inventors for the digital world

THE POWER OF GRAPHS IN SPEEDING UP ONLINE LEARNING AND DECISION MAKING

Michal Valko

SequeL @ Inria Lille - Nord Europe

Berkeley's floating sensor network

Erdös number project

MY PAST 10 YEARS WITH GRAPH IN ML

Online semi-supervised learning for personalization

Bandits and MDPs with discrete and continuous variables

JOINT WORK WITH...

Akram Erraqabi **U** Montréal

Ilias Flaounas Atlassian

Philippe Preux SequeL, Inria

Vianney Perchet CMLA

Alessandro Lazaric FAIR Paris

Jean-Bastien Grill DeepMind Paris

Rémi Munos DeepMind Paris

Edouard Oyallon CentraleSupelec

Alexandra Carpentier U. Magdeburg

Julien Audiffren U of Fribourg

Shipra Agrawal Columbia U

Rémi Bardenet CNRS

Azin Ashkan Google

IIT Bombay

Tomáš Kocák SequeL, Inria

Victor Gabillon QUT Brisbane

Branislav Kveton Google Research

Manjesh Hanawal Mohammad Ghavamzadeh **FAIR California**

Venkatesh Saligrama **Boston University**

Yasin Abbasi-Yadkori DeepMind London

Daniele Calandriello IIT, Genova

Nello Cristianini Odalric-Ambrym Maillard

Yaakov Engel

Rafael

Emilie Kaufmann

CNRS

Gergely Neu

U Pompeu Fabra

Zheng Wen Adobe Research

Eugene Belilovsky MILA 7 Sequen

ONLINE LEARNING

when we reason on the fly

IN 2007 IT ALL STARTED WITH AN IDEA...

- Develop sequential machine learning recognition system
- System with **minimal feedback**
- 90% accurate over 90% of time
- With **theory** that guarantee's its performance
- Efficient (e.g., mobile device)

from B. Kveton

... AND RESULTED IN A REAL SYSTEM IN 2009

- adaptive graph-based recognition system
 - highly accurate
 - trained from a small amount of labeled data
 - real-time running time
 - robust to outliers
 - theoretical analysis

$$\frac{1}{n} \sum_{t} \left(\ell_t^{\mathsf{q}}[t] - y_t \right)^2 \le \frac{1}{n_l} \sum_{i \in I} \left(l_i^* - y_i \right)^2 + \mathcal{O}(n^{-\frac{1}{2}})$$

from B. Kveton

<u>Conditional</u> anomalies are often medical errors. "Medical errors account for 200 000 preventable deaths a year." (HealthGrades study, Wall Street Journal, July 27th 2004)

Online Semi-Supervised Learning on Quantized Graphs. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, California, July 2010.

FACE-RECOGNITION FOR INTEL

THIS CAN'T SCALE: CONNECTED CAR

Personalization

SIZE and SPEED

ANOMALIES

15 Sequel

HUGE AND/OR ONLINE

MV, Kveton, Huang, Ting: Online Semi-Supervised Learning on Quantized Graphs UAI 2010
Kveton, MV, Rahimi, Huang: Semi-Supervised Learning with Max-Margin Graph Cuts AISTATS 2010
Calandriello, Lazaric, MV: Distributed sequential sampling for kernel matrix approximation AISTATS 2017
Calandriello, Lazaric, MV: Second-order kernel online convex optimization with adaptive sketching, ICML 2017
Calandriello, Lazaric, MV: Efficient second-order online kernel learning with adaptive embedding, NIPS 2017
Calandriello, Koutis, Lazaric, MV: Improved large-scale graph learning through ridge spectral sparsification, ICML 2018
code: http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py

Industry transfer to (intel)

Context Aware Vehicle

recognizes when your face is turned to the side

Everyday Sensing and Perception

- health monitoring and assisted living
- Google TV project
 - Personalized advertisement
- Connected Cars
 - Ford, Toyota, Audi/VW Group, Nissan
- Intel Phone (marketed in 2015)
 - adaptive logging in

6870 lines of code in C++ using OpenCV library 2-3 years of research + development

Technology transfer to UPMC (2011)

