THE POWER OF GRAPHS IN SPEEDING UP ONLINE LEARNING AND DECISION MAKING

Michal Valko
SequeL @ Inria Lille - Nord Europe

Social MEdia

Erdös number project

Berkeley's floating sensor network

MY PAST 10 YEARS WITH GRAPH IN ML

Online anomaly detection for medical decisions

online decision-making

side observations

smoothness of rewards

online influence maximization

Building good models takes time and they are often unavailable
adaptive structural exploration

Monte-Carlo tree search

Online semi-supervised learning for personalization
new master course Graphs in ML at ML MSc program in Paris

Bandits and MDPs with discrete and continuous variables
online graph sparsification

Akram Erraqabi

Ilias Flaounas Atlassian

Philippe Preux
SequeL, Inria

Vianney Perchet CMLA

Alessandro Lazaric Alexandra Carpentier FAIR Paris

Jean-Bastien Grill DeepMind Paris

Rémi Munos DeepMind Paris

Edouard Oyallon
CentraleSupelec

U. Magdeburg

Julien Audiffren U of Fribourg

Shipra Agrawal Columbia U

Rémi Bardenet CNRS

Azin Ashkan Google

Branislav Kveton Google Research

Daniele Calandriello IIT, Genova

Gergely Neu U Pompeu Fabra

Manjesh Hanawal Mohammad Ghavamzadeh Nello Cristianini Odalric-Ambrym Maillard IIT Bombay FAIR California

Venkatesh Saligrama

Yaakov Engel
Boston University Rafael

Emilie Kaufmann CNRS

Zheng Wen Adobe Research

Eugene Belilovsky MILA $_{7}$ 3gyay

ONLINE LEARNING

when we reason on the fly

IN 2007 IT ALL STARTED WITH AN IDEA...

- Develop sequential machine learning recognition system
- System with minimal feedback
- 90% accurate over 90% of time
- With theory that guarantee's its performance
- Efficient (e.g., mobile device)

from B. Kveton

... AND RESULTED IN A REAL SYSTEM IN 2009

- adaptive graph-based recognition system
- highly accurate
- trained from a small amount of labeled data
- real-time running time
- robust to outliers

- theoretical analysis

$$
\frac{1}{n} \sum_{t}\left(e_{t}^{9}[t]-y_{t}\right)^{2} \leq \frac{1}{n_{l}} \sum_{t=1}\left(l_{i}^{*}-y_{i}\right)^{2}+\mathrm{O}\left(n^{-\frac{1}{2}}\right)
$$

HEALTH: CONDITIONAL ANOMALY DETECTION

...

Conditional anomalies are often medical errors. "Medical errors account for 200000 preventable deaths a year." (HealthGrades study, Wall Street Journal, July 27 ${ }^{\text {th } 2004)}$

FACE-RECOGNITION FOR INTEL

THIS CAN'T SCALE: CONNECTED CAR

Personalization

2 BIG REAL-WORLD ISSUES

* SIZE and SPEED

$$
\mathbf{f}_{u}=\left(\mathbf{L}_{u u}+\gamma_{g} \mathbf{I}\right)^{-1}\left(\mathbf{W}_{u} \mathbf{f}_{l}\right)
$$

- ANOMALIES

HUGE AND/OR ONLINE

MV, Kveton, Huang, Ting: Online Semi-Supervised Learning on Quantized Graphs UAI 2010
Kveton, MV, Rahimi, Huang: Semi-Supervised Learning with Max-Margin Graph Cuts AISTATS 2010
Calandriello, Lazaric, MV: Distributed sequential sampling for kernel matrix approximation AISTATS 2017
Calandriello, Lazaric, MV: Second-order kernel online convex optimization with adaptive sketching, ICML 2017
Calandriello, Lazaric, MV: Efficient second-order online kernel learning with adaptive embedding, NIPS 2017
Calandriello, Koutis, Lazaric, MV: Improved large-scale graph learning through ridge spectral sparsification, ICML 2018
code: http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py

Industry transfer to intel

- Context Aware Vehicle
- recognizes when your face is turned to the side
- Everyday Sensing and Perception
- health monitoring and assisted living

