Graphs in Machine Learning

Michal Valko
Inria Lille - Nord Europe, France
TA: Pierre Perrault
Partially based on material by: Ulrike von Luxburg, Gary Miller, Mikhail Belkin

Previous Lecture

- similarity graphs
- different types
- construction
- sources of graphs
- practical considerations
- spectral graph theory
- Laplacians and their properties
- symmetric and asymmetric normalization
- random walks
- recommendation on a bipartite graph
- resistive networks
- recommendation score as a resistance?
- Laplacian and resistive networks
- resistance distance and random walks

This Lecture

- geometry of the data and the connectivity
- spectral clustering
- manifold learning with Laplacians eigenmaps
- Gaussian random fields and harmonic solution
- graph-based semi-supervised learning and manifold regularization
- transductive learning
- inductive and transductive semi-supervised learning

Next Class: Lab Session

- 23.10. 2017 by Pierre Perrault
- cca. 10h00-10h30 optional help with setup, 10h30-12h30: TD
- Salle Condorcet
- Download the image and set it up BEFORE the class
- Matlab/Octave
- Short written report (graded)
- All homeworks together account for 40% of the final grade
- Content
- Graph Construction
- Test sensitivity to parameters: σ, k, ε
- Spectral Clustering
- Spectral Clustering vs. k-means
- Image Segmentation

PhD student position on the topic of sequential learning (mathematical statistics and machine learning) at Uni Magdeburg. PhD candidate will focus on developing sequential learning algorithms with mathematical guarantees for learning on given non-stationary processes that are relevant in the context of recommendation systems, and on implementation of the algorithms that will be developed. S / He will also work on the eye tracker based application of the project. A degree in machine learning or in mathematics with an interest in theoretical computer science will be preferred. Uni Magdeburg (90 minutes away from Berlin, Germany, by public transports) and universities in nearby Berlin offer a highly motivating and rich research environment.

The PhD candidates will be advised by Dr. Alexandra Carpentier (contact https://www.uni-potsdam.de/fileadmin01/projects/sfb1294/ Ausschreibung_SFB1294_A03_2ndround-4-2.pdf for more info).

Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?

Question: Do we recommend Capitaine Superslip to Adam?
Let's compute some score (v, m) !

Use of Laplacians: Movie recommendation

How to compute the score (v, m) ? Using some graph distance!
Idea ${ }_{1}$: maximally weighted path
$\operatorname{score}(v, m)=\max _{v P m} \operatorname{weight}(P)=\max _{v P m} \sum_{e \in P} \operatorname{ranking}(e)$

Idea 2 : change the path weight
$\operatorname{score}_{2}(v, m)=\max _{v P m}$ weight $_{2}(P)=\max _{v P m} \min _{e \in P} \operatorname{ranking}(e)$

Idea3: consider everything
score $_{3}(v, m)=$ max flow from m to v

Laplacians and Resistive Networks

How to compute the $\operatorname{score}(v, m)$?
Idea 4 : view edges as conductors
$\operatorname{score}_{4}(v, m)=$ effective resistance between m and v

$$
\begin{aligned}
C & \equiv \text { conductance } \\
R & \equiv \text { resistance } \\
i & \equiv \text { current } \\
V & \equiv \text { voltage }
\end{aligned}
$$

$$
C=\frac{1}{R} \quad i=C V=\frac{V}{R}
$$

Resistive Networks: Some high-school physics

Resistive Networks

resistors in series

$$
R=R_{1}+\cdots+R_{n} \quad C=\frac{1}{\frac{1}{C_{1}}+\cdots+\frac{1}{C_{N}}} \quad i=\frac{V}{R}
$$

conductors in parallel

$$
C=C_{1}+\cdots+C_{N} \quad i=V C
$$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let $V_{a b}$ be the voltage between them and $i_{a b}$ the current between them. Define $R_{a b}=\frac{V_{a b}}{i_{a b}}$ and $C_{a b}=\frac{1}{R_{a b}}$.

We treat the entire graph as a resistor!

Resistive Networks: Optional Homework (ungraded)

Show that $R_{a b}$ is a metric space.

1. $R_{a b} \geq 0$
2. $R_{a b}=0$ iff $a=b$
3. $R_{a b}=R_{b a}$
4. $R_{a c} \leq R_{a b}+R_{b c}$

The effective resistance is a distance!

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out

$$
V=\frac{C_{1}}{C} V_{1}+\frac{C_{2}}{C} V_{2}+\frac{C_{3}}{C} V_{3} \text { (convex combination) }
$$

residual current $=C V-C_{1} V_{1}-C_{2} V_{2}-C_{3} V_{3}$
Kirchhoff says: This is zero! There is no residual current!