3 NIH grants \$2,961,032

14 GB of data, 27667 lines of code, 2007-2011.

Homer Warner Award 2010

Example: Heparin Induced Thrombocytopenia

- BEFORE: about 10 years of creating the rule
- BEFORE: Rule definition has 5 pages
- BEFORE: Every adjustment takes 3 months
- AFTER: 5 years of historical data (no supervision needed)
- AFTER: Better performance (prediction/recall) than for the rule
- Large study: 734 decisions (orders) for 40 000 cases
- Evaluation: 54.5% of alerts found useful
- Used by Department of Clinical Care
- Explainability

ONLINE DECISION-MAKING

when we want to act

Example of a graph bandit problem

movie recommendation

- recommend movies to a single user
- goal: maximise the sum of the ratings (minimise regret)
- good prediction after just a few steps
 - $T \ll N$
- extra information
 - ratings are smooth on a graph
- main question: can we learn faster?

GETTING REAL

Let's be lazy and ignore the structure

Multi-armed bandit problem!

Worst case regret (to the best fixed strategy)

Matching lower bound (Auer, Cesa-Bianchi, Freund, Schapire 2002)

How big is N? Number of movies on <u>http://www.imdb.com/stats</u>: 5,310,913 **Problem:** Too many actions!

 $R_T = \mathcal{O}\left(\sqrt{NT}\right)^{\#r}$

- Arm independence is too strong and unnecessary
- Replace N with something much smaller

LEARNING FASTER

- problem/instance/data dependent
- example: linear design N to D
- Here use Graphs to encode structure of decision making!
 - sequential problems where actions are nodes on a graph
 - ▶ find strategies that replace **N** with a **smaller graph-dependent** quantity

#rounds

#dimensions

GRAPH BANDITS: GENERAL SETUP

Every round **t** the learner

- ▶ picks a node $I_t \in [N]$
- ▶ incurs a loss ℓ_{t,I_t}
- optional feedback

The performance is total expected regret

$$R_{T} = \max_{i \in [N]} \mathbb{E} \left[\sum_{t=1}^{T} (\ell_{t,I_{t}} - \ell_{t,i}) \right]$$

STRUCTURES IN ONLINE (RL/BANDIT) PROBLEMS

GRAPHS

KERNELS

DISCOUNT FACTOR in MDPs

CONTINUOUS FUNCTIONS

STRUCTURES WITHOUT TOPOLOGY

24

SPECIFIC GRAPH BANDIT SETTINGS

MV, Munos, Kveton, Kocák: **Spectral Bandits for Smooth Graph Functions**, ICML 2014 Kocák, MV, Munos, Agrawal: **Spectral Thompson Sampling**, AAAI 2014 Hanawal, Saligrama, MV, Munos: **Cheap Bandits**, ICML 2015

SPECTRAL BANDITS

exploiting smoothness of rewards on graphs

SPECTRAL BANDITS

Assumptions

- Unknown reward function $f : V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies \Rightarrow similar preferences.
- Similar preferences \neq neighboring movies.

CDesiterata

An algorithm useful in the case $T \ll N!$

FLIXSTER DATA

Eigenvectors from the Flixster data corresponding to the smallest few eigenvalues of the graph Laplacian projected onto the first principal component of data. Colors indicate the values.

29 Segues

LINEAR VS. SPECTRAL BANDITS

- Linear bandit algorithms
 - ► LinUCB
 - Regret bound $\approx D\sqrt{T \ln T}$
 - ► LinearTS
 - Regret bound $\approx D\sqrt{T \ln N}$

(Agrawal and Goyal, 2013)

(Li et al., 2010)

Note: *D* is ambient dimension, in our case *N*, length of x_i . Number of actions, e.g., all possible movies \rightarrow **HUGE!**

Spectral bandit algorithms

- SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
 - Operations per step: D^2N
- SpectralTS

(Kocák et al., AAAI 2014)

(Valko et al., ICML 2014)

- Regret bound $\approx d\sqrt{T \ln N}$
- Operations per step: $D^2 + DN$

Note: *d* is effective dimension, usually much smaller than *D*.

