
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic K is also not so good

Cubic GC
h Lo a

Cubic MR
h Lo o

5 -

v =25.000
g9

Michal Valko — Graphs in Machine Learning



SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF K

RBF GC
S Lo o

RBF MR
[ NN
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SSL with Graphs

(b) Harmonic function predictions

Graph-based SSL is obviously sensitive to graph construction!

-

&ZW
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Online SSL with Graphs

Offline learning setup
Given {x;}I_; from R? and {y;}/_,, with n; < n, find {y,-},{\’:n/Jrl
(transductive) or find f predicting y well beyond that (inductive).

ssseeBRr” illllll‘lllllllllll
- E

< $

Online learning setup
At the beginning: {x;,y;}7_, from R9
At time t:

receive X;

predict y;

-
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Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3:  Update L;
4:  Infer labels

fu = (Lug + 1) H (W)

5. Predict y; = sgn (f, (1))
6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?

. brezia~
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Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with W weights.
Each centroid represents several others.
Diagonal V = multiplicity. We have V;; copies of centroid i.

Can we compute it compactly? Compact harmonic solution.
09 = (L9, + 75 V) 'WLE  where W9 = VWIV
Proof? Using electric circuits.

Why do we keep the multiplicities?

. brezia~
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2:  k number of representative nodes
3: Initialization
4: 'V matrix of multiplicities with 1 on diagonal
5. while new unlabeled example x; comes do
6: Add x; to graph G
.
8
9

if # nodes > k then
quantize G
. endif
10:  Update L; of G(VWYV)
11:  Infer labels
12:  Predict yr = sgn (f, (t))
13: end while

. brezia~
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Online SSL with Graphs: Graph Quantization

An idea: incremental k-centers
Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to k centers C; = {cj,ca,. ..} with

v

Distance cj,c; € C; is at least > R

» For each new x;, distance to some c; € C; is less than R.
» |G| < k
» if not possible, R is doubled

-
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Online SSL with Graphs: Graph Quantization

» o




Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization
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Online SSL with Graphs: Graph Quantization

Doubling algorithm [Cha+97]
To reduce growth of R, we use R < m x R, with m>1

C; is changing. 'How far can x be from some c?
R R 1 1
R++2+--~:R(1++2+-~> = —
m m m m

Guarantees: (1 + ¢)-approximation algorithm.

Why not incremental k-means?

Michal Valko — Graphs in Machine Learning Sequel - 34/41



Online SSL with Graphs: Graph Quantization

Online k-centers

1:
2:
3:

4
5
6:
7
8
9

10:
: end if
12:
13:
14:
15:
16:

an unlabeled x;, a set of centroids C;_1, multiplicities v;_1
if (|]Ce—1| = k+ 1) then
R+ mR
greedily repartition C;_; into C; such that:
no two vertices in C; are closer than R
for any ¢; € Gy exists ¢; € G such that d(ci,c;) < R
update v; to reflect the new partitioning

. else

Ct — Ct—l
Vi < Vi1

if x; is closer than R to any c¢; € C; then
ve(i) < ve(i)+1

else
vi(|G|+1)« 1

end if

. Cbreia—

Michal Valko — Graphs in Machine Learning

Sequel - 35/41



Online SSL with Graphs

Video examples
http://www.bkveton.com/videos/Coffee.mpd
http://www.bkveton.com/videos/Ad.mp4

http://researchers.lille.inria.fr/~valko/hp/serve.php?
what=publications/kveton2009nipsdemo.adaptation.mov

http://researchers.lille.inria.fr/~valko/hp/serve.php?
what=publications/kveton2009nipsdemo.officespace.mov

http://bcove.me/a2derjeh

or: http://researchers.lille.inria.fr/~valko/hp/publications/press-intel-2015.mp4

II(QZZQLA
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SSL with Graphs: Some experimental results

* 8 people classification
* Making funny faces
* 4 faces/person are labeled

Our method
105

100
95
920
80

Nearest Neighbor [T a— 70 8 e

60
Recall [%]

Precision [%]
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SSL with Graphs: Some experimental results
¢ One person moves among various indoor locations
¢ 4 labeled examples of a person in the cubicle

el

Unlabeled Unlabeled Unlabeled

Dataset VO Dataset VO
100 100 T <
99 W
g% =
s S 98
[ a0 »
g —O— NN classifier g a7
o 0SSB (all) o =—C— NN classifier
L] | [— 0SSB (half) ¥ 96 || —— Commercial solution
—O— Online HFS 1 —O— Online HFS
80 L. 95 ~ 1
70 75 80 85 90 95 100 70 75 80 85 90 95 100
Recall [%] Recall [%]
‘ Online HFS outperforms OSSB (even when the Online HFS yields better results than a commercial solution at
weak learners are chosen using future data) 20% of the computational cost
-

-

léz/ua,-
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SSL with Graphs: Some experimental results

* Logging in with faces
instead of password

* Able to learn and improve
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SSL with Graphs: Some experimental results

* 16 people log twice into a tablet PC at 10 locations

1 k. |

1 1

A
’ﬂ AN\

4 labeled examples

1 labeled example

100 100
_. 9 _. 98
2 &
5 96 5 96
@ 2
e 94 s o4
o —O— NN classifier o —O—NN classifier

92 || —xF— Commercial solution 92 || —=%¥— Commercial solution

—QO— Online HFS —O— Online HF S
90 90
40 60 100 0 20 40 60 100
Recall [%] Recall [%]

Online HFS yields better results than a commercial solution at 20% of
the computational cost
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