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Previous lecture

» where do the graphs come from?

» social, information, utility, and biological networks
» we create them from the flat data
» random graph models

> specific applications and concepts

» maximizing influence on a graph gossip propagation,
submodularity, proof of the approximation guarantee

» Google pagerank random surfer process, steady state
vector, sparsity

» online semi-supervised learning label propagation, backbone
graph, online learning, combinatorial sparsification,
stability analysis

» Erd6s number project, real-world graphs, heavy tails, small
world — when did this happen?

> PS: some students have started working on their projects already
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This lecture

> similarity graphs
» different types
» construction
» practical considerations

» Laplacians and their properties
> spectral graph theory
» random walks

> recommendation on a bipartite graph

> resistive networks

» recommendation score as a resistance?
» Laplacian and resistive networks
> resistance distance and random walks
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Statistical Machine Learning in Paris!

https://sites.google.com/site/smileinparis/sessions-2016--17

Speaker: Anna Ben-Hamou (UMPC LSTA)

Topic: Estimating graph parameters via random walks with restarts
Date: Monday, October 9, 2017

Time: 13:30 - 14:30 (this is pretty soon)

Place: Institut Henri Poincaré, room 421
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Graph theory refresher

» 250 years of graph theory
» Seven Bridges of Konigsberg (Leonhard Euler, 1735)
> necessary for Eulerian circuit: 0 or 2 nodes of odd degree

> after bombing and rebuilding there are now 5 bridges in
Kaliningrad for the nodes with degrees [2,2, 3, 3]

> the original problem is solved but not practical
http://people.engr.ncsu.edu/mfms/SevenBridges/
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Similarity Graphs
Input: Xx1,X2,X3,...,Xy
> raw data
> flat data

» vectorial data




Similarity Graphs

Similarity graph: G = (V,€) — (un)weighted

Task 1: For each pair i, j: define a similarity function s;;
Task 2: Decide which edges to include

e-neighborhood graphs — connect the points with the distances
smaller than ¢

k-NN neighborhood graphs — take k nearest neighbors
fully connected graphs - consider everything
This is art (not much theory exists).

http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf
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Similarity Graphs: s-neighborhood graphs
Edges connect the points with the distances smaller than e.

» distances are roughly on the same scale (¢)
> weights may not bring additional info — unweighted
> equivalent to: similarity function is at least ¢

> theory [Penrose, 1999]: £ = ((log V)/ V)9 to guarantee
con nectiVity N nodes, d dimension

> practice: choose ¢ as the length of the longest edge in the
MST - minimum spanning tree

What could be the problem with this MST approach?
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Similarity Graphs: k-nearest neighbors graphs
Edges connect each node to its k-nearest neighbors.
» asymmetric (or directed graph)

» option OR: ignore the direction
» option AND: include if we have both direction (mutual k-NN)

how to choose k?

v

k ~ log N - suggested by asymptotics (practice: up to m)

v

for mutual k-NN we need to take larger k

v

mutual k-NN does not connect regions with different density

v

v

why don't we take k = NV — 17

-
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Similarity Graphs: Fully connected graphs

Edges connect everything.

v

choose a “meaningful” similarity function s

2
i —x;
oy =g (L5

why the exponential decay with the distance?
o controls the width of the neighborhoods

> similar role as ¢
» a practical rule of thumb: 10% of the average empirical std
> possibility: learn o; for each feature independently

default choice:

v

v

v

» metric learning (a whole field of ML)

-
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Similarity Graphs: Important considerations

» calculate all sij and threshold has its limits (/V =~ 10000)
» graph construction step can be a huge bottleneck

» want to go higher? (we often have to)

» down-sample
» approximate NN

» LSH - Locally Sensitive Hashing
» CoverTrees
> Spectral sparsifiers

» sometime we may not need the graph (just the final results)
» yet another story: when we start with a large graph and want
to make it sparse (later in the course)

> these rules have little theoretical underpinning

> similarity is very data-dependent
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Similarity Graphs: ¢ or k-NN?

DEMO IN CLASS

Data points epsilon-graph, epsilon=0.3
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http://www.ml.uni-saarland.de/code/GraphDemo/DemoSpectralClustering.htm
http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_
tutorial.pdf
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Generic Similarity Functions

Gaussian similarity function/Heat function/RBF:

2
i —x,
:p< b~ >

Cosine similarity function:

xXIX;
= 0) = i
s = cos(f) <ux,-u||x,-||)

Typical Kernels
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Similarity Graphs
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Sources of Real Networks

» http://snap.stanford.edu/data/

> http://www-personal.umich.edu/~mejn/netdata/

> http://proj.ise.bgu.ac.il/sns/datasets.html

> http://www.cise.ufl.edu/research/sparse/matrices/

> http://vlado.fmf.uni-1j.si/pub/networks/data/
default.htm

IlédzéLA
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Graph Laplacian

G = (V,€) - with a set of nodes V and a set of edges £

A adjacency matrix
W weight matrix
D (diagonal) degree matrix

L=D—W graph Laplacian matrix

4 -1 0o -1 =2

-1 8 -3 —4 0

L= 0 -3 5 =2 0
-1 -4 -2 12 -5

-2 0 0 -5 7
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Properties of Graph Laplacian

Graph function: a vector f € R" assigning values to nodes:

f:V(G) =R

1
fILf =2 > wij(fi — £)* = Sc(f)
ij<N
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Recap: Eigenwerte und Eigenvektoren

A vector v is an eigenvector of matrix M of eigenvalue A

Mv = )\v.