SPECTRALUCB REGRET BOUND

- ► *d*: Effective dimension.
- > λ : Minimal eigenvalue of $\Lambda = \Lambda_L + \lambda I$.

cumulative ²⁰

ETTER

- C: Smoothness upper bound, $\| \alpha^* \|_{\Lambda} \leq C$.
- ► $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$ for all *i*.

The **cumulative regret** R_T of **SpectralUCB** is with probability $1 - \delta$ bounded as

$$R_{T} \leq \left(8R\sqrt{d\ln\frac{\lambda+T}{\lambda}} + 2\ln\frac{1}{\delta} + 4C + 4\right)\sqrt{dT\ln\frac{\lambda+T}{\lambda}}.$$

Kocák, Neu, MV, Munos: **Efficient learning by implicit exploration in bandit problems with side observations**, NIPS 2014

Kocák, Neu, MV: **Online learning with Erdos-Rényi side-observation graphs** UAI 2016

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016

GRAPH BANDITS WITH SIDE **OBSERVATIONS** exploiting free observations from neighbouring nodes

SIDE OBSERVATIONS: UNDIRECTED

Example 1: undirected observations

SIDE OBSERVATIONS: DIRECTED

Example 2: Directed observation

Full-information

- observe losses of all actions
- example: Hedge

 $R_T = \widetilde{\mathcal{O}}(\sqrt{T})$

Bandits

- observe losses of the chosen action
- example: EXP3

$$\mathsf{R}_{\mathcal{T}} = \widetilde{\mathcal{O}}(\sqrt{\mathsf{NT}})$$

KNOWLEDGE OF OBSERVATION GRAPHS

- ELP (Mannor and Shamir 2011)
 - EXP3 with "LP balanced exploration"
 - undirected $O(\sqrt{\alpha T})$ \Box -needs to know G_t
 - directed case $O(\sqrt{(cT)})$ needs to know G_t
- EXP3-SET (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)
 - undirected $O(\mathcal{J}(\alpha T))$ \square does not need to know G_t \square
- EXP3-DOM (Alon, Cesa-Bianci Innia le, mansour, 2013)
 - directed $O(\sqrt{\alpha T})$ ∇ -need to know G_t
 - calculates dominating set

EXP3-IX: IMPLICIT EXPLORATION

Algorithm 1 EXP3-IX Benefits of the **implicit exploration** 1: Input: Set of actions S = [d], parameters $\gamma_t \in (0, 1), \eta_t > 0$ for $t \in [T]$. 2: no need to know the graph before 3: for t = 1 to T do $w_{t,i} \leftarrow (1/d) \exp\left(-\eta_t \widehat{L}_{t-1,i}\right)$ for $i \in [d]$ 4: An adversary privately chooses losses $\ell_{t,i}$ 5: no need to estimate dominating set for $i \in [d]$ and generates a graph G_t $W_t \leftarrow \sum_{i=1}^d w_{t,i}$ 6: no need for doubling trick $p_{t,i} \leftarrow w_{t,i}/W_t$ 7: Choose $I_t \sim p_t = (p_{t,1}, ..., p_{t,d})$ 8: Observe graph G_t 9: no need for aggregation Observe pairs $\{i, \ell_{t,i}\}$ for $(I_t \to i) \in G_t$ 10: $o_{t,i} \leftarrow \sum_{(j \to i) \in G_t} p_{t,j} \text{ for } i \in [d]$ 11: $\hat{\ell}_{t,i} \leftarrow \frac{\ell_{t,i}}{o_{t,i} + \gamma_t} \mathbb{1}_{\{(I_t \to i) \in G_t\}} \text{ for } i \in [d]$ 12: $R_T = \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha}\,T\,\ln\,N}\right)$ 13: **end for** ······

Optimistic bias for the loss estimates

$$\mathbb{E}[\hat{\ell}_{t,i}] = \frac{\ell_{t,i}}{o_{t,i} + \gamma} o_{t,i} + 0(1 - o_{t,i}) = \ell_{t,i} - \ell_{t,i} \frac{\gamma}{o_{t,i} + \gamma} \leq \ell_{t,i}$$