- Google TV project
- Personalized advertisement
- Connected Cars
- Ford, Toyota, Audi/VW Group, Nissan
- Intel Phone (marketed in 2015)
- adaptive logging in

6870 lines of code in C++ using OpenCV library 2-3 years of research + development

Technology transfer to UPMC (2011)

- 3 NIH grants \$2,961,032

14 GB of data, 27667 lines of code, 2007-2011.
Homer Warner Award 2010

- Example: Heparin Induced Thrombocytopenia
- BEFORE: about 10 years of creating the rule
- BEFORE: Rule definition has 5 pages
- BEFORE: Every adjustment takes 3 months
- AFTER: 5 years of historical data (no supervision needed)
- AFTER: Better performance (prediction/recall) than for the rule
- Large study: 734 decisions (orders) for 40000 cases
- Evaluation: 54.5\% of alerts found useful
- Used by Department of Clinical Care
- Explainability

ONLINE DECISIONMAKING

when we want to act

Example of a graph bandit problem

movie recommendation

- recommend movies to a single user
- goal: maximise the sum of the ratings (minimise regret)
- good prediction after just a few steps

$$
T \ll N
$$

- extra information
- ratings are smooth on a graph
- main question: can we learn faster?

GETIING REAL

Let's be lazy and ignore the structure

Multi-armed bandit problem!
Worst case regret (to the best fixed strategy)
Matching lower bound (Auer, Cess-Biandi, Freund, Schapire 2002)
How big is N? Number of movies on http://www.imdb.com/stats: 5,310,913
Problem: Too many actions!

LEARNING FASTER

$R_{T}=\mathcal{O}(\sqrt{N T})$

- Arm independence is too strong and unnecessary
- Replace N with something much smaller
- problem/instance/data dependent
- example: linear design N to \mathbf{D}
* Here use Graphs to encode structure of decision making!
- sequential problems where actions are nodes on a graph
- find strategies that replace N with a smaller graph-dependent quantity

GRAPH BANDITS: GENERAL SETUP

Every round t the learner

- picksa node $I_{t} \in[N]$
- incursaloss $\ell_{t, l_{t}}$
- optional feedback

The performance is total expected regret

$$
R_{T}=\max _{i \in[N]} \mathbb{E}\left[\sum_{t=1}^{T}\left(\ell_{t, l_{t}}-\ell_{t, i}\right)\right]
$$

STRUCTURES IN ONLINE (RLBANDIT) PROBLEMSĆnでáá

GRAPHS

KERNELS

DISCOUNT FACTOR in MDPs

CONTINUOUS FUNCTIONS

STRUCTURES WITHOUT TOPOLOGY

SPECIFIC GRAPH BANDIT SETTINGS

SPECTRAL BANDITS

exploiting smoothness of rewards on graphs

Assumptions

- Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies \Rightarrow similar preferences.
- Similar preferences \nRightarrow neighboring movies.

Desiderata

An algorithm useful in the case $T \ll N$!

Eigenvectors from the Flixster data corresponding to the smallest few eigenvalues of the graph Laplacian projected onto the first principal component of data. Colors indicate the values.

LINEAR VS. SPECTRAL BANDITS

- Linear bandit algorithms
- LinUCB
- Regret bound $\approx D \sqrt{T \ln T}$
- LinearTS
- Regret bound $\approx D \sqrt{T \ln N}$

Note: D is ambient dimension, in our case N, length of x_{i}.
Number of actions, e.g., all possible movies \rightarrow HUGE!

- Spectral bandit algorithms
- SpectralUCB
- Regret bound $\approx d \sqrt{T \ln T}$
- Operations per step: $D^{2} N$
- SpectralTS
(Kocák et al., AAAI 2014)
- Regret bound $\approx d \sqrt{T \ln N}$
- Operations per step: $D^{2}+D N$

Note: d is effective dimension, usually much smaller than D.

- d: Effective dimension.
- λ : Minimal eigenvalue of $\boldsymbol{\Lambda}=\boldsymbol{\Lambda}_{\mathbf{L}}+\lambda \mathbf{I}$.
- C: Smoothness upper bound, $\left\|\boldsymbol{\alpha}^{*}\right\|_{\Lambda} \leq C$.

- $\mathbf{x}_{i}^{\top} \boldsymbol{\alpha}^{*} \in[-1,1]$ for all i.

