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Previous Lecture

» similarity graphs

different types
construction

sources of graphs
practical considerations

vV vy vy

» spectral graph theory
» Laplacians and their properties
» symmetric and asymmetric normalization

» random walks

» recommendation on a bipartite graph
> resistive networks

» recommendation score as a resistance?
» Laplacian and resistive networks
» resistance distance and random walks
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This Lecture

>

. brezia~

geometry of the data and the connectivity
spectral clustering

manifold learning with Laplacians eigenmaps
Gaussian random fields and harmonic solution

graph-based semi-supervised learning and manifold
regularization

transductive learning

inductive and transductive semi-supervised learning
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Next Class: Lab Session

» 23.10.2017 by Pierre Perrault

» cca. 10h00-10h30 optional help with setup, 10h30-12h30: TD
» Salle Condorcet

» Download the image and set it up BEFORE the class

» Matlab/Octave

» Short written report (graded)

» All homeworks together account for 40% of the final grade
» Content
» Graph Construction
Test sensitivity to parameters: o, k,
Spectral Clustering
Spectral Clustering vs. k-means
Image Segmentation

vV vyvyy
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PhD student position on the topic of sequential learning
(mathematical statistics and machine learning) at Uni Magdeburg.

PhD candidate will focus on developing sequential learning algorithms
with mathematical guarantees for learning on given non-stationary
processes that are relevant in the context of recommendation systems,
and on implementation of the algorithms that will be developed. S/He
will also work on the eye tracker based application of the project. A
degree in machine learning or in mathematics with an interest in
theoretical computer science will be preferred. Uni Magdeburg (90
minutes away from Berlin, Germany, by public transports) and universities
in nearby Berlin offer a highly motivating and rich research environment.

The PhD candidates will be advised by Dr. Alexandra Carpentier (contact
https://www.uni-potsdam.de/fileadminO1/projects/sfb1294/
Ausschreibung_SFB1294_A03_2ndround-4-2.pdf for more info).
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Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

Adam Barbara Céline
viewery viewers viewers
ranking ranking
ranking ranking

movies movieg moviec

Blade Runner 2049 Cars 3 Capitaine Superslip

Question: Do we recommend Capitaine Superslip to Adam?

Let's compute some score(v, m)!
. brzia—
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Use of Laplacians: Movie recommendation

How to compute the score(v, m)? Using some graph distance!

Idea;: maximally weighted path

score(v, m) = max,py, weight(P) = max,pm Y . p ranking(e)

Ideay: change the path weight

scorey(v, m) = max,py, weight,(P) = max,py, minecp ranking(e)

Ideas: consider everything

scorez(v, m) = max flow from m to v

-
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Laplacians and Resistive Networks

How to compute the score(v, m)?

Ideay: view edges as conductors

scorea (v, m) = effective resistance between m and v

C = conductance
R = resistance

i = current

V = voltage

V
i=C B

. Crzia—~
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Resistive Networks: Some high-school physics

Electricity/explained ™

. brezia~
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Resistive Networks

resistors

R=Ri+--+R, C=

conductors in

C=G+--+Cy i=WC

Take two nodes: a = b. Let V,, be the voltage between them and
isp the current between them. Define R, = 7\% and C,p = R%,'

We treat the entire graph as a resistor!

-

&Z A —
. Michal Valko — Graphs in Machine Learning Sequel - 10/54




Resistive Networks: Optional Homework (ungraded)

Show that R.p, is a metric space.

1. Rap >0

2. Rpp,=0iffa=0»b
3. Rab = Rpa

4. Rac < Rap + Rbe

The effective resistance is a distance!
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How to compute effective resistance?

Kirchhoff’'s Law = flow in = flow out

G
(u) @)

v=%v, + % Vo + % V3 (convex combination)

residual current = CV — GVi — GWo — (33
Kirchhoff says: This is zero! There is no residual current!

. brezia~
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Resistors: Where is the link with the Laplacian?

General case of the previous! d; = Zj cjj = sum of conductances

d  ifi=],
Lj =< —c; if(i,j) €E,
0 otherwise.

v = voltage setting of the nodes on graph.
(Lv); = residual current at v; — as we derived
Use: setting voltages and getting the current

Inverting = injecting current and getting the voltages

The net injected has to be zero = Kirchhoff’s Law.
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Resistors and the Laplacian: Finding R,

Let's calculate R;) to get the movie recommendation score!

0 i
Vo 0
L : =
Vn_1 0
1 —i

1
Return Ry = =
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

. Cbreia—
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Resistors and the Laplacian: Finding Ry

Lv=(/,0,...,—/)" = boundary valued problem
For Ry

Vi and V) are the boundary

(vi,va,...,vy) is harmonic:

V; € interior (not boundary)

V; is a convex combination of its neighbors

Michal Valko — Graphs in Machine Learning
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Resistors and the Laplacian: Finding Ry,

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle

If f = v is harmonic then min and max are on the boundary.