FOLLOW UPS

- EXP3-IX (Kocák, Neu, MV, Munos, 2014)
 - directed O(√(αT)) ✓ does not need to know Gt ✓
- EXP3.G (Alon, Cesa-Bianchi, Dekel, Koren, 2015)
 - directed $O(\int(\alpha T)) \Box$ does not need to know $G_t \Box$
 - mixes uniform distribution
 - more general algorithm for settings beyond bandits

Inría

- high-probability bound *(mia-*)
- Neu 2015: high-probability bound for EXP3-IX
- ▶ TextBook: Bandit Algorithms T. Lattimore & Cs. Szepesvári

EXTENSION: COMPLEX GRAPH ACTIONS

Example: online shortest path semi-bandits with observing traffic on the side streets

- ▶ Play action $\mathbf{V}_t \in S \subset \{0,1\}^N$, $\|\mathbf{v}\|_1 \leq m$ from all $\mathbf{v} \in S$
- ► Obtain losses $\mathbf{V}_t^{\mathsf{T}} \boldsymbol{\ell}_t$
- Observe additional losses according to the graph

$$R_{T} = \widetilde{\mathcal{O}}\left(m^{3/2}\sqrt{\sum_{t=1}^{T}\alpha_{t}}\right) = \widetilde{\mathcal{O}}\left(m^{3/2}\sqrt{\overline{\alpha}T}\right)$$

EXTENSION: NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ϵ

- reliable: use as exact
- unreliable: rubbish

then we can improve over pure bandit setting!2) Treating noisy observation induces bias

What can we hope for?

$$\widetilde{\mathcal{O}}\left(\sqrt{\mathbf{1}T}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{\overline{\alpha}^{\star}T}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{\mathbf{N}T}\right)$$

effective independence number

Can we learn without knowing either ϵ or α^* ?

NEW DIRECTIONS: UNKNOWN GRAPHS!

- Learning on the graph while learning the graph?
 - most of algorithms require (some) knowledge of the graph
 - not always available to the learner
- Question: Can we learn faster without knowing the graphs?
 - example: social network provider has little incentive to reveal the graphs to advertisers
- Answer: Cohen, Hazan, and Koren: Online learning with feedback graphs without the graphs (ICML 2016)
 - **NO!** (in general we cannot, but possible in the stochastic case)
- ▶ NEXT in the talk: examples where we can do something!
 - Erdös-Rényi side observation graphs
 - Influence Maximisation

EXTENSION: ERDÖS-RÉNYI GRAPHS

- N-2 samples from Bernoulli(r_t) ... R(k)
- N-2 samples from pti ... P(k)
- ▷ O'(k) = P(k) + (1-P(k))R(k)
- $G_{ti} = \min\{k: O'(k) = 1\} \cup \{N-1\}$

$$E[G_{ti}] \approx 1/(p_{ti} + (1-p_{ti})r_t)$$
$$\widehat{\ell}_{t,i} = G_{t,i}O_{t,i}\ell_{t,i}$$

If $r_t \ge (\log T)/(2N-2)$ then $\mathcal{O}\left(\sqrt{\log N \sum_{t=1}^T \frac{1}{r_t}}\right)$

Lower bound (Alon et al. 2013) $\Omega(\sqrt{T/r})$ Get rid of rt $\geq (\log T)/(2N-2)$? Carpentier, MV: **Revealing Graph Bandits for Maximising Local Influence**, AISTATS 2016 Wen, Kveton, MV: **Influence Maximization with Semi-Bandit Feedback**, NIPS 2017

INFLUENCE MAXIMISATION looking for the influential nodes while exploring the graph

REVEALING BANDITS FOR LOCAL INFLUENCE

Unknown $\mathbf{M} = (p_{i,j})_{i,j}$ symmetric matrix of influences

In each time step $t = 1, \ldots, T$

- \blacktriangleright learners picks a node k_t
- ▶ set $S_{k_t,t}$ of influenced nodes is *revealed*

Ínría Select influential people = Find the strategy maximising $L_T = \sum |S_{k_t,t}|$