The cumulative regret R_{T} of SpectralUCB is with probability $1-\delta$ bounded as

$$
R_{T} \leq\left(8 R \sqrt{d \ln \frac{\lambda+T}{\lambda}+2 \ln \frac{1}{\delta}}+4 C+4\right) \sqrt{d T \ln \frac{\lambda+T}{\lambda}} .
$$

Kocák, Neu, MV, Munos: Efficient learning by implicit exploration in bandit problems with side observations, NIPS 2014

Kocák, Neu, MV: Online learning with Erdos-Rényi side-observation graphs UAI 2016

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016

SIDE OBSERVATIONS: UNDIRECTED

Example 1: undirected observations

SIDE OBSERVATIONS: DIRECTED

Example 2: Directed observation

SIDE OBSERVATIONS - AN INTERMEDIATE GAME

Full-information

- observe losses of all actions
- example:Hedge

$$
R_{T}=\widetilde{\mathcal{O}}(\sqrt{T})
$$

Bandits

- observe losses of the chosen action
- example: EXP3

$$
R_{T}=\widetilde{\mathcal{O}}(\sqrt{N T})
$$

(E)
(C)
(A) (B)
(F)

From Experts to Bandits
Mannor and Shamir 2011

KNOWLEDGE OF OBSERVATION GRAPHS

- ELP (Mannor and Shamir 2011)
- EXP3 - with "LP balanced exploration"
- undirected $0(J(\alpha T)) \geqslant$-needs to know $G t$
- directed case $0(J(C T))$ - needs to know G_{t}
- EXP3-SET (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)
- undirected $O(N(\alpha T)) \geqslant$ does not need to know $G_{t} \nabla$
- EXP3-DOM (Alon, Cesa-Bianchi, Gentile, Mansour, 2013)
- directed $0\left(\sqrt{(\alpha T))} \nabla^{\bullet}\right.$-need to know G_{t}
- calculates dominating set

EXP3-IX: IMPLICIT EXPLORATION

```
Algorithm 1 ExP3-IX
    Input: Set of actions \(\mathcal{S}=[d]\),
        parameters \(\gamma_{t} \in(0,1), \eta_{t}>0\) for \(t \in[T]\).
    for \(t=1\) to \(T\) do
        \(w_{t, i} \leftarrow(1 / d) \exp \left(-\eta_{t} \widehat{L}_{t-1, i}\right)\) for \(i \in[d]\)
        An adversary privately chooses losses \(\ell_{t, i}\)
        for \(i \in[d]\) and generates a graph \(G_{t}\)
        \(W_{t} \leftarrow \sum_{i=1}^{d} w_{t, i}\)
        \(p_{t, i} \leftarrow w_{t, i} / W_{t}\)
        Choose \(I_{t} \sim \boldsymbol{p}_{t}=\left(p_{t, 1}, \ldots, p_{t, d}\right)\)
        Observe graph \(G_{t}\)
        Observe pairs \(\left\{i, \ell_{t, i}\right\}\) for \(\left(I_{t} \rightarrow i\right) \in G_{t}\)
        \(o_{t, i} \leftarrow \sum_{(j \rightarrow i) \in G_{t}} p_{t, j}\) for \(i \in[d]\)
        \(\hat{\ell}_{t, i} \leftarrow \frac{\ell_{t, i}}{o_{t, i}+\gamma_{t}} \mathbb{1}_{\left\{\left(I_{t} \rightarrow i\right) \in G_{t}\right\}}\) for \(i \in[d]\)
    end for
```

 Benefits of the implicit exploration
 no need to know the graph before
 - no need to estimate dominating set
 - no need for doubling trick
 no need for aggregation
 \(R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \ln N})\)
 Optimistic bias for the loss estimates
$\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}+\gamma} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}-\ell_{t, i} \frac{\gamma}{o_{t, i}+\gamma} \leq \ell_{t, i}$

FOLLOW UPS

- EXP3-IX (Kocák, Neu, MV, Munos, 2014)
- directed $O(\sqrt{(\alpha T)}) \nabla$ does not need to know $G_{t} \nabla$
- EXP3.G (Alon, Cesa-Bianchi, Dekel, Koren, 2015)
- directed $O(V(\alpha T)) \nabla$ does not need to know $G_{t} \nabla$
- mixes uniform distribution
- more general algorithm for settings beyond bandits
- high-probability bound
- Neu 2015: high-probability bound for EXP3-IX
- TextBook: Bandit Algorithms T. Lattimore \& Cs. Szepesvári

