Graphs in Machine Learning

Michal Valko
Inria Lille - Nord Europe, France

TA: Pierre Perrault
Partially based on material by: Mikhail Belkin,
Jerry Zhu, Olivier Chapelle, Branislav Kveton

Previous Lecture

- recommendation on a bipartite graph
- resistive networks
- recommendation score as a resistance?
- Laplacian and resistive networks
- resistance distance and random walks
- geometry of the data and the connectivity
- spectral clustering
- connectivity vs. compactness
- MinCut, RatioCut, NCut
- spectral relaxations
- manifold learning with Laplacian eigenmaps

Previous Lab Session

- 23. 10. 2017 by Pierre Perrault
- Content
- graph construction
- test sensitivity to parameters: σ, k, ε
- spectral clustering
- spectral clustering vs. k-means
- image segmentation
- Short written report (graded, all reports around 40% of grade)
- Check the course website for the policies
- Questions to piazza
- Deadline: 6. 11. 2017, 23:59

This Lecture

- manifold learning with Laplacian eigenmaps
- semi-supervised learning
- inductive and transductive semi-supervised learning
- SSL with self-training
- SVMs and semi-supervised SVMs = TSVMs
- Gaussian random fields and harmonic solution
- graph-based semi-supervised learning
- transductive learning
- manifold regularization

Manifold Learning: Recap

problem: definition reduction/manifold learning
Given $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ from \mathbb{R}^{d} find $\left\{\mathbf{y}_{i}\right\}_{i=1}^{N}$ in \mathbb{R}^{m}, where $m \ll d$.

- What do we know about the dimensionality reduction
- representation/visualization (2D or 3D)
- an old example: globe to a map
- often assuming $\mathcal{M} \subset \mathbb{R}^{d}$
- feature extraction
- linear vs. nonlinear dimensionality reduction
- What do we know about linear vs. nonlinear methods?
- linear: ICA, PCA, SVD, ...
- nonlinear often preserve only local distances

Manifold Learning: Linear vs. Non-linear

Manifold Learning: Preserving (just) local distances

$$
d\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)=d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \quad \text { only if } \quad d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \quad \text { is small }
$$

$$
\min \sum_{i j} w_{i j}\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|^{2}
$$

Looks familiar?

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$
\mathbf{L f}=\lambda \mathbf{D f}
$$

Step 2: Assign m new coordinates:

$$
\mathbf{x}_{i} \mapsto\left(f_{2}(i), \ldots, f_{m+1}(i)\right)
$$

Note $_{1}$: we need to get $m+1$ smallest eigenvectors
Note $_{2}$: \mathbf{f}_{1} is useless
http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps to 1D

\[

\]

The meaning of the constraints is similar as for spectral clustering:
$\mathbf{f}^{\top} \mathbf{D f}=\mathbf{1}$ is for scaling
$\mathbf{f}^{\top} \mathbf{D} \mathbf{1}=0$ is to not get \mathbf{v}_{1}
What is the solution?

Manifold Learning: Example

http://www.mathworks.com/matlabcentral/fileexchange/
36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning

Semi-supervised learning: How is it possible?

This is how children learn! hypothesis

Semi-supervised learning (SSL)

SSL problem: definition

Given $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$ from \mathbb{R}^{d} and $\left\{y_{i}\right\}_{i=1}^{n_{1}}$, with $n_{l} \ll N$, find $\left\{y_{i}\right\}_{i=n_{l}+1}^{n}$ (transductive) or find f predicting y well beyond that (inductive).