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_{i}=\sum_{j} c_{i j}=$ sum of conductances

$$
\mathbf{L}_{i j}= \begin{cases}d_{i} & \text { if } i=j \\ -c_{i j} & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbf{v}=$ voltage setting of the nodes on graph.
$(\mathbf{L v})_{i}=$ residual current at \mathbf{v}_{i} - as we derived
Use: setting voltages and getting the current
Inverting \equiv injecting current and getting the voltages

The net injected has to be zero \equiv Kirchhoff's Law.

Resistors and the Laplacian: Finding $R_{a b}$

Let's calculate $R_{1 N}$ to get the movie recommendation score!

$\mathbf{L}\left(\begin{array}{c}0 \\ v_{2} \\ \vdots \\ v_{n-1} \\ 1\end{array}\right)=\left(\begin{array}{c}i \\ 0 \\ \vdots \\ 0 \\ -i\end{array}\right)$

$$
i=\frac{V}{R} \quad V=1 \quad R=\frac{1}{i}
$$

Return $R_{1 N}=\frac{1}{i}$
Doyle and Snell: Random Walks and Electric Networks https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

Resistors and the Laplacian: Finding $R_{1 N}$

$$
\mathbf{L v}=(i, 0, \ldots,-i)^{\top} \equiv \text { boundary valued problem }
$$

For $R_{1 N}$
V_{1} and V_{N} are the boundary
$\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ is harmonic:
$V_{i} \in$ interior (not boundary)
V_{i} is a convex combination of its neighbors

Resistors and the Laplacian: Finding $R_{1 n}$

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $\mathbf{f}=\mathbf{v}$ is harmonic then \min and max are on the boundary.

Uniqueness Principle

If \mathbf{f} and \mathbf{g} are harmonic with the same boundary then $\mathbf{f}=\mathbf{g}$

Resistors and the Laplacian: Finding $R_{1 N}$

Alternative method to calculate $R_{1 N}$:
$\mathbf{L v}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0 \\ -1\end{array}\right) \stackrel{\text { def }}{=} \mathbf{i}_{\text {ext }} \quad$ Return $\quad R_{1 N}=v_{1}-v_{N} \quad$ Why?
Question: Does vexist? L does not have an inverse :(.
Not unique: $\mathbf{1}$ in the nullspace of $\mathbf{L}: \mathbf{L}(\mathbf{v}+c \mathbf{1})=\mathbf{L v}+c \mathbf{L} \mathbf{1}=\mathbf{L v}$ Moore-Penrose pseudo-inverse solves LS
Solution: Instead of $\mathbf{v}=\mathbf{L}^{-1} \mathbf{i}_{\text {ext }}$ we take $\mathbf{v}=\mathbf{L}^{+} \mathbf{i}_{\text {ext }}$
We get: $R_{1 N}=v_{1}-v_{N}=\mathbf{i}_{\text {ext }}^{\top} \mathbf{v}=\mathbf{i}_{\text {ext }}^{\top} \mathbf{L}^{+} \mathbf{i}_{\text {ext }}$.
Notice: We can reuse \mathbf{L}^{+}to get resistances for any pair of nodes!

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$
\mathbf{L}=\mathbf{Q} \Lambda \mathbf{Q}^{\top}=\sum_{i=1}^{N} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\top}=\sum_{i=2}^{N} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\top}
$$

Pseudo-inverse of the Laplacian:

$$
\mathbf{L}^{+}=\mathbf{Q} \boldsymbol{\Lambda}^{+} \mathbf{Q}^{\top}=\sum_{i=2}^{N} \frac{1}{\lambda_{i}} \mathbf{q}_{i} \mathbf{q}_{i}^{\top}
$$

Moore-Penrose pseudo-inverse solves a least squares problem:

$$
\mathbf{v}=\underset{\mathbf{x}}{\arg \min }\left\|\mathbf{L x}-\mathbf{i}_{\mathrm{ext}}\right\|_{2}=\mathbf{L}^{+} \mathbf{i}_{\mathrm{ext}}
$$

How to rule the world?

Let's make France great again!

Incia

How to rule the world?

One reason you're seeing this ad is that
Donald J. Trump wants to reach people who are part of an audience called "Likely To Engage
in Politics (Liberal)". This is based on your activity on Facebook and other apps and websites, as well as where you connect to the internet.

