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Previous Lecture

v

recommendation on a bipartite graph

> resistive networks
» recommendation score as a resistance?
» Laplacian and resistive networks
» resistance distance and random walks

v

geometry of the data and the connectivity

v

spectral clustering

> connectivity vs. compactness
» MinCut, RatioCut, NCut
> spectral relaxations

» manifold learning with Laplacian eigenmaps

. brezia~
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Previous Lab Session

v

23. 10. 2017 by Pierre Perrault
Content

v

» graph construction

test sensitivity to parameters: o, k, ¢
spectral clustering

spectral clustering vs. k-means
image segmentation

vV vy VvVvYyYy

v

Short written report (graded, all reports around 40% of grade)

v

Check the course website for the policies

v

Questions to piazza
Deadline: 6. 11. 2017, 23:59

v

. Crzia—~
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This Lecture

>

>

>

>

. brezia~

manifold learning with Laplacian eigenmaps
semi-supervised learning

inductive and transductive semi-supervised learning
SSL with self-training

SVMs and semi-supervised SVMs = TSVMs
Gaussian random fields and harmonic solution
graph-based semi-supervised learning

transductive learning

manifold regularization
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Manifold Learning: Recap

problem: definition reduction/manifold learning
Given {x;}I_, from R? find {y;}/_; in R™, where m < d.

» What do we know about the dimensionality reduction
» representation /visualization (2D or 3D)
» an old example: globe to a map
» often assuming M C R
» feature extraction
> linear vs. nonlinear dimensionality reduction
» What do we know about linear vs. nonlinear methods?

» linear: ICA, PCA, SVD, ...
» nonlinear often preserve only local distances

. lreia—
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Manifold Learning: Linear vs. Non-linear
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Manifold Learning: Preserving (just) local distances

d(yi,yj) = d(x;,x;) onlyif d(x;,x;) issmall

min ) willy; -yl
p

Looks familiar?
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Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:
Lf = ADf

Step 2: Assign m new coordinates:

XfH(fé(i)v"-’ferl(i))

Note;: we need to get m + 1 smallest eigenvectors
Notes: f; is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

. Crzia—~
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Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

minf'Lf st ficR, fDl=0, fDf=1

The meaning of the constraints is similar as for spectral clustering:
f'Df =1 is for scaling
f'D1 =0 is to not get vy

What is the solution?

. Crzia—~
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Manifold Learning: Example

Original data Honlinear embedding

005 i i i i H i i j
404 003 02 a0 0 001 002 003 004

http://www.mathworks.com/matlabcentral/fileexchange/

36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning

. brezia~
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Semi-supervised learning: How is it possible?

»
1.0
-1.0
Sumeet
SUPERVISED SEMI-SUPERVISED

This is how children learn! hypothesis
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Semi-supervised learning (SSL)

SSL problem: definition

Given {x;}}_; from R? and {y;}7",, with n; < IV, find Witien 41
(transductive) or find f predicting y well beyond that (inductive).

Some facts about SSL

>

>

assumes that the unlabeled data is useful
works with data geometry assumptions

> cluster assumption — low-density separation
» manifold assumption
» smoothness assumptions, generative models, ...

now it helps now, now it does not (sic)
> provable cases when it helps

inductive or transductive/out-of-sample extension

http://olivier.chapelle.cc/ssl-book/discussion.pdf
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SSL: Self-Training
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SSL: Overview: Self-Training

SSL:

Input: £ = {x;,y;}7; and U = {x;}}L, .,
Repeat:

> train f using L
> apply f to (some) U and add them to £

What are the properties of self-training?
> its a wrapper method

v

heavily depends on the the internal classifier

» some theory exist for specific classifiers

v

nobody uses it anymore
» errors propagate (unless the clusters are well separated)

-
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SSL: Self-Training: Bad Case
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SSL: Transductive SVM: S3VM
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SSL: Transductive SVM: Classical SVM