Some facts about SSL

- assumes that the unlabeled data is useful
- works with data geometry assumptions
- cluster assumption - low-density separation
- manifold assumption
- smoothness assumptions, generative models, ...
- now it helps now, now it does not (sic)
- provable cases when it helps
- inductive or transductive/out-of-sample extension
http://olivier.chapelle.cc/ssl-book/discussion.pdf

SSL: Self-Training

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L}=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n_{I}}$ and $\mathcal{U}=\left\{\mathbf{x}_{i}\right\}_{i=n_{l}+1}^{N}$
Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- its a wrapper method
- heavily depends on the the internal classifier
- some theory exist for specific classifiers
- nobody uses it anymore
- errors propagate (unless the clusters are well separated)

SSL: Self-Training: Bad Case

SSL: Transductive SVM: S3VM

SSL: Transductive SVM: Classical SVM

Linear case: $f=\mathbf{w}^{\top} \mathbf{x}+b \quad \rightarrow \quad$ we look for (\mathbf{w}, b)

max-margin classification

$$
\begin{aligned}
\max _{\mathbf{w}, b} & \frac{1}{\|\mathbf{w}\|} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \ldots, n_{l}
\end{aligned}
$$

note the difference between functional and geometric margin
max-margin classification

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \|\mathbf{w}\|^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \|\mathbf{w}\|^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

max-margin classification: non-separable case

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \lambda\|\mathbf{w}\|^{2}+\sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall i=1, \ldots, n_{l} \\
& \xi_{i} \geq 0 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

SSL: Transductive SVM: Classical SVM

max-margin classification: non-separable case

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \lambda\|\mathbf{w}\|^{2}+\sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall i=1, \ldots, n_{l} \\
& \xi_{i} \geq 0 \quad \forall i=1, \ldots, n_{l}
\end{array}
$$

Unconstrained formulation using hinge loss:

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{I}} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)+\lambda\|\mathbf{w}\|^{2}
$$

In general?

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(f)
$$

SSL: Transductive SVM: Classical SVM: Hinge loss

(a) the hinge loss

$$
V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)
$$

SSL: Transductive SVM: Unlabeled Examples

$$
\min _{w, b} \sum_{i}^{n_{1}} \max \left(1-y_{i}\left(w^{\top} x_{i}+b\right), 0\right)+\lambda\|w\|^{2}
$$

How to incorporate unlabeled examples?
No y 's for unlabeled \mathbf{x}.
Prediction of f for (any) \mathbf{x} ? $\hat{y}=\operatorname{sgn}(f(\mathbf{x}))=\operatorname{sgn}\left(\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+b\right)$

Pretending that $\operatorname{sgn}(f(\mathbf{x}))$ is the true label

$$
\begin{aligned}
V(\mathbf{x}, \widehat{y}, f(\mathbf{x})) & =\max \left(1-\widehat{y}\left(\mathbf{w}^{\top} \mathbf{x}+b\right), 0\right) \\
& =\max \left(1-\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\left(\mathbf{w}^{\top} \mathbf{x}+b\right), 0\right) \\
& =\max \left(1-\left|\mathbf{w}^{\top} \mathbf{x}+b\right|, 0\right)
\end{aligned}
$$

SSL: Transductive SVM: Hinge and Hat Loss

(a) the hinge loss

(b) the hat loss

What is the difference in the objectives?
Hinge loss penalizes?
Hat loss penalizes?

SSL: Transductive SVM: S3VM

This is what we wanted!

SSL: Transductive SVM: Formulation

Main SVM idea stays the same: penalize the margin

$$
\min _{\mathbf{w}, b} \sum_{i=1}^{n_{1}} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)+\lambda_{1}\|\mathbf{w}\|^{2}+\lambda_{2} \sum_{i=n_{l}+1}^{n_{1}+n_{u}} \max \left(1-\left|\mathbf{w}^{\top} \mathbf{x}_{i}+b\right|, 0\right)
$$

What is the loss and what is the regularizer?

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.
What it the main issue of TSVM?
recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf
*following some insights from vision research in 1980s

SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering Where is the link?
What is the formal statement? We look for $f(\mathbf{x}) \in\{ \pm 1\}$

$$
\text { cut }=\sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}=\Omega(f)
$$

Why $\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}$ and not $\left|f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right|$?

