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Previous Lecture

I similarity graphs
I different types
I construction
I sources of graphs
I practical considerations

I spectral graph theory
I Laplacians and their properties

I symmetric and asymmetric normalization
I random walks
I recommendation on a bipartite graph
I resistive networks

I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks
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This Lecture

I geometry of the data and the connectivity

I spectral clustering

I manifold learning with Laplacians eigenmaps

I Gaussian random fields and harmonic solution

I graph-based semi-supervised learning and manifold
regularization

I transductive learning

I inductive and transductive semi-supervised learning
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Next Class: Lab Session

I 23. 10. 2017 by Pierre Perrault
I cca. 10h00-10h30 optional help with setup, 10h30-12h30: TD
I Salle Condorcet
I Download the image and set it up BEFORE the class
I Matlab/Octave
I Short written report (graded)
I All homeworks together account for 40% of the final grade
I Content

I Graph Construction
I Test sensitivity to parameters: σ, k, ε
I Spectral Clustering
I Spectral Clustering vs. k-means
I Image Segmentation
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PhD student position on the topic of sequential learning
(mathematical statistics and machine learning) at Uni Magdeburg.
PhD candidate will focus on developing sequential learning algorithms
with mathematical guarantees for learning on given non-stationary
processes that are relevant in the context of recommendation systems,
and on implementation of the algorithms that will be developed. S/He
will also work on the eye tracker based application of the project. A
degree in machine learning or in mathematics with an interest in
theoretical computer science will be preferred. Uni Magdeburg (90
minutes away from Berlin, Germany, by public transports) and universities
in nearby Berlin offer a highly motivating and rich research environment.

The PhD candidates will be advised by Dr. Alexandra Carpentier (contact
https://www.uni-potsdam.de/fileadmin01/projects/sfb1294/
Ausschreibung_SFB1294_A03_2ndround-4-2.pdf for more info).
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Use of Laplacians: Movie recommendation
How to do movie recommendation on a bipartite graph?

ranking

ranking

ranking

ranking

viewer1

Adam

movieA

Blade Runner 2049

movieB

Cars 3

viewer2

Barbara

movieC

Capitaine Superslip

viewer3

Céline

Question: Do we recommend Capitaine Superslip to Adam?

Let’s compute some score(v ,m)!
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Use of Laplacians: Movie recommendation

How to compute the score(v ,m)? Using some graph distance!

Idea1: maximally weighted path
score(v ,m) = maxvPm weight(P) = maxvPm

∑
e∈P ranking(e)

Problem: If there is a weak edge, the path should not be good.

Idea2: change the path weight
score2(v ,m) = maxvPm weight2(P) = maxvPm mine∈P ranking(e)

Problem of 1&2: Additional paths does not improve the score.

Idea3: consider everything
score3(v ,m) = max flow from m to v

Problem of 3: Shorter paths do not improve the score.
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Laplacians and Resistive Networks
How to compute the score(v ,m)?

Idea4: view edges as conductors
score4(v ,m) = effective resistance between m and v

+
−v

i
C

C ≡ conductance

R ≡ resistance

i ≡ current

V ≡ voltage

C =
1
R i = CV =

V
R
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Resistive Networks: Some high-school physics
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Resistive Networks

resistors in series

R = R1 + · · ·+ Rn C =
1

1
C1

+ · · ·+ 1
CN

i = V
R

conductors in parallel

C = C1 + · · ·+ CN i = VC

Effective Resistance on a graph
Take two nodes: a 6= b. Let Vab be the voltage between them and
iab the current between them. Define Rab = Vab

iab
and Cab = 1

Rab
.

We treat the entire graph as a resistor!
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Resistive Networks: Optional Homework (ungraded)

Show that Rab is a metric space.