Linear case: f =w'x+b —  we look for (w, b)

max-margin classification

1
max ra—
wh  w]

sit. yi(w'x;+b)>1 Vi=1...,n

note the difference between functional and geometric margin

max-margin classification

min ||w||2

)

sit. yiw'x;+b)>1 Vi=1...,n
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SSL: Transductive SVM: Classical SVM

max-margin classification:

min HWH2

)

sit. yilwx;+b)>1 Vi=1,...,n

max-margin classification:

. I\ 2 i
min  Aflw® + Zé‘

sit. yiwx;+b)>1-& Vi=1,...,n
fiZO VI':].,...,n/
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SSL: Transductive SVM: Classical SVM
. 2 )
min Aw| +ZE,

S.t. y,'(wa,-—l—b)Zl—& Vi=1,...,n
f,'ZO Vi:l,...,n/

Unconstrained formulation using hinge loss:
ny
T,i/? Z max (1 — y; (w'x; + b),0) + A
1
In general?

ny
in S V(xi, i, f (x)) + A
T,'EZ (xi i f (1)) +

. Cbreia—

Michal Valko — Graphs in Machine Learning Sequel - 19/50



SSL: Transductive SVM: Classical SVM: Hinge loss

5
4
3
2
1+
% 43210123 45
yf(x)
(a) the hinge loss

V(xi, yi, f (x;)) = max (1 — y; (w'x; + b) ,0)
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SSL: Transductive SVM: Unlabeled Examples

ny
i 1—yi(w'x;+ b),0)+ A
rx’lgzi:max( yi(w'x; + b),0) +

How to incorporate unlabeled examples?
No y's for unlabeled x.
Prediction of f for (any) x? y = sgn(f (x)) = sgn(w'x + b)
Pretending that sgn (f (x)) is the true label ...
V(x,y,f(x)) =max(1—y(w'x+b),0)

=max (1 —sgn(w'x+ b)(w'x+ b),0)
= max (1 — |w'x + b|,0)
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SSL: Transductive SVM: Hinge and Hat Loss

[}
&l

4 4
3 3
2 2
1 1
% o321 0123 45 432401 23 45
yf(x) fx)
(a) the hinge loss (b) the hat loss

What is the difference in the objectives?
Hinge loss penalizes?

Hat loss penalizes?

. brezia~
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SSL: Transductive SVM: S3VM

This is what we wanted!

. brezia~
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SSL: Transductive SVM: Formulation

Main SVM idea stays the same: penalize the margin

ny ni+ny
min > max (1 — y; (w'x; + b), 0)+ArlwlP+X2 D max(1—|w'x;+b|,0
w
=1 i=n+1

What is the loss and what is the regularizer?
n

i 1— y; (Wx; + b),0)+A
wlpiz;max( yi (w'xj + b),0)+A; +A2

)

Think of unlabeled data as the regularizers for your classifiers!
Practical hint: Additionally enforce the class balance.

What it the main issue of TSVM?

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf

-
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SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut . pdf

*following some insights from vision research in 1980s
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
Where is the link?

What is the formal statement? We look for f(x) € {1}

nj+ny

cut = Z wij (F(x;) — f(Xj))2 = Q(f)

Why (f (x;) — f (x;))? and not |f(x;) — F(x;)|?

. brezia~
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SSL with Graphs: MinCut
We look for f(x) € {£1}

ni+ny
Qf) = Y wy (F(x) — f(x)))°

ij=1

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

It would be nice if we match the prediction on labeled data:

V(x.y.f(x) =00 (F(xi) = )
i=1

. Cbreia—
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SSL with Graphs: MinCut

Final objective function:

n
min o0 F(xi) — yi)* + A
fe{L1}ntnu ,z_;( (xi) = i)

This is an integer program :(
Can we solve it? Are we happy?

O O

_|_ —

We need a better way to reflect the confidence.
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SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*3 seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.

Idea 2: Find a smooth one. (harmonic solution)

Harmonic SSL

1): As before we constrain f to match the supervised data:
fxi)=yi  Vie{l,...,n}
2): We enforce the solution f to be harmonic.