There may be other reasons you're seeing this ad, including that Donald J. Trump wants to reach people ages 25 and older who live near Boston, Massachusetts. This is information based on your Facebook profile and where you've connected to the internet.

How to rule the world: "Al" is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/
1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html
https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/
Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U

Application of Graphs for ML: Clustering

Application: Clustering - Recap

- What do we know about the clustering in general?
- ill defined problem (different tasks \rightarrow different paradigms)
- "I know it when I see it"
- inconsistent (wrt. Kleinberg's axioms)
- number of clusters k need often be known
- difficult to evaluate
- What do we know about k-means?
- "hard" version of EM clustering
- sensitive to initialization
- optimizes for compactness
- yet: algorithm-to-go

Spectral Clustering: Cuts on graphs

Spectral Clustering: Cuts on graphs

Defining the cut objective we get the clustering!

Spectral Clustering: Cuts on graphs

MinCut: $\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i j}$

Spectral Clustering: Balanced Cuts

Let's balance the cuts!

MinCut

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i j}
$$

RatioCut

$$
\operatorname{RatioCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{|A|}+\frac{1}{|B|}\right)
$$

Normalized Cut

$$
\operatorname{NCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
$$

Spectral Clustering: Balanced Cuts

$$
\begin{gathered}
\operatorname{RatioCut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{|A|}+\frac{1}{|B|}\right) \\
\operatorname{NCut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
\end{gathered}
$$

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!

Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

$$
\min _{A, B} \operatorname{cut}(A, B) \quad \text { s.t. }|A|=|B|
$$

Graph function \mathbf{f} for cluster membership: $f_{i}= \begin{cases}1 & \text { if } V_{i} \in A, \\ -1 & \text { if } V_{i} \in B .\end{cases}$
What it is the cut value with this definition?

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i, j}=\frac{1}{4} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \mathbf{f}^{\top} \mathbf{L f}
$$

What is the relationship with the smoothness of a graph function?

Spectral Clustering: Relaxing Balanced Cuts

$$
\begin{aligned}
& \quad \operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i, j}=\frac{1}{4} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \mathbf{f}^{\top} \mathbf{L f} \\
& |A|=|B| \Longrightarrow \sum_{i} f_{i}=0 \Longrightarrow \mathbf{f} \perp \mathbf{1}_{N} \\
& \|\mathbf{f}\|=\sqrt{N}
\end{aligned}
$$

objective function of spectral clustering

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i}= \pm 1, \quad \mathbf{f} \perp \mathbf{1}_{N}, \quad\|\mathbf{f}\|=\sqrt{N}
$$

Still NP hard $:(\quad \rightarrow \quad$ Relax even further!

$$
\overline{f_{i}} \geqslant \leq 1 \quad \rightarrow \quad f_{i} \in \mathbb{R}
$$

Spectral Clustering: Relaxing Balanced Cuts

$$
\begin{gathered}
\text { objective function of spectral clustering } \\
\min _{\mathbf{f}} \mathbf{f}^{\top} \text { Lf } \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{N}, \quad\|f\|=\sqrt{N}
\end{gathered}
$$

Rayleigh-Ritz theorem

If $\lambda_{1} \leq \cdots \leq \lambda_{N}$ are the eigenvectors of real symmetric \mathbf{L} then

$$
\begin{aligned}
\lambda_{1} & =\min _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\min _{\mathbf{x}^{\top} \mathbf{x}=1} \mathbf{x}^{\top} \mathbf{L x} \\
\lambda_{N} & =\max _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\max _{\mathbf{x}^{\top} \mathbf{x}=1} \mathbf{x}^{\top} \mathbf{L} \mathbf{x}
\end{aligned}
$$

$\frac{x^{\top} L x}{x^{\top} x} \equiv$ Rayleigh quotient
How can we use it?

Spectral Clustering: Relaxing Balanced Cuts

 objective function of spectral clustering$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{N}, \quad\|\mathbf{f}\|=\sqrt{N}
$$

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)

If $\lambda_{1} \leq \cdots \leq \lambda_{N}$ are the eigenvectors of real symmetric \mathbf{L} and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{N}$ the corresponding orthogonal eigenvalues, then for $k=1: N-1$

$$
\begin{aligned}
& \lambda_{k+1}=\min _{\mathbf{x} \neq 0, \mathbf{x} \perp \mathbf{v}_{1}, \ldots \mathbf{v}_{k}} \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\min _{\mathbf{x}^{\top} \mathbf{x}=1, \mathbf{x} \perp \mathbf{v}_{1}, \ldots \mathbf{v}_{k}} \mathbf{x}^{\top} \mathbf{L x} \\
& \lambda_{N-k}=\max _{\mathbf{x} \neq 0, \mathbf{x} \perp \mathbf{v}_{n}, \ldots \mathbf{v}_{N-k+1}} \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\max _{\mathbf{x}^{\top} \mathbf{x}=1, \mathbf{x} \perp \mathbf{v}_{N}, \ldots \mathbf{v}_{N-k+1}} \mathbf{x}^{\top} \mathbf{L x}
\end{aligned}
$$