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in\{ \pm 1\}$

$$
\Omega(\mathbf{f})=\sum_{i, j=1}^{n_{l}+n_{u}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

Clustering was unsupervised, here we have supervised data.
Recall the general objective-function framework:

$$
\min _{\mathbf{w}, b} \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(\mathbf{f})
$$

It would be nice if we match the prediction on labeled data:

$$
V(\mathbf{x}, y, f(\mathbf{x}))=\infty \sum_{i=1}^{n_{l}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

SSL with Graphs: MinCut

Final objective function:

$$
\min _{\mathbf{f} \in\{ \pm 1\}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{I}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{I}+n_{u}} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}
$$

This is an integer program :(

Can we solve it?
Are we happy?

We need a better way to reflect the confidence.

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf
*a seminal paper that convinced people to use graphs for SSL
Idea 1: Look for a unique solution.
Idea 2: Find a smooth one. (harmonic solution)
Harmonic SSL
1): As before we constrain f to match the supervised data:

$$
f\left(\mathbf{x}_{i}\right)=y_{i} \quad \forall i \in\left\{1, \ldots, n_{l}\right\}
$$

2): We enforce the solution f to be harmonic.

$$
f\left(\mathbf{x}_{i}\right)=\frac{\sum_{i \sim j} f\left(\mathbf{x}_{j}\right) w_{i j}}{\sum_{i \sim j} w_{i j}} \quad \forall i \in\left\{n_{l}+1, \ldots, n_{u}+n_{l}\right\}
$$

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$
\min _{f \in\{ \pm 1\}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{1}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(\mathrm{x}_{i}\right)-f\left(\mathrm{x}_{j}\right)\right)^{2}
$$

... if we just relax the integer constraints to be real ...

$$
\min _{f \in \mathbb{R}^{n_{l}+n_{u}}} \infty \sum_{i=1}^{n_{i}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}
$$

\ldots or equivalently (note that $f\left(\mathrm{x}_{i}\right)=f_{i}$) \ldots

$$
\begin{aligned}
\min _{f \in \mathbb{R}^{n^{+}+n_{u}}} & \sum_{i, j=1}^{n_{1}+n_{u}} w_{i j}\left(f\left(\mathrm{x}_{i}\right)-f\left(\mathrm{x}_{j}\right)\right)^{2} \\
\text { s.t. } & y_{i}=f\left(\mathbf{x}_{i}\right) \quad \forall i=1, \ldots, n_{l}
\end{aligned}
$$

SSL with Graphs: Harmonic Functions

Properties of the relaxation from ± 1 to \mathbb{R}

- there is a closed form solution for \mathbf{f}
- this solution is unique
- globally optimal
- it is either constant or has a maximum/minimum on a boundary
- $f\left(\mathbf{x}_{i}\right)$ may not be discrete
- but we can threshold it
- electric-network interpretation
- random-walk interpretation

SSL with Graphs: Harmonic Functions

Random walk interpretation:

1) start from the vertex you want to label and randomly walk
2) $P(j \mid i)=\frac{w_{i j}}{\sum_{k} w_{i k}} \equiv \mathbf{P}=\mathbf{D}^{-1} \mathbf{W}$
3) finish when a labeled vertex is hit absorbing random walk
$f_{i}=$ probability of reaching a positive labeled vertex

SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation
Step 1: Set $f\left(\mathbf{x}_{i}\right)=y_{i}$ for $i=1, \ldots, n_{l}$
Step 2: Propagate iteratively (only for unlabeled)

$$
f\left(\mathbf{x}_{i}\right) \leftarrow \frac{\sum_{i \sim j} f\left(\mathbf{x}_{j}\right) w_{i j}}{\sum_{i \sim j} w_{i j}} \quad \forall i \in\left\{n_{l}+1, \ldots, n_{u}+n_{l}\right\}
$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution
Define $\mathbf{f}=\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{n_{l}+n_{u}}\right)\right)=\left(f_{1}, \ldots, f_{n_{l}+n_{u}}\right)$

$$
\Omega(\mathbf{f})=\sum_{i, j=1}^{n_{i}+n_{u}} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}=\mathbf{f}^{\top} \mathbf{L f}
$$

\mathbf{L} is a $\left(n_{I}+n_{u}\right) \times\left(n_{I}+n_{u}\right)$ matrix:

$$
\mathbf{L}=\left[\begin{array}{ll}
\mathbf{L}_{/ /} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u 1} & \mathbf{L}_{u u}
\end{array}\right]
$$

How to compute this constrained minimization problem?