1. Rab ≥ 0
2. Rab = 0 iff a = b
3. Rab = Rba

4. Rac ≤ Rab + Rbc

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’s Law ≡ flow in = flow out

C1

C2

C3

V1

V

V2V3

V = C1
C V1 +

C2
C V2 +

C3
C V3 (convex combination)

residual current = CV − C1V1 − C2V2 − C3V3
Kirchhoff says: This is zero! There is no residual current!
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Resistors: Where is the link with the Laplacian?
General case of the previous! di =

∑
j cij = sum of conductances

Lij =


di if i = j ,
−cij if (i , j) ∈ E ,

0 otherwise.

v = voltage setting of the nodes on graph.

(Lv)i = residual current at vi — as we derived

Use: setting voltages and getting the current

Inverting ≡ injecting current and getting the voltages

The net injected has to be zero ≡ Kirchhoff’s Law.
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Resistors and the Laplacian: Finding Rab

Let’s calculate R1N to get the movie recommendation score!

L


0
v2
...

vn−1
1

 =


i
0
...
0
−i


i = V

R V = 1 R =
1
i

Return R1N =
1
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/˜doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R1N

Lv = (i , 0, . . . ,−i)T ≡ boundary valued problem

For R1N

V1 and VN are the boundary

(v1, v2, . . . , vN) is harmonic:

Vi ∈ interior (not boundary)

Vi is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R1n

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle
If f = v is harmonic then min and max are on the boundary.

Proof: k ∈ ◦ =⇒ ∃ neighbors Vi ,Vj s.t. vi ≤ vk ≤ vj

Uniqueness Principle
If f and g are harmonic with the same boundary then f = g

Proof: f − g is harmonic with zero on the boundary
=⇒ f − g ≡ 0 =⇒ f = g (using maximum principle)
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Resistors and the Laplacian: Finding R1N

Alternative method to calculate R1N :

Lv =


1
0
...
0
−1


def= iext Return R1N = v1 − vN Why?

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = Lv
Moore-Penrose pseudo-inverse solves LS
Solution: Instead of v = L−1iext we take v = L+iext
We get: R1N = v1 − vN = iTextv = iTextL+iext.
Notice: We can reuse L+ to get resistances for any pair of nodes!
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

L = QΛQT =
N∑

i=1
λiqiqT

i =
N∑

i=2
λiqiqT

i

Pseudo-inverse of the Laplacian:

L+ = QΛ+QT =
N∑

i=2

1
λi

qiqT
i

Moore-Penrose pseudo-inverse solves a least squares problem:

v = arg min
x

‖Lx − iext‖2 = L+iext
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How to rule the world?

Let’s make France great again!
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How to rule the world?
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How to rule the world: “AI” is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/
1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U
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Application of Graphs for ML: Clustering

Michal Valko – Graphs in Machine Learning SequeL - 22/54



Application: Clustering - Recap

I What do we know about the clustering in general?
I ill defined problem (different tasks → different paradigms)
I “I know it when I see it”
I inconsistent (wrt. Kleinberg’s axioms)

I scale-invariance, richness, consistency

I number of clusters k need often be known
I difficult to evaluate

I What do we know about k-means?
I “hard” version of EM clustering
I sensitive to initialization
I optimizes for compactness
I yet: algorithm-to-go
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs

A

B
C

E

D

F

G

I J

H

K

MinCut: cut(A,B) =
∑

i∈A,j∈B wij Are we done?
Can be solved efficiently, but maybe not what we want . . . .
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Spectral Clustering: Balanced Cuts
Let’s balance the cuts!

MinCut

cut(A,B) =
∑

i∈A,j∈B
wij

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)

Michal Valko – Graphs in Machine Learning SequeL - 25/54



Spectral Clustering: Balanced Cuts

RatioCut(A,B) = cut(A,B)

(
1
|A| +

1
|B|

)
NCut(A,B) = cut(A,B)

(
1

vol(A) +
1

vol(B)

)

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

min
A,B

cut(A,B) s.t. |A| = |B|

Graph function f for cluster membership: fi =
{

1 if Vi ∈ A,
−1 if Vi ∈ B.