Rayleigh-Ritz theorem: Quick and dirty proof

When we reach the extreme points?

$$
\frac{\partial}{\partial \mathbf{x}}\left(\frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}\right)=\frac{\partial}{\partial \mathbf{x}}\left(\frac{f(\mathbf{x})}{g(\mathbf{x})}\right)=0 \Longleftrightarrow f^{\prime}(\mathbf{x}) g(\mathbf{x})=f(\mathbf{x}) g^{\prime}(\mathbf{x})
$$

By matrix calculus (or just calculus):

$$
\frac{\partial \mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\partial \mathbf{x}}=2 \mathbf{L} \mathbf{x} \quad \text { and } \quad \frac{\partial \mathbf{x}^{\top} \mathbf{x}}{\partial \mathbf{x}}=2 \mathbf{x}
$$

When $f^{\prime}(\mathbf{x}) g(\mathbf{x})=f(\mathbf{x}) g^{\prime}(\mathbf{x})$?

$$
\mathbf{L x}\left(\mathbf{x}^{\top} \mathbf{x}\right)=\left(\mathbf{x}^{\top} \mathbf{L} \mathbf{x}\right) \mathbf{x} \Longleftrightarrow \mathbf{L x}=\frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} \mathbf{x} \Longleftrightarrow \mathbf{L x}=\lambda \mathbf{x}
$$

Conclusion: Extremes are the eigenvectors with their eigenvalues

Spectral Clustering: Relaxing Balanced Cuts

$$
\begin{aligned}
& \text { objective function of spectral clustering } \\
& \min _{f} \mathbf{f}^{\top} \text { Lf } \\
& \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{N}, \quad\|f\|=\sqrt{N}
\end{aligned}
$$

Solution: second eigenvector How do we get the clustering?
The solution may not be integral. What to do?

$$
\text { cluster }_{i}= \begin{cases}1 & \text { if } f_{i} \geq 0 \\ -1 & \text { if } f_{i}<0\end{cases}
$$

Works but this heuristics is often too simple. In practice, cluster \mathbf{f} using k-means to get $\left\{C_{i}\right\}_{i}$ and assign:

$$
\text { cluster }_{i}= \begin{cases}1 & \text { if } i \in C_{1}, \\ -1 & \text { if } i \in C_{-1} .\end{cases}
$$

Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

$$
\operatorname{RatioCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{|A|}+\frac{1}{|B|}\right)
$$

Define graph function \mathbf{f} for cluster membership of RatioCut:

$$
\begin{gathered}
f_{i}= \begin{cases}\sqrt{\frac{|B|}{|A|}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{|A|}{|B|}} & \text { if } V_{i} \in B .\end{cases} \\
\mathbf{f}^{\top} \mathbf{L f}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=(|A|+|B|) \operatorname{RatioCut}(A, B)
\end{gathered}
$$

Spectral Clustering: Approximating RatioCut

Define graph function \mathbf{f} for cluster membership of RatioCut:

$$
\begin{gathered}
f_{i}= \begin{cases}\sqrt{\frac{|B|}{|A|}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{|A|}{|B|}} & \text { if } V_{i} \in B .\end{cases} \\
\sum_{i} f_{i}=0 \\
\sum_{i} f_{i}^{2}=N
\end{gathered}
$$

objective function of spectral clustering (same - it's magic!)