The number of expected influences of node **k** is by definition

$$r_k = \mathbb{E}\left[|S_{k,t}|\right] = \sum_{j \le N} p_{k,j}$$

Oracle strategy always selects the best

$$k^* = \arg\max_k \mathbb{E}\left[\sum_{t=1}^T |S_{k,t}|\right] = \arg\max_k Tr_k$$

Expected regret of any adaptive, non-oracle strategy unaware of M

 $\mathbb{E}[R_T] = \mathbb{E}[L_T^*] - \mathbb{E}[L_T]$

GLOBAL DIFFUSION PROCESS OF A MARKOV CHAIN

- Sets of progressive diffusion
 - modeling diffusion steps
- Random stopping time
 - but bounded
- Topological ordering

$$\mathcal{S}^{0} \stackrel{\Delta}{=} \mathcal{S}_{t}$$
$$\mathcal{S}^{\tau+1} \stackrel{\Delta}{=} \left\{ u_{2} \in \mathcal{V}_{\mathcal{S}_{t},v} : u_{2} \notin \bigcup_{\tau'=0}^{\tau} \mathcal{S}^{\tau'} \text{ and } \exists e = (u_{1}, u_{2}) \in \mathcal{E}_{\mathcal{S}_{t},v} \text{ s.t. } u_{1} \in \mathcal{S}^{\tau} \text{ and } \mathbf{w}(e) = 1 \right\}$$

EMPIRICAL RESULTS

GLOBAL WORST-CASE BOUNDS

topology	$C_{\mathcal{G}}$ (worst-case C_*)	$R^{lpha\gamma}(n)$ for general ${f X}$	$R^{\alpha\gamma}(n)$ for $\mathbf{X} = \mathbf{I}$
bar graph	$\mathcal{O}(\sqrt{K})$	$\widetilde{\mathcal{O}}\left(dK\sqrt{n}/(lpha\gamma) ight)$	$\widetilde{\mathcal{O}}\left(L\sqrt{Kn}/(lpha\gamma) ight)$
star graph	$\mathcal{O}(L\sqrt{K})$	$\widetilde{\mathcal{O}}\left(dL^{\frac{3}{2}}\sqrt{Kn}/(lpha\gamma) ight)$	$\widetilde{\mathcal{O}}\left(L^2\sqrt{Kn}/(lpha\gamma) ight)$
ray graph	$\mathcal{O}(L^{\frac{5}{4}}\sqrt{K})$	$\widetilde{\mathcal{O}}\left(dL^{\frac{7}{4}}\sqrt{Kn}/(\alpha\gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{9}{4}}\sqrt{Kn}/(\alpha\gamma)\right)$
tree graph	$\mathcal{O}(L^{\frac{3}{2}})$	$\widetilde{\mathcal{O}}\left(dL^2\sqrt{n}/(lpha\gamma) ight)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}}\sqrt{n}/(\alpha\gamma)\right)$
grid graph	$\mathcal{O}(L^{\frac{3}{2}})$	$\widetilde{\mathcal{O}}\left(dL^2\sqrt{n}/(lpha\gamma) ight)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}}\sqrt{n}/(\alpha\gamma)\right)$
complete graph	$\mathcal{O}(L^2)$	$\widetilde{\mathcal{O}}\left(dL^3\sqrt{n}/(lpha\gamma) ight)$	$\widetilde{\mathcal{O}}\left(L^4\sqrt{n}/(lpha\gamma) ight)$

Table 1: $C_{\mathcal{G}}$ and *worst-case* regret bounds for different graph topologies

- real Facebook (a small subgraph)
- weights from U(0,0.1)
- nodetovec with d=10
 - imperfect
- ▶ K = 10
- CUCB with no linear generalisation

- Active learning on graphs: online influence maximization
 - learning the graph while acting on it optimally
 - global cascading model with edge level feedback
 - **difficulty of the problem** and scaling with it
- What is next?
 - node-level feedback
 - dynamic/evolving graphs
 - realistic accessibility constraints

Survey: http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf

48 Segues

SCALE UP!!!