SSL with Graphs: Harmonic Functions

Let us compute harmonic solution using harmonic property!
How did we formalize the harmonic property of a circuit?

$$
(\mathbf{L f})_{u}=\mathbf{0}_{u}
$$

In matrix notation

$$
\left[\begin{array}{ll}
\mathbf{L}_{/ /} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u l} & \mathbf{L}_{u u}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{l} \\
\mathbf{f}_{u}
\end{array}\right]=\left[\begin{array}{c}
\ldots \\
\mathbf{0}_{u}
\end{array}\right]
$$

$\mathbf{f}_{/}$is constrained to be $\mathbf{y}_{/}$and for $\mathbf{f}_{u} \ldots$..

$$
\mathbf{L}_{u \mid} \mathbf{f}_{/}+\mathbf{L}_{u u} \mathbf{f}_{u}=\mathbf{0}_{u}
$$

...from which we get

$$
\mathbf{f}_{u}=\mathbf{L}_{u u}^{-1}\left(-\mathbf{L}_{u \mid} \mathbf{f}_{l}\right)=\mathbf{L}_{u u}^{-1}\left(\mathbf{W}_{u /} \mathbf{f}_{l}\right) .
$$

Note that this does not depend on $\mathbf{L}_{\text {// }}$.

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$
\mathbf{f}_{u}=\mathbf{L}_{u u}^{-1}\left(-\mathbf{L}_{u \mid} \mathbf{f}_{l}\right)=\mathbf{L}_{u u}^{-1}\left(\mathbf{W}_{u \mid} \mathbf{f}_{l}\right)
$$

Note that $\mathbf{P}=\mathbf{D}^{-1} \mathbf{W}$. Then equivalently

$$
\mathbf{f}_{u}=\left(\mathbf{I}-\mathbf{P}_{u u}\right)^{-1} \mathbf{P}_{u l} \mathbf{f}_{/} .
$$

Split the equation into + ve $\&$-ve part:

$$
\begin{aligned}
f_{i} & =\left(\mathbf{I}-\mathbf{P}_{u u}\right)_{i u}^{-1} \mathbf{P}_{u l} \mathbf{f}_{l} \\
& =\underbrace{\sum_{j: y_{j}=1}\left(\mathbf{I}-\mathbf{P}_{u u}\right)_{i u}^{-1} \mathbf{P}_{u j}}_{p_{i}^{(+1)}}-\underbrace{\sum_{j: y_{j}=-1}\left(\mathbf{I}-\mathbf{P}_{u u}\right)_{i u}^{-1} \mathbf{P}_{u j}}_{p_{i}^{(-1)}} \\
& =p_{i}^{(+1)}-p_{i}^{(-1)}
\end{aligned}
$$

SSL with Graphs: Regularized Harmonic Functions

$$
f_{i}=p_{i}^{(+1)}-p_{i}^{(-1)} \Longrightarrow f_{i}=\underbrace{\left|f_{i}\right|}_{\text {confidence }} \times \underbrace{\operatorname{sgn}\left(f_{i}\right)}_{\text {label }}
$$

What if a nasty outlier sneaks in?
The prediction for the outlier can be hyperconfident :(
How to control the confidence of the inference?
Allow the random walk to die!
We add a sink to the graph.
sink $=$ artificial label node with value 0
We connect it to every other vertex.

What will this do to our predictions?

SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mathbf{f}_{l}\right)
$$

How does γ_{g} influence HS?

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{\mathrm{g}}=0.200
$$

$$
\gamma_{\mathrm{g}}=0.040
$$

What happens to sneaky outliers?