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{N}, \quad\|\mathbf{f}\|=\sqrt{N}
$$

Spectral Clustering: Approximating NCut

Normalized Cut

$$
\operatorname{NCut}(A, B)=\sum_{i \in A, j \in B} w_{i j}\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
$$

Define graph function \mathbf{f} for cluster membership of NCut:

$$
\begin{array}{cc}
f_{i}= \begin{cases}\sqrt{\frac{\operatorname{vol}(A)}{\operatorname{vol}(B)}} & \text { if } V_{i} \in A, \\
-\sqrt{\frac{\operatorname{vol}(B)}{\operatorname{vol}(A)}} & \text { if } V_{i} \in B .\end{cases} \\
(\mathbf{D f})^{\top} \mathbf{1}_{n}=0 & \mathbf{f}^{\top} \mathbf{D} \mathbf{f}=\operatorname{vol}(\mathcal{V})
\end{array} \mathbf{f}^{\top} \mathbf{L f}=\operatorname{vol}(\mathcal{V}) \operatorname{NCut}(A, B) .
$$

objective function of spectral clustering (NCut)

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{D f} \perp \mathbf{1}_{N}, \quad \mathbf{f}^{\top} \mathbf{D} \mathbf{f}=\operatorname{vol}(\mathcal{V})
$$

Spectral Clustering: Approximating NCut

$$
\begin{gathered}
\text { objective function of spectral clustering (NCut) } \\
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f} \quad \text { s.t. } \quad f_{i} \in \mathbb{R}, \quad \mathbf{D f} \perp \mathbf{1}_{N}, \quad \mathbf{f}^{\top} \mathbf{D f}=\operatorname{vol}(\mathcal{V}) \\
\text { Can we apply Rayleigh-Ritz now? Define } \mathbf{w}=\mathbf{D}^{1 / 2} \mathbf{f} \\
\text { objective function of spectral clustering (NCut) } \\
\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{D}^{-1 / 2} \mathbf{L} \mathbf{D}^{-1 / 2} \mathbf{w} \quad \text { s.t. } \quad w_{i} \in \mathbb{R}, \mathbf{w} \perp \mathbf{D}^{1 / 2} \mathbf{1}_{N},\|\mathbf{w}\|^{2}=\operatorname{vol}(\mathcal{V}) \\
\hline \text { objective function of spectral clustering }(\mathrm{NCut}) \\
\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{L}_{\text {sym }} \mathbf{w} \quad \text { s.t. } \quad w_{i} \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1, \mathbf{L}_{\text {sym }}, \quad\|\mathbf{w}\|^{2}=\operatorname{vol}(\mathcal{V})}
\end{gathered}
$$

Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

$\min _{\mathbf{w}} \mathbf{w}^{\top} \mathbf{L}_{\text {sym }} \mathbf{w} \quad$ s.t. $\quad w_{i} \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1, \mathbf{L}_{\text {sym }}}, \quad\|\mathbf{w}\|=\operatorname{vol}(\mathcal{V})$

Solution by Rayleigh-Ritz? $\quad \mathbf{w}=\mathbf{v}_{2, \mathbf{L}_{\text {sym }}} \mathbf{f}=\mathbf{D}^{-1 / 2} \mathbf{w}$
\mathbf{f} is a the second eigenvector of $\mathrm{L}_{\text {rw }}$.
$\mathbf{t l} ; \mathbf{d r}$: Get the second eigenvector of $\mathbf{L} / \mathbf{L}_{\mathrm{rw}}$ for RatioCut/NCut.

Spectral Clustering: Approximation

These are all approximations. How bad can they be?
Example: cockroach graphs

No efficient approximation exist. Other relaxations possible.
https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95.pdf

Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

Spectral Clustering: Understanding

Compactness vs. Connectivity

For which kind of data we can use one vs. the other?
Any disadvantages of spectral clustering?

Spectral Clustering: 1D Example - Histogram

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/ publications/Luxburg07_tutorial.pdf

Spectral Clustering: 1D Example - Eigenvectors

Eigenvalues

Eigenvalues

Eigenvector 1

Eigenvector 1

Eigenvector 2

Eigenvector 1 Eigenvector 2

Eigenvector 5

Eigenvector 4
Eigenvector 5

Eigenvector 4

Eigenvector 1 Eigenvector 2

Spectral Clustering: Bibliography

- M. Meila et al. "A random walks view of spectral segmentation". In: International Conference on Artificial Intelligence and Statistics (2001)
- $\mathrm{L}_{\text {sym }}$ Andrew Y Ng, Michael I Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm". In: Neural Information Processing Systems. 2001
- L_{rm} J Shi and J Malik. "Normalized Cuts and Image Segmentation". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000), pp. 888-905
- Things can go wrong with the relaxation: Daniel A. Spielman and Shang H. Teng. "Spectral partitioning works: Planar graphs and finite element meshes". In: Linear Algebra and Its Applications 421 (2007), pp. 284-305

> Michal Valko
> michal.valko@inria.fr
> ENS Paris-Saclay, MVA 2017/2018
> SequeL team, Inria Lille - Nord Europe
> https: //team.inria.fr/sequel/