MV, Kveton, Huang, Ting: **Online Semi-Supervised Learning on Quantized Graphs** UAI 2010 Kveton, MV, Rahimi, Huang: **Semi-Supervised Learning with Max-Margin Graph Cuts** AISTATS 2010 Calandriello, Lazaric, MV: **Distributed sequential sampling for kernel matrix approximation** AISTATS 2017 Calandriello, Lazaric, MV: **Second-order kernel online convex optimization with adaptive sketching**, ICML 2017 Calandriello, Lazaric, MV: **Efficient second-order online kernel learning with adaptive embedding**, NIPS 2017 Calandriello, Koutis, Lazaric, MV: **Improved large-scale graph learning through ridge spectral sparsification**, ICML 2018 **code:** <u>http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py</u>

- Large graphs do not fit in a single machine memory
- multiple passes slow, distribution has communication costs
- removing edges impacts structure/accuracy
- Make the graph sparse, while preserving its structure for learning

$$(1-\varepsilon)\mathsf{L}_{\mathcal{G}} \preceq \mathsf{L}_{\mathcal{H}} \preceq (1+\varepsilon)\mathsf{L}_{\mathcal{G}}$$

$$(1-\varepsilon)\mathsf{L}_{\mathcal{G}} - \varepsilon\gamma\mathsf{I} \preceq \mathsf{L}_{\mathcal{H}} \preceq (1+\varepsilon)\mathsf{L}_{\mathcal{G}} + \varepsilon\gamma\mathsf{I}$$

Mixed multiplicative / additive error

large (i.e. $\geq \gamma$) directions reconstructed accurately small (i.e. $\leq \gamma$) directions uniformly approximated ($\gamma \mathbf{I}$)

HOW DOES IT WORK?

arbitrarily split in subgraphs that fit in a single machine

Ínría

DISRE GUARANTEES

Theorem

Given an arbitrary graph \mathcal{G} w.h.p. DISRE satisfies

(1) each sub-graphs is an (ε, γ) -sparsifier

(2) with at most $\mathcal{O}(d_{\text{eff}}(\gamma)\log(n))$ edges.

Dataset: Amazon co-purchase graph [Yang and Leskovec 2015]
↓ natural, artificially sparse (true graph known only to Amazon)
↓ we compute 4-step random walk to recover removed co-purchases
[Gleich and Mahoney 2015]

Target: eigenvector **v** associated with $\lambda_2(\mathbf{L}_{\mathcal{G}})$ [Sadhanala et al. 2016]

n = 334,863 nodes, m = 98,465,352 edges (294 avg. degree)

Alg.	Parameters	$ \mathcal{E} $ (x10 ⁶)	$\ \widetilde{\mathbf{f}}-\mathbf{v}\ _2^2 \ (\sigma\!=\!10^{-3})$	$\ \widetilde{\mathbf{f}}-\mathbf{v}\ _2^2 (\sigma = 10^{-2})$
EXACT		98.5	0.067 ± 0.0004	0.756 ± 0.006
kN	k = 60	15.7	0.172 ± 0.0004	0.822 ± 0.002
DISRE	$\gamma\!=\!$ 0	22.8	0.068 ± 0.0004	0.756 ± 0.005
DISRE	$\gamma\!=\!10^2$	11.8	$\textbf{0.068} \pm 0.0002$	0.772 ± 0.004

Time: Loading \mathcal{G} from disk 90sec, DISRE 120sec($k = 4 \times 32$ CPU), computing $\tilde{\mathbf{f}}$ 120sec, computing $\hat{\mathbf{f}}$ 720sec

CONCLUSION AND NEXT STEPS

- Graphs give way to reason and act with relationships
 - step above over only considering entities
 - high-level cognition this is how children learn!
 - online learning and online decision-making
 - optimal allocation of resources (samples, time)
 - trees and Monte-Carlo tree search
 - tools to scale up the learning with near-linear time!
- What is next?
 - find the way to low-level representation
 - graph-networks that operate on the graphs and relational networks
 - intrinsic exploration over graph and other structures

Michal Valko, SequeL, Inria Lille - Nord Europe, <u>michal.valko@inria.fr</u> <u>http://researchers.lille.inria.fr/~valko/hp/</u>