Uniqueness Principle

If f and g are harmonic with the same boundary then f = g
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Resistors and the Laplacian: Finding Ry

Alternative method to calculate Ry y:
1

0
Lv = défiext Return Ry = vi — vy Why?

0
-1

Question: Does v exist? L does not have an inverse :(.

Not unique: 1 in the nullspace of L : L(v+ cl) = Lv+cLl =Lv
Moore-Penrose pseudo-inverse |solves LS

Solution: Instead of v = L™ ligy we take v = Lt iy

We get: Ry = vi — vy = il v =il LTy

Notice: We can reuse L™ to get resistances for any pair of nodes!

. Crzia—~
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What? A pseudo-inverse?
Eigendecomposition of the Laplacian:
N N
L=QAQ" = Z Aigiq; = Z Aig;q;
i=1 i=2
Pseudo-inverse of the Laplacian:

N
1
LT =QA Q" = ) i
i=2 7

Moore-Penrose pseudo-inverse solves a least squares problem:

v =argmin ||Lx — iext ||, = L iy
X

. brezia~
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How to rule the world?

Let’s make France great again!
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How to rule the world?

One reason you're seeing this ad is that

wants to reach people who
are part of an audience called “Likely To Engage
in Politics (Liberal)". This is based on your
activity on Facebook and other apps and
websites, as well as where you connect to the
internet.

There may be other reasons you're seeing this
ad, including that Donald J. Trump wants to
reach people ages 25 and older who live near
Boston, Massachusetts. This is information
based on your Facebook profile and where
you've connected to the internet.

Was this explanation useful?




How to rule the world: “Al” is here

DOESTHE
QA0

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/
1d71fe2e-d391-11e2-b05f-3ea3f0e7bbba_story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U
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Application of Graphs for ML: Clustering
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Application: Clustering - Recap

» What do we know about the clustering in general?

> ill defined problem (different tasks — different paradigms)
> “I know it when | see it"
» inconsistent (wrt. Kleinberg's axioms)

» number of clusters k need often be known
» difficult to evaluate

» What do we know about k-means?
» “hard” version of EM clustering
> sensitive to initialization
» optimizes for compactness
» yet: algorithm-to-go

. Crzia—~
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Spectral Clustering: Cuts on graphs

A
C b
B
E G
F H
J
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Spectral Clustering: Cuts on graphs

A
C b
B
E G
F H
! J

Defining the cut objective we get the clustering!
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Spectral Clustering: Cuts on graphs

A
C
D
B
E G
F H
! J
K
MinCut: cut(A, B) = > ica jeg Wi Are we done?

Can be solved efficiently, but maybe not what we want . . ..
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Spectral Clustering: Balanced Cuts

Let's balance the cuts!

cut(A, B) Z wjj

i€EAjEB

. 1 1
RatioCut(A, B) = Z wjj (W + E)

Normalized Cut

NCut(A,B)= > w;

i€EAjJEB

<V01(A) v01(3)>

. brezia~
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Spectral Clustering: Balanced Cuts

RatioCut(A, B) = cut(A, B) (’;‘ |é|)

NCut(A, B) = cut(A, B) <V011(A) " voll(B)>

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!
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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

mincut(A, B) s.t. |A| =|B]|
A,B

)

1 if V;eA,

Graph function f for cluster membership: f; =
-1 if V;eB.

What it is the cut value with this definition?

cut(A,B)= Y wij=j Zw,d = LfLf

i€AjEB

What is the relationship with the smoothness of a graph function?

. brezia~
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B)= > wi = 4ZW,J = 1fLf
i€AjeB
Al=|B] = ¥,fi=0 = ulN
Ifll = vV

objective function of spectral clustering

minf'Lf st fi=%l, fLl1ly, |f| = VN

Still NP hard :(  — Relax even further!

MHI?ER
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

minf'Lf st feR, fLlly, |f| = VN

Rayleigh-Ritz theorem

If Ay <--- < Ay are the eigenvectors of real symmetric L then

.
. x"Lx .
A1 = min = min x'Lx
x£0 XTX xTx=1
T
x'Lx
AN = max = max Xx'Lx

X#O XTX xTx=1

x'Lx —

.. = Rayleigh quotient

How can we use it?

-
bezia—
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

minf'Lf st fER, FLly, |f] = VN

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)

If Ay <--- < Ay are the eigenvectors of real symmetric L and

vi,...,Vy the corresponding orthogonal eigenvalues, then for
k=1:N-1
.
x'Lx .
A1 = min — = min x"Lx
x£0,x Lvy,..vp X'X xTx=1,xLvy,...vg
T
x'Lx
ANk = max — = max x"Lx
x£0,xLvp,..vy_ky1 X'X xTx=1,x Lvpy,..vp_ ki1

-
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Rayleigh-Ritz theorem: Quick and dirty proof

When we reach the extreme points?

gx <L> _ 83 (;_E;) —0 = f(x)g(x) = Fg'(x)

By matrix calculus (or just calculus):

Ox"Lx Ox"x
=2L
ox X and ox

When f'(x)g(x) = f(x)g’(x)?