SSL with Graphs: Harmonic Functions

Why don't we represent the sink in \mathbf{L} explicitly?

Formally, to get the harmonic solution on the graph with sink...

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathbf{L}_{\|}+\gamma_{G} \mathbf{I}_{n_{l}} & \mathbf{L}_{/ u} & -\gamma_{G} \\
\mathbf{L}_{u l} & \mathbf{L}_{u u}+\gamma_{G} \mathbf{I}_{n_{u}} & -\gamma_{G} \\
-\gamma_{G} \mathbf{1}_{n_{l} \times 1} & -\gamma_{G} \mathbf{1}_{n_{u} \times 1} & n \gamma_{G}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{/} \\
\mathbf{f}_{u} \\
0
\end{array}\right]=\left[\begin{array}{c}
\ldots \\
\mathbf{0}_{u} \\
\ldots
\end{array}\right]} \\
\mathbf{L}_{u \mid} \mathbf{f}_{l}+\left(\mathbf{L}_{u u}+\gamma_{G} \mathbf{I}_{n_{u}}\right) \mathbf{f}_{u}=\mathbf{0}_{u}
\end{gathered}
$$

... which is the same if we disregard the last column and row ...

$$
\left[\begin{array}{cc}
\mathbf{L}_{/ /}+\gamma_{G} \mathbf{I}_{n_{l}} & \mathbf{L}_{/ u} \\
\mathbf{L}_{u l} & \mathbf{L}_{u u}+\gamma_{G} \mathbf{I}_{n_{u}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{/} \\
\mathbf{f}_{u}
\end{array}\right]=\left[\begin{array}{c}
\ldots \\
\mathbf{0}_{u}
\end{array}\right]
$$

SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with $\mathbf{Q}=\mathbf{L}+\gamma_{g} \mathbf{I}$:

$$
\min _{\mathbf{f} \in \mathbb{R}^{n^{\prime}+n_{u}}} \infty \sum_{i=1}^{n_{1}}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \mathbf{f}^{\top} \mathbf{Q f}
$$

What if we do not really believe that $f\left(\mathbf{x}_{i}\right)=y_{i}, \forall i$?

$$
\mathbf{f}^{\star}=\min _{\mathbf{f} \in \mathbb{R}^{N}}(\mathbf{f}-\mathbf{y})^{\top} \mathbf{C}(\mathbf{f}-\mathbf{y})+\mathrm{f}^{\top} \mathbf{Q f}
$$

\mathbf{C} is diagonal with $C_{i i}= \begin{cases}c_{l} & \text { for labeled examples } \\ c_{u} & \text { otherwise. }\end{cases}$
$\mathbf{y} \equiv$ pseudo-targets with $y_{i}= \begin{cases}\text { true label } & \text { for labeled examples } \\ 0 & \text { otherwise } .\end{cases}$

SSL with Graphs: Soft Harmonic Functions

$$
\mathbf{f}^{\star}=\min _{f \in \mathbb{R}^{n}}(\mathbf{f}-\mathbf{y})^{\top} \mathbf{C}(\mathbf{f}-\mathbf{y})+\mathrm{f}^{\top} \mathbf{Q} f
$$

Closed form soft harmonic solution:

$$
\mathbf{f}^{\star}=\left(\mathbf{C}^{-1} \mathbf{Q}+\mathbf{I}\right)^{-1} \mathbf{y}
$$

$$
\gamma_{\mathrm{g}}=1.000
$$

$$
\gamma_{\mathrm{g}}=0.200
$$

$$
\gamma_{\mathrm{g}}=0.040
$$

What are the differences between hard and soft? Not much different in practice. Provable generalization guarantees for the soft one.

SSL with Graphs: Regularized Harmonic Functions

Larger implications of random walks

random walk relates to commute distance which should satisfy
(\star) Vertices in the same cluster of the graph have a small commute distance, whereas two vertices in different clusters of the graph have a large commute distance.

