Graphs in Machine Learning

Michal Valko
Inria Lille - Nord Europe, France
TA: Pierre Perrault
Partially based on material by: Ulrike von Luxburg,
Gary Miller, Doyle \& Schnell, Daniel Spielman

Previous lecture

- where do the graphs come from?
- social, information, utility, and biological networks
- we create them from the flat data
- random graph models
- specific applications and concepts
- maximizing influence on a graph gossip propagation, submodularity, proof of the approximation guarantee
- Google pagerank random surfer process, steady state vector, sparsity
- online semi-supervised learning label propagation, backbone graph, online learning, combinatorial sparsification, stability analysis
- Erdős number project, real-world graphs, heavy tails, small world - when did this happen?
- PS: some students have started working on their projects already

This lecture

- similarity graphs
- different types
- construction
- practical considerations
- Laplacians and their properties
- spectral graph theory
- random walks
- recommendation on a bipartite graph
- resistive networks
- recommendation score as a resistance?
- Laplacian and resistive networks
- resistance distance and random walks

Statistical Machine Learning in Paris!

https://sites.google.com/site/smileinparis/sessions-2016--17

Speaker: Anna Ben-Hamou (UMPC LSTA)
Topic: Estimating graph parameters via random walks with restarts
Date: Monday, October 9, 2017
Time: 13:30-14:30 (this is pretty soon)
Place: Institut Henri Poincaré, room 421

Graph theory refresher

Graph theory refresher

Graph theory refresher

- 250 years of graph theory
- Seven Bridges of Königsberg (Leonhard Euler, 1735)
- necessary for Eulerian circuit: 0 or 2 nodes of odd degree
- after bombing and rebuilding there are now 5 bridges in Kaliningrad for the nodes with degrees [2, 2, 3, 3]
- the original problem is solved but not practical http://people.engr.ncsu.edu/mfms/SevenBridges/

Similarity Graphs

Input: $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{N}$

- raw data
- flat data
- vectorial data

Similarity Graphs

Similarity graph: $\mathcal{G}=(\mathcal{V}, \mathcal{E})-(u n)$ weighted
Task 1: For each pair i, j : define a similarity function $s_{i j}$
Task 2: Decide which edges to include
ε-neighborhood graphs - connect the points with the distances smaller than ε
k-NN neighborhood graphs - take k nearest neighbors
fully connected graphs - consider everything
This is art (not much theory exists).
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf

Similarity Graphs: ε-neighborhood graphs

Edges connect the points with the distances smaller than ε.

- distances are roughly on the same scale (ε)
- weights may not bring additional info \rightarrow unweighted
- equivalent to: similarity function is at least ε
- theory [Penrose, 1999]: $\varepsilon=((\log N) / N)^{d}$ to guarantee connectivity n nodes, d dimension
- practice: choose ε as the length of the longest edge in the MST - minimum spanning tree

What could be the problem with this MST approach?

Similarity Graphs: k-nearest neighbors graphs

Edges connect each node to its k-nearest neighbors.

- asymmetric (or directed graph)
- option OR: ignore the direction
- option AND: include if we have both direction (mutual k-NN)
- how to choose k ?
- $k \approx \log N$ - suggested by asymptotics (practice: up to \sqrt{N})
- for mutual k-NN we need to take larger k
- mutual k-NN does not connect regions with different density
- why don't we take $k=N-1$?

Similarity Graphs: Fully connected graphs

Edges connect everything.

- choose a "meaningful" similarity function s
- default choice:

$$
s_{i j}=\exp \left(\frac{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- why the exponential decay with the distance?
- σ controls the width of the neighborhoods
- similar role as ε
- a practical rule of thumb: 10% of the average empirical std
- possibility: learn σ_{i} for each feature independently
- metric learning (a whole field of ML)

Similarity Graphs: Important considerations

- calculate all $s_{i j}$ and threshold has its limits ($N \approx 10000$)
- graph construction step can be a huge bottleneck
- want to go higher? (we often have to)
- down-sample
- approximate NN
- LSH - Locally Sensitive Hashing
- CoverTrees
- Spectral sparsifiers
- sometime we may not need the graph (just the final results)
- yet another story: when we start with a large graph and want to make it sparse (later in the course)
- these rules have little theoretical underpinning
- similarity is very data-dependent