TLx

X <= Lx= \x

Lx (x'x) = (x'L — Lx=
x(x'x) = (x"Lx) x X =0

Conclusion: Extremes are the eigenvectors with their eigenvalues

. brezia~

Michal Valko — Graphs in Machine Learning Sequel - 30/54



Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

minf'Lf st feR, L1y, |If] = VN

Solution: second eigenvector How do we get the clustering?

The solution may not be integral. 'What to do?
1 if f; >0,
cluster; =
-1 if ; <O.

Works but this heuristics is often too simple. In practice, cluster f
using k-means to get {C;}; and assign:

1 if i € Cq,
cluster; =
-1 ifie C;.

. Crzia—~
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

1 1
RatioCut(A, B) = Z wijj (7 + F)
eajes Al 1Bl

Define graph function f for cluster membership of RatioCut:

] % if Vi €A,

—,/% if V, € B.

fILF = 3 wi (£ — £)* = (JA| + |B|)RatioCut(A, B)
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Spectral Clustering: Approximating RatioCut

Define graph function f for cluster membership of RatioCut:

B :
. TAl if Vi €A,
A

—J%’ﬁmea
-0
S

objective function of spectral clustering (same - it's magic!)

minf'Lf st f€R, flly, |Ifj=VN

Michal Valko — Graphs in Machine Learning
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Spectral Clustering: Approximating NCut

Normalized Cut
1 1
NCut(A,B)= > w; (vol(A)+V01(B))

icAjeB

Define graph function f for cluster membership of NCut:

vol(A .
. i ifvieA
e vol(B) .
— if V; e B.

(DF)'1,=0 fDfF=vol(V)  f'Lf = vol(V)NCut(A, B)

objective function of spectral clustering (NCut)

minf'Lf st fieR, Df L1y, f'Df=vol(V)

. Clreia—
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

mfin f'lLf st. fieR, DfL1y, fDf=vol(V)

Can we apply Rayleigh-Ritz now? Define w = D/2f

objective function of spectral clustering (NCut)

minw'D~Y2LD 2w st. w; € R,w L DY21,, |jwl|? = vol(V)
w

objective function of spectral clustering (NCut)

mnw'Lymw st. w €R, wLvy ., [[w]?=vol(V)
w

-
brzia—
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw st w, €R, wLvy o, |lw]|=vol(V)
w

Solution by Rayleigh-Ritz? w=v,, . f=D"12w
f is a the second eigenvector of L,y !

tl;dr: Get the second eigenvector of L/L, for RatioCut/NCut.

. Clreia—
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Spectral Clustering: Approximation

These are all approximations. 'How bad can they be?

Example: cockroach graphs

Vi Vi Vi Vo

Va1 Vik  Vapsr Vax

No efficient approximation exist. Other relaxations possible.

https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95.pdf

Graphs in Machine Learning
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

10 10 6
4
5 5
2
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2

4 6 8 10

Eigenvalues Eigenvalues Eigenvalues
" 0.08 * ¥

0.06
0.06

0.04
0.04 %

0.02 % % % * 0.02 x * ¥

o *

0:
123 456 7 8 910 123 456 7 8 910 123 456 7 8 910
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Spectral Clustering: Understanding

Compactness vs. Connectivity

&

as W ot s

For which kind of data we can use one vs. the other?

Any disadvantages of spectral clustering?

Graphs in Machine Learning

Sequel - 39/54



Spectral Clustering: 1D Example - Histogram
8 -

6 L

N | .
0 2 4 6 8 10

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

. brezia~
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Spectral Clustering: 1D Example - Eigenvectors

norm, full graph unnorm, knn norm, knn

unnorm, full graph

Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
0.08 [ \ \
- ﬂ \ -0.1 | \ 05 w
0.06 Soal | | 02 x o4l | 04 ‘
004 . £ [ -03 \ \ 0
002 502 | \ 04 \ 02 | 02 (
’ L = [ -05 \ \ 05
I l | 0 | 0
23456788910 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
0.04 m 0 Vo 0 1 o f
003 g | \ | 0.1 A
= -0.05 -0.05 I
0.02 € \ | o | S
g -0.41 [ \
0.01 < \ S ~01 w
[ S S AL A 4 — L L |
23456788910 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
P < - ~ Ve N 0.5 |
08 * & -0.4s1 0.1 \ o1y [ oa ~N / \
06 > \ / \ [
04 2ot 0 \ 0 / 0 \ ’J \\ 0
3 \
0.2 = -0.1 . -0.1 \ o
o * S -0.1451 \ 0.1 \ J \ / s
12345678910 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
axx*x 5 Ve )
0.15 . g oonr 0.05 \\ 005t | [ oosh ,” \ 08
= \ | \ 0.6
o 2 0 \ o | of | [\ s
g -0.0707 \ \ / \ \\
0.05 N 5 -0.05 \ 005! | | -oos| |\ | 02|
. £ _0.0707 \_/ \J ol_—
12345678910 > 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
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Spectral Clustering: Bibliography
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Information Processing Systems. 2001
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