D (X)) Wi
fx)==H "2 vie{nm+1,....,n,+n}
Ziwj Wij

. Cbreia—
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SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

ny
[ ‘ F(xi) — yi)* + A
fe{ﬂl}q,+nuoc;( (x1) = i)

...if we just relax the integer constraints to be real ...

feR"+u

ny
min ooz (F(xi) — yi)* + A
i=1
...or equivalently (note that f(x;) = f;) ...

min
feR"1+"“

sit. yi=1f(x;) Vi=1,...,m

Michal Valko — Graphs in Machine Learning
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SSL with Graphs: Harmonic Functions

Properties of the relaxation from =1 to R

v

there is a closed form solution for f
this solution is unique
globally optimal

it is either constant or has a maximum/minimum on a
boundary

f(x;) may not be discrete
» but we can threshold it

electric-network interpretation

random-walk interpretation

Michal Valko — Graphs in Machine Learning
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SSL with Graphs: Harmonic Functions

+1 volt

(a) The electric network interpretation (b) The random walk interpretation

Random walk interpretation:
1) start from the vertex you want to label and randomly walk

N7 _ -1

2) P(jl)=s%r = P=D'W

3) finish when a labeled vertex is hit
absorbing random walk

f; = probability of reaching a positive labeled vertex

. brezia~
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SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation

Step 1: Set f(x;) =y fori=1,....m
Step 2: Propagate iteratively (only for unlabeled)

ZiNj f(x;)wi

f(X,‘) —
Eiwj Wij

Vie{n+1,....,n,+ n}

Properties:
» this will converge to the harmonic solution
> we can set the initial values for unlabeled nodes arbitrarily

> an interesting option for large-scale data

. brezia~
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f(x1), ..., f(Xn+n,)) = (A, fay+n,)

Q(f) = = fTLf

Lis a (n + ny) x (n + n,) matrix:

Ly Lu }
L=
[ I-u1 I-uu

How to compute this constrained minimization problem?

. brezia~
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SSL with Graphs: Harmonic Functions
Let us compute harmonic solution using harmonic property!
How did we formalize the harmonic property of a circuit?
(Lf), =0,
In matrix notation
[L,, L,u][f,]:[...]
Ly Luy fy 0,

f; is constrained to be y; and for f, ... ...

Luf + Luufu =0,
... from which we get

f, = L;ul(_l-ulfl) = L;ul(Wulf/)~

; Note that this does not depend on L.
. bezia—
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SSL with Graphs: Harmonic Functions
Can we see that this calculates the probability of a random walk?

fu = Lug (—Luf)) = Lyg (W)
Note that P = D~IW. Then equivalently

fo=(1—Pu) 'Puf.
Split the equation into +ve & -ve part:

f;' — (I_Puu)ﬁ,lpu/f/
= Y (1=Pw)u'"Pyi— > (1-Pu),'Py

Jiyi=1 Jiyj=—1

/

p;:l) pf—l)

= p - pY

-
brzia—
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SSL with Graphs: Regularized Harmonic Functions

fi=p " —p Y = fi= || x sgn(f)

confidence label

What if a nasty outlier sneaks in?
The prediction for the outlier can be hyperconfident :(
How to control the confidence of the inference?
Allow the random walk to die!
We add a sink to the graph.
sink = artificial label node with value 0

We connect it to every other vertex.

What will this do to our predictions?

depends on the weigh on the edges

-
brzia—
. Michal Valko — Graphs in Machine Learning Sequel - 37/50



SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

fu - (Luu + 'Vgl)_l (Wulfl)

How does 7, influence HS?

X, v =1.000 y =0.200 y =0.040
9 9 9
5
......... 1 1
o0 0 0
-1 -1
5 -5
gluttidliile  Lllilillld
-10 5 0 5 10

What happens to sneaky outliers?

Sequel - 38/50
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SSL with Graphs: Harmonic Functions

Why don't we represent the sink in L explicitly?

Formally, to get the harmonic solution on the graph with sink ...