EXTENSION: COMPLEX GRAPH ACTIONS

Example: online shortest path semi-bandits with observing traffic on the side streets

- Play action $\mathbf{V}_{t} \in S \subset\{0,1\}^{N},\|\mathbf{v}\|_{1} \leq m$ from all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_{t}^{\top} \ell_{t}$
- Observe additional losses according to the graph

$$
R_{T}=\tilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\tilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\bar{\alpha} T}\right)
$$

EXTENSION: NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε

- reliable: use as exact
- unreliable: rubbish
then we can improve over pure bandit setting!

2) Treating noisy observation induces bias

What can we hope for?

$$
\tilde{\mathcal{O}}(\sqrt{1 T}) \leq \widetilde{\mathcal{O}}\left(\sqrt{\widehat{\alpha}^{\star} T}\right) \leq \widetilde{\mathcal{O}}(\sqrt{N T})
$$

effective independence number

Can we learn without knowing either ε or α^{*} ?

NEW DIRECTIONS: UNKNOWN GRAPHS!

- Learning on the graph while learning the graph?
- most of algorithms require (some) knowledge of the graph
- not always available to the learner
- Question: Can we learn faster without knowing the graphs?
- example: social network provider has little incentive to reveal the graphs to advertisers
* Answer: Cohen, Hazan, and Koren: Online learning with feedback graphs without the graphs (ICML 2016)
- NO! (in general we cannot, but possible in the stochastic case)
* NEXT in the talk: examples where we can do something!
- Erdös-Rényi side observation graphs
- Influence Maximisation

EXTENSION: ERDÖS-RÉNYI GRAPHS

- N -2 samples from Bernoulli($\left(r_{t}\right)$... $R(k)$
- $\mathrm{N}-2$ samples from Pti ... $\mathrm{P}(\mathrm{k})$
- $O^{\prime}(k)=P(k)+(1-P(k)) R(k)$
- $G_{t i j}=\min \left\{k: O^{\prime}\left(B^{\prime}\right)=1\right\} \cup\{N-1\}$
$\mathrm{E}\left[\mathrm{G}_{\mathrm{ti}}\right] \approx 1 /\left(\mathrm{ptit}+\left(1-p_{\mathrm{pt}}\right) \mathrm{rt}_{\mathrm{t}}\right)$

$$
\widehat{\ell}_{t, i}=G_{t, i} O_{t, i} \ell_{t, i}
$$

If $\mathrm{r}_{\mathrm{t}} \geq(\log \mathrm{T}) /(2 \mathrm{~N}-2)$ then
$\mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \frac{1}{r_{t}}}\right)$
Lower bound (Alonetal. 2013) $\Omega(\sqrt{T / r})$
Get rid of $\mathrm{r} \geq(\log \mathrm{T}) /(2 \mathrm{~N}-2)$?

INFLUENCE MAXIMISATION

 looking for the influential nodes

 looking for the influential nodes while exploring the graph

 while exploring the graph}

REVEALING BANDITS FOR LOCAL INFLUENCE

Unknown $\mathbf{M}=\left(p_{i, j}\right)_{i, j}$ symmetric matrix of influences :

In each time step $t=1, \ldots, T$

- learners picks a node k_{t}
- set $S_{k_{t}, t}$ of influenced nodes is revealed

Select influential people = Find the strategy maximising

$$
L_{T}=\sum_{t=1}^{T}\left|S_{k_{t}, t}\right|
$$

The number of expected influences of node k is by definition

$$
r_{k}=\mathbb{E}\left[\left|S_{k, t}\right|\right]=\sum_{j \leq N} p_{k, j}
$$

Oracle strategy always selects the best

$$
k^{*}=\underset{k}{\arg \max } \mathbb{E}\left[\sum_{t=1}^{T}\left|S_{k, t}\right|\right]=\underset{k}{\arg \max } \operatorname{Tr}_{k}
$$

Expected regret of any adaptive, non-oracle strategy unaware of