If (A1,v1) are (A2, v2) eigenpairs for symmetric M with \; # A
then vi L vy, i.e,, vjvp = 0.
If (\,v1), (A, v2) are eigenpairs for M then (A, v1 + v3) is as well.

For symmetric M, the multiplicity of X is the dimension of the
space of eigenvectors corresponding to A.

N x N symmetric matrix has /V eigenvalues (w/ multiplicities).
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Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an eigenvector of matrix M of eigenvalue \
Mv = Av.
Vectors {v;}; form an orthonormal basis with A\; < Ay < ... \p.
Vi Mv; = A\v; = MQ = QA
Q has eigenvectors in columns and A has eigenvalugs on its diagonal.

Right-multiplying MQ = QA by Q" we get the
eigendecomposition of M:

M= MQQ" = QAQ" =) \ivjv]
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

L is symmetric

L positive semi-definite < fTLf = 1 >iien wij(fi = 6)?
Recall: If Lf = Af then X is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1.
All eigenvalues are non-negative reals 0 = A\; < Ao < --- < Ay

Self-edges do not change the value of L.

-
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components' indicators.

Proof: If (0,f) is an eigenpair then 0 = %Zi,jgN w;j(fi — )2
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:
Ly
Lo

Ly

For block-diagonal matrices: the spectrum is the union of the
spectra of L; (eigenvectors of L; padded with zeros elsewhere).

For L; (0,1}y,)) is an eigenpair, hence the claim.
.&z’l@
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Smoothness of the Function and Laplacian
> f=(f,...,fy)": graph function
> Let L = QAQT be the eigendecomposition of the Laplacian.

» Diagonal matrix A whose diagonal entries are eigenvalues of L.
» Columns of Q are eigenvectors of L.
» Columns of Q form a basis.

» «: Unique vector such that Qo = f Note: Q'f = «

Smoothness of a graph function S¢(f)

N
So(f) = fLE=fQAQf = a'Aa = ol = > Aio?
i=1

Smoothness and regularization: Small value of

(a) Sg(f) (b) A norm of a*  (c) af for large \;
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Smoothness of the Function and Laplacian

N
Se(f) = f'LE =T QAQ"f = a"Aax = [l = D o7
i=1

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?

Spectral coordinates of eigenvector vi: Q v, = e,

N
Se(vi) =viLvik =viQAQ v) = efAe) = [lex i = D Niex)] = A
i=1

The smoothness of k-th eigenvector is the k-th eigenvalue.
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Michal Valko — Graphs in Machine Learning Sequel - 25/51



Laplacian of the Complete Graph K

What is the eigenspectrum of Lk, ?

N-1 -1 -1 -1 -1
-1 N-1 -1 -1 -1

ey = -1 -1 wN-1 -1 -1
-1 -1 -1 N-1 -1
-1 -1 -1 -1 N-1

From before: we know that (0,1,) is an eigenpair.

Ifv#Oyandv L1y = ), v; =0. To get the other
eigenvalues, we compute (Lk, v); and divide by v; (wlog vi # 0).
N

(LKNV)l = (/V — 1)V1 — ZV,’ = Nvl.
i=2

What are the remaining eigenvalues/vectors?
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Normalized Laplacians

L,=D-W
Loym = D 2LD"12 = | — p~Y/2WwpD1/2
L, =D'L=1-D"'w

2
1 i f
fTLSymf = — W;,j (—/ — #>
2 2, \Va Vs

(A, u) is an eigenpair for L, iff (\,D/?u) is an eigenpair for Ls,m

-
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Normalized Laplacians

Lsym and L,, are PSD with non-negative real eigenvalues
0= < <A< <y

(A, u) is an eigenpair for L, iff (A, u) solve the generalized
eigenproblem Lu = ADu.

(0,1y) is an eigenpair for L,,,.
(0, D1/21N) is an eigenpair for Lgym.

Multiplicity of eigenvalue 0 of L,, or Ls,, equals to the number of
connected components.

Proof: As for L.
. &’Z"&’a/~
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Laplacian and Random Walks on Undirected Graphs
» stochastic process: vertex-to-vertex jumping

» transition probability vi — v; is p;j = w;/d;

def
> d,‘ = Zj Wij
> transition matrix P = (p;;); = D™!W (notice )
» if G is connected and non-bipartite — unique stationary
distribution 7 = (71, m2, 73, ..., 7y) Where m; = d;/vol(V)
> vol(G) = vol(V) = vol(W) <L 37, d = 3, wy
> T = % verifies 7P = 7 as:

_I'wp  1'DP _ 1'DD'W  1'W
~ vol(W)  vol(W)  vol(W)  vol(W)

P

=T

What's the difference from the PageRank'™?
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