Similarity Graphs: ε or $k-N N ?$

DEMO IN CLASS

http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_
tutorial.pdf

Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

$$
s_{i j}=\exp \left(\frac{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Cosine similarity function:

$$
s_{i j}=\cos (\theta)=\left(\frac{\mathbf{x}_{i}^{\top} \mathbf{x}_{j}}{\left\|\mathbf{x}_{i}\right\|\left\|\mathbf{x}_{j}\right\|}\right)
$$

Typical Kernels

Similarity Graphs

$\mathcal{G}=(\mathcal{V}, \mathcal{E})$ - with a set of nodes \mathcal{V} and a set of edges \mathcal{E}

Sources of Real Networks

- http://snap.stanford.edu/data/
- http://www-personal.umich.edu/~mejn/netdata/
- http://proj.ise.bgu.ac.il/sns/datasets.html
- http://www.cise.ufl.edu/research/sparse/matrices/
- http://vlado.fmf.uni-lj.si/pub/networks/data/ default.htm

Graph Laplacian

$\mathcal{G}=(\mathcal{V}, \mathcal{E})$ - with a set of nodes \mathcal{V} and a set of edges \mathcal{E}

Properties of Graph Laplacian

Graph function: a vector $\mathbf{f} \in \mathbb{R}^{N}$ assigning values to nodes:

$$
\mathbf{f}: \mathcal{V}(\mathcal{G}) \rightarrow \mathbb{R}
$$

$$
\mathbf{f}^{\top} \mathbf{L f}=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(f_{i}-f_{j}\right)^{2}=S_{G}(\mathbf{f})
$$

Recap: Eigenwerte und Eigenvektoren

A vector \mathbf{v} is an eigenvector of matrix \mathbf{M} of eigenvalue λ

$$
\mathbf{M} \mathbf{v}=\lambda \mathbf{v} .
$$

If ($\lambda_{1}, \mathbf{v}_{1}$) are $\left(\lambda_{2}, \mathbf{v}_{2}\right)$ eigenpairs for symmetric \mathbf{M} with $\lambda_{1} \neq \lambda_{2}$ then $\mathbf{v}_{1} \perp \mathbf{v}_{2}$, i.e., $\mathbf{v}_{1}^{\top} \mathbf{v}_{2}=0$.

If $\left(\lambda, \mathbf{v}_{1}\right),\left(\lambda, \mathbf{v}_{2}\right)$ are eigenpairs for \mathbf{M} then $\left(\lambda, \mathbf{v}_{1}+\mathbf{v}_{2}\right)$ is as well.

For symmetric \mathbf{M}, the multiplicity of λ is the dimension of the space of eigenvectors corresponding to λ.
$N \times N$ symmetric matrix has N eigenvalues ($\mathrm{w} /$ multiplicities).

Eigenvalues, Eigenvectors, and Eigendecomposition

A vector \mathbf{v} is an eigenvector of matrix \mathbf{M} of eigenvalue λ

$$
\mathbf{M} \mathbf{v}=\lambda \mathbf{v} .
$$

Vectors $\left\{\mathbf{v}_{i}\right\}_{i}$ form an orthonormal basis with $\lambda_{1} \leq \lambda_{2} \leq \ldots \lambda_{N}$.

$$
\forall i \quad \mathbf{M} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \quad \equiv \quad \mathbf{M Q}=\mathbf{Q} \mathbf{\Lambda}
$$

\mathbf{Q} has eigenvectors in columns and Λ has eigenvalues on its diagonal.
Right-multiplying $\mathbf{M Q}=\mathbf{Q} \boldsymbol{\Lambda}$ by \mathbf{Q}^{\top} we get the
eigendecomposition of \mathbf{M} :

$$
\mathbf{M}=\mathbf{M} \mathbf{Q} \mathbf{Q}^{\top}=\mathbf{Q} \boldsymbol{\wedge} \mathbf{Q}^{\top} \leqslant \sum_{i} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}
$$

$\mathrm{M}=\mathrm{L}$: Properties of Graph Laplacian

We can assume non-negative weights: $w_{i j} \geq 0$.
\mathbf{L} is symmetric
\mathbf{L} positive semi-definite $\leftarrow \mathbf{f}^{\top} \mathbf{L} \mathbf{f}=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(f_{i}-f_{j}\right)^{2}$
Recall: If $\mathbf{L f}=\lambda \mathbf{f}$ then λ is an eigenvalue (of the Laplacian).
The smallest eigenvalue of \mathbf{L} is 0 . Corresponding eigenvector: $\mathbf{1}_{N}$.
All eigenvalues are non-negative reals $0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{N}$.
Self-edges do not change the value of \mathbf{L}.