What it is the cut value with this definition?

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) =
∑

i∈A,j∈B
wi ,j =

1
4

∑
i ,j

wi ,j(fi − fj)2 = 1
2 fTLf

|A| = |B| =⇒
∑

i fi = 0 =⇒ f ⊥ 1N

‖f‖ =
√

N

objective function of spectral clustering

min
f

fTLf s.t. fi = ±1, f ⊥ 1N , ‖f‖ =
√

N

Still NP hard :( → Relax even further!

fi = ±1 → fi ∈ R
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Rayleigh-Ritz theorem
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L then

λ1 = min
x 6=0

xTLx
xTx = min

xTx=1
xTLx

λN = max
x 6=0

xTLx
xTx = max

xTx=1
xTLx

xTLx
xTx ≡ Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)
If λ1 ≤ · · · ≤ λN are the eigenvectors of real symmetric L and
v1, . . . , vN the corresponding orthogonal eigenvalues, then for
k = 1 : N − 1

λk+1 = min
x 6=0,x⊥v1,...vk

xTLx
xTx = min

xTx=1,x⊥v1,...vk
xTLx

λN−k = max
x 6=0,x⊥vn,...vN−k+1

xTLx
xTx = max

xTx=1,x⊥vN ,...vN−k+1
xTLx
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Rayleigh-Ritz theorem: Quick and dirty proof

When we reach the extreme points?

∂

∂x

(
xTLx
xTx

)
=

∂

∂x

(
f (x)
g(x)

)
= 0 ⇐⇒ f ′(x)g(x) = f (x)g ′(x)

By matrix calculus (or just calculus):

∂xTLx
∂x = 2Lx and ∂xTx

∂x = 2x

When f ′(x)g(x) = f (x)g ′(x)?

Lx (xTx) = (xTLx) x ⇐⇒ Lx =
xTLx
xTx x ⇐⇒ Lx = λx

Conclusion: Extremes are the eigenvectors with their eigenvalues
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Solution: second eigenvector How do we get the clustering?
The solution may not be integral. What to do?

clusteri =

{
1 if fi ≥ 0,
−1 if fi < 0.

Works but this heuristics is often too simple. In practice, cluster f
using k-means to get {Ci}i and assign:

clusteri =

{
1 if i ∈ C1,

−1 if i ∈ C−1.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1
|A| +

1
|B|

)
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

fTLf = 1
2

∑
i ,j

wi ,j(fi − fj)2 = (|A|+ |B|)RatioCut(A,B)
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Spectral Clustering: Approximating RatioCut
Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

∑
i

fi = 0

∑
i

f 2
i = N

objective function of spectral clustering (same - it’s magic!)

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N
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Spectral Clustering: Approximating NCut

Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)
Define graph function f for cluster membership of NCut:

fi =


√

vol(A)
vol(B) if Vi ∈ A,

−
√

vol(B)
vol(A) if Vi ∈ B.

(Df)T1n = 0 fTDf = vol(V) fTLf = vol(V)NCut(A,B)

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)

Can we apply Rayleigh-Ritz now? Define w = D1/2f

objective function of spectral clustering (NCut)

min
w

wTD−1/2LD−1/2w s.t. wi ∈ R,w ⊥ D1/21N , ‖w‖2 = vol(V)

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖2 = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V)

Solution by Rayleigh-Ritz? w = v2,Lsym f = D−1/2w

f is a the second eigenvector of Lrw !

tl;dr: Get the second eigenvector of L/Lrw for RatioCut/NCut.
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Pretty bad.

Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.
https://www.cs.cmu.edu/˜glmiller/Publications/Papers/GuMi95.pdf
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters
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Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of data we can use one vs. the other?
Any disadvantages of spectral clustering?
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Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/

publications/Luxburg07_tutorial.pdf
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Spectral Clustering: 1D Example - Eigenvectors
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