Ly +v6ln Ly Sl f) .
Lu Lus +7v6ln, —76 f. | = 0,
_'YG]-n,><1 _'YGlnuxl nvye 0

I-ulfl + (Luu + fVGInu) fu - 0u

...which is the same if we disregard the last column and row ...
Ly +v6ln L, }[f/}:[}
Ly Luu + P)/Glnu fu 0.,

...and therefore we simply add ~¢ to the diagonal of L!

-
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SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with Q = L + 7,l:

fER"/+"”

n
min o Z (F(xi) —yi)* + A
i=1
What if we do not really believe that 7(x;) = y;, Vi?

= min (f —y)'C(f —y) +
feRN

for labeled I
C is diagonal with C; = {C/ or fabeled examples

c, otherwise.

y = pseudo-targets with y; =

true label for labeled examples
0 otherwise.

. Crzia—~
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SSL with Graphs: Soft Harmonic Functions

* . W\T o
F* = min (f —y)'C(f —y) +

Closed form soft harmonic solution:

F=(clQ )y

v =1.000 y =0200
g g

y =0.040
g9

-

H N o o

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Sequel - 41/50
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SSL with Graphs: Regularized Harmonic Functions

Larger implications of random walks

random walk relates to commute distance which should satisfy

(%) Vertices in the same cluster of the graph have a small
commute distance, whereas two vertices in different clusters of
the graph have a large commute distance.

Do we have this property for HS?  What if N — oo?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the
commute distance http://wuw.informatik.uni-hamburg.de/ML/contents/
people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf

Solutions? 1) v 2) amplified commute distance 3) LP 4) L* ...

The goal of these solutions: make them remember!

-
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.
They are transductive.

What if a new point X, 4,1 arrives? i caiicd outof sample extension
Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X — R
Allow f(x;) # yi. Why? To deal with noise.

Solution: Manifold Regularization

. Clreia—
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SSL with Graphs: Manifold Regularization
General (S)SL objective:

ny
min Z V(xi,yi. £ (%)) + A

Want to control f, also for the out-of-sample data, i.e.,
everywhere.

= \of "Lf + )\1/ f(x)? dx
xeX
For general kernels:

ny

min V(xi,vi, F (%)) + M1 + X

Michal Valko — Graphs in Machine Learning
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SSL with Graphs: Manifold Regularization

ny

f*:argminZV(x,-,y,-./f)—i-)\l + Ao

fEHK i

Representer Theorem for Manifold Regularization
The minimizer f* has a finite expansion of the form

nj+ny

F(x) = > aik(x,x;)

i=1
V(Xv.)/7 f) = (y - f(x))2
LapRLS Laplacian Regularized Least Squares
V(x,y,f) = max (0,1 — yf (x))

LapSVM Laplacian Support Vector Machines
. lrzia—
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SSL with Graphs: Laplacian SVMs

f* = argmin Z

feHx

ny

i

max (0,1 — yf (x)) + 74

+ v

Allows us to learn a function in RKHS, i.e., RBF kernels.

SVM Laplacian SVM Laplacian SVM
2 2 2
1 ° g 1 oo 1 o g
» 5“%& 5 5“%& o 5”%&
T & %y € & Sx a C AN
ole e @, ahc ‘Eﬂgs ola e @, aHc ‘Bﬂ? 0 o &, ol %fl
Yo e Yo Y
- o 4 = q @ =
-1 -1 -1
-1 0 1 2 -1 0 1 2 -1 0 1 2

. Cbreia—
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SSL with Graphs: Laplacian SVMs

2.5

1.5

0.5

-0.5

-1.5

Transductive SVM

Laplacian SVM
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Checkpoint 1

Semi-supervised learning with graphs:

min ZW,J — Y+ A

fe{:l:l}”l+"“

Regularized harmonic Solution:

fu = (Luu + 'Vgl)_l (Wulfl)

Michal Valko — Graphs in Machine Learning

Sequel - 48/50



Checkpoint 2

Unconstrained regularization in general:

f* = min (f —y)'C(f —y) +
feRN

Out of sample extension: Laplacian SVMs

ny

= argmianax (0,1 —yf (x)) + A1 + A2

fEH i
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