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(f_{i}-f_{j}\right)^{2}$. Therefore, \mathbf{f} is constant on each connected component. If there are k components, then \mathbf{L} is k-block-diagonal:

$$
\mathbf{L}=\left[\begin{array}{llll}
\mathbf{L}_{1} & & & \\
& \mathbf{L}_{2} & & \\
& & \ddots & \\
& & & \mathbf{L}_{k}
\end{array}\right]
$$

For block-diagonal matrices: the spectrum is the union of the spectra of \mathbf{L}_{i} (eigenvectors of \mathbf{L}_{i} padded with zeros elsewhere).

For $\mathbf{L}_{i}\left(0, \mathbf{1}_{\left|V_{i}\right|}\right)$ is an eigenpair, hence the claim.

Smoothness of the Function and Laplacian

- $\mathbf{f}=\left(f_{1}, \ldots, f_{N}\right)^{\top}$: graph function
- Let $\mathbf{L}=\mathbf{Q} \mathbf{\Lambda Q}^{\boldsymbol{\top}}$ be the eigendecomposition of the Laplacian.
- Diagonal matrix $\boldsymbol{\Lambda}$ whose diagonal entries are eigenvalues of \mathbf{L}.
- Columns of \mathbf{Q} are eigenvectors of \mathbf{L}.
- Columns of \mathbf{Q} form a basis.
- $\boldsymbol{\alpha}$: Unique vector such that $\mathbf{Q} \boldsymbol{\alpha}=\mathbf{f} \quad$ Note: $\mathbf{Q}^{\top} \mathbf{f}=\boldsymbol{\alpha}$

Smoothness of a graph function $S_{G}(\mathbf{f})$

$$
S_{G}(\mathbf{f})=\mathbf{f}^{\top} \mathbf{L} \mathbf{f}=\mathbf{f}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{f}=\boldsymbol{\alpha}^{\top} \boldsymbol{\Lambda} \boldsymbol{\alpha}=\|\boldsymbol{\alpha}\|_{\Lambda}^{2}=\sum_{i=1}^{N} \lambda_{i} \alpha_{i}^{2}
$$

Smoothness and regularization: Small value of
(a) $S_{G}(\mathbf{f})$
(b) Λ norm of α^{\star}
(c) α_{i}^{\star} for large λ_{i}

Smoothness of the Function and Laplacian

$$
S_{G}(\mathbf{f})=\mathbf{f}^{\top} \mathbf{L f}=\mathbf{f}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{f}=\boldsymbol{\alpha}^{\top} \boldsymbol{\Lambda} \boldsymbol{\alpha}=\|\boldsymbol{\alpha}\|_{\Lambda}^{2}=\sum_{i=1}^{N} \lambda_{i} \alpha_{i}^{2}
$$

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?
Spectral coordinates of eigenvector $\mathbf{v}_{k}: \mathbf{Q}^{\boldsymbol{\top}} \mathbf{v}_{k}=\mathbf{e}_{k}$

$$
S_{G}\left(\mathbf{v}_{k}\right)=\mathbf{v}_{k}^{\top} \mathbf{L} \mathbf{v}_{k}=\mathbf{v}_{k}^{\top} \mathbf{Q} \Lambda \mathbf{Q}^{\top} \mathbf{v}_{k}=\mathbf{e}_{k}^{\top} \boldsymbol{\Lambda} \mathbf{e}_{k}=\left\|\mathbf{e}_{k}\right\|_{\Lambda}^{2}=\sum_{i=1}^{N} \lambda_{i}\left(\mathbf{e}_{k}\right)_{i}^{2}=\lambda_{k}
$$

The smoothness of k-th eigenvector is the k-th eigenvalue.

Laplacian of the Complete Graph K_{N}

What is the eigenspectrum of $\mathbf{L}_{K_{N}}$?

$$
\mathbf{L}_{K_{N}}=\left(\begin{array}{ccccc}
N-1 & -1 & -1 & -1 & -1 \\
-1 & N-1 & -1 & -1 & -1 \\
-1 & -1 & N-1 & -1 & -1 \\
-1 & -1 & -1 & N-1 & -1 \\
-1 & -1 & -1 & -1 & N-1
\end{array}\right)
$$

From before: we know that $\left(0, \mathbf{1}_{N}\right)$ is an eigenpair.
If $\mathbf{v} \neq 0_{N}$ and $\mathbf{v} \perp \mathbf{1}_{N} \Longrightarrow \sum_{i} \mathbf{v}_{i}=0$. To get the other eigenvalues, we compute $\left(\mathbf{L}_{K_{N}} \mathbf{v}\right)_{1}$ and divide by $\mathbf{v}_{1}\left(w \log \mathbf{v}_{1} \neq 0\right)$.

$$
\left(\mathbf{L}_{K_{N}} \mathbf{v}\right)_{1}=(N-1) \mathbf{v}_{1}-\sum_{i=2}^{N} \mathbf{v}_{i}=N \mathbf{v}_{1}
$$

What are the remaining eigenvalues/vectors?

Normalized Laplacians

$$
\begin{aligned}
\mathbf{L}_{u n} & =\mathbf{D}-\mathbf{W} \\
\mathbf{L}_{\text {sym }} & =\mathbf{D}^{-1 / 2} \mathbf{L D} \mathbf{D}^{-1 / 2}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{W D}^{-1 / 2} \\
\mathbf{L}_{r w} & =\mathbf{D}^{-1} \mathbf{L}=\mathbf{I}-\mathbf{D}^{-1} \mathbf{W}
\end{aligned}
$$

$$
\mathbf{f}^{\top} \mathbf{L}_{\text {sym }} \mathbf{f}=\frac{1}{2} \sum_{i, j \leq N} w_{i, j}\left(\frac{f_{i}}{\sqrt{d_{i}}}-\frac{f_{j}}{\sqrt{d_{j}}}\right)^{2}
$$

(λ, \mathbf{u}) is an eigenpair for $\mathbf{L}_{r w}$ iff $\left(\lambda, \mathbf{D}^{1 / 2} \mathbf{u}\right)$ is an eigenpair for $\mathbf{L}_{\text {sym }}$

Normalized Laplacians

$\mathbf{L}_{\text {sym }}$ and $\mathbf{L}_{r w}$ are PSD with non-negative real eigenvalues

$$
0=\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{N}
$$

(λ, \mathbf{u}) is an eigenpair for $\mathbf{L}_{r w}$ iff (λ, \mathbf{u}) solve the generalized eigenproblem $\mathbf{L u}=\lambda \mathbf{D} \mathbf{u}$.
$\left(0, \mathbf{1}_{N}\right)$ is an eigenpair for $\mathbf{L}_{r w}$.

$\left(0, \mathbf{D}^{1 / 2} \mathbf{1}_{N}\right)$ is an eigenpair for $\mathbf{L}_{\text {sym }}$.

Multiplicity of eigenvalue 0 of $\mathbf{L}_{r w}$ or $\mathbf{L}_{\text {sym }}$ equals to the number of connected components.

Proof: As for L.

Laplacian and Random Walks on Undirected Graphs

- stochastic process: vertex-to-vertex jumping
- transition probability $v_{i} \rightarrow v_{j}$ is $p_{i j}=w_{i j} / d_{i}$
$-d_{i} \stackrel{\text { def }}{=} \sum_{j} w_{i j}$
- transition matrix $\mathbf{P}=\left(p_{i j}\right)_{i j}=\mathbf{D}^{-1} \mathbf{W}$ (notice $\mathrm{L}_{r w}=I-\mathbb{P}$)
- if G is connected and non-bipartite \rightarrow unique stationary distribution $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}, \ldots, \pi_{N}\right)$ where $\pi_{i}=d_{i} / \operatorname{vol}(V)$
- $\operatorname{vol}(G)=\operatorname{vol}(V)=\operatorname{vol}(\mathbf{W}) \xlongequal{=} \sum_{i} d_{i}=\sum_{i, j} w_{i j}$
- $\pi=\frac{\mathbf{1}^{\top} \mathbf{W}}{\operatorname{vol}(\mathbf{W})}$ verifies $\pi \mathbf{P}=\pi$ as:

$$
\pi \mathbf{P}=\frac{\mathbf{1}^{\top} \mathbf{W} \mathbf{P}}{\operatorname{vol}(\mathbf{W})}=\frac{\mathbf{1}^{\top} \mathbf{D P}}{\operatorname{vol}(\mathbf{W})}=\frac{\mathbf{1}^{\top} \mathbf{D D}^{-1} \mathbf{W}}{\operatorname{vol}(\mathbf{W})}=\frac{\mathbf{1}^{\top} \mathbf{W}}{\operatorname{vol}(\mathbf{W})}=\pi
$$

What's the difference from the PageRank ${ }^{T M}$?

> Michal Valko
> michal.valko@inria.fr
> ENS Paris-Saclay, MVA 2017/2018
> SequeL team, Inria Lille - Nord Europe
> https: //team.inria.fr/sequel/