Do we have this property for HS? What if $N \rightarrow \infty$?
Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the commute distance http://www.informatik.uni-hamburg.de/ML/contents/ people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf Solutions? 1) γ_{g} 2) amplified commute distance 3) $\left.\mathbf{L}^{p} 4\right) \mathbf{L}^{\star} \ldots$ The goal of these solutions: make them remember!

SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.
They are transductive.
What if a new point $\mathbf{x}_{n_{/}+n_{u}+1}$ arrives?
also called out-of-sample extension
Option 1) Add it to the graph and recompute HFS.
Option 2) Make the algorithms inductive!
Allow to be defined everywhere: $f: \mathcal{X} \mapsto \mathbb{R}$
Allow $f\left(\mathbf{x}_{i}\right) \neq y_{i}$. Why? To deal with noise.
Solution: Manifold Regularization

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$
\min _{f} \sum_{i}^{n_{l}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda \Omega(f)
$$

Want to control f, also for the out-of-sample data, i.e., everywhere.

$$
\Omega(f)=\lambda_{2} \mathbf{f}^{\top} \mathbf{L f}+\lambda_{1} \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^{2} \mathrm{~d} \mathbf{x}
$$

For general kernels:

$$
\min _{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda_{1}\|f\|_{\mathcal{K}}^{2}+\lambda_{2} \mathrm{f}^{\mathrm{T}} \mathrm{Lf}
$$

SSL with Graphs: Manifold Regularization

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} V\left(\mathbf{x}_{i}, y_{i}, f\right)+\lambda_{1}\|f\|_{\mathcal{K}}^{2}+\lambda_{2} f^{\top} \operatorname{Lf}
$$

Representer Theorem for Manifold Regularization

The minimizer f^{\star} has a finite expansion of the form

$$
f^{\star}(\mathbf{x})=\sum_{i=1}^{n_{1}+n_{u}} \alpha_{i} \mathcal{K}\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

$$
V(x, y, f)=(y-f(\mathbf{x}))^{2}
$$

LapRLS Laplacian Regularized Least Squares

$$
V(\mathbf{x}, y, f)=\max (0,1-y f(\mathbf{x}))
$$

LapSVM Laplacian Support Vector Machines

SSL with Graphs: Laplacian SVMs

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{I}} \max (0,1-y f(\mathbf{x}))+\gamma_{\boldsymbol{A}}\|f\|_{\mathcal{K}}^{2}+\gamma_{\mathbf{I}} \mathbf{f}^{\top} \operatorname{Lf}
$$

Allows us to learn a function in RKHS, i.e., RBF kernels.

SSL with Graphs: Laplacian SVMs

Checkpoint 1

Semi-supervised learning with graphs:

$$
\min _{\mathbf{f} \in\{ \pm 1\}^{n_{I}+n_{u}}}(\infty) \sum_{i=1}^{n_{1}} w_{i j}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \sum_{i, j=1}^{n_{i}+n_{u}}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}
$$

Regularized harmonic Solution:

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mid \mathbf{f}_{l}\right)
$$

Checkpoint 2

Unconstrained regularization in general:

$$
\mathbf{f}^{\star}=\min _{\mathbf{f} \in \mathbb{R}^{N}}(\mathbf{f}-\mathbf{y})^{\top} \mathbf{C}(\mathbf{f}-\mathbf{y})+\mathrm{f}^{\top} \mathbf{Q f}
$$

Out of sample extension: Laplacian SVMs

$$
f^{\star}=\underset{f \in \mathcal{H}_{\mathcal{K}}}{\arg \min } \sum_{i}^{n_{1}} \max (0,1-y f(\mathbf{x}))+\lambda_{1}\|f\|_{\mathcal{K}}^{2}+\lambda_{2} \mathrm{f}^{\top} \operatorname{Lf}
$$

> Michal Valko
> michal.valko@inria.fr
> ENS Paris-Saclay, MVA 2017/2018
> SequeL team, Inria Lille - Nord Europe
> https: //team.inria.fr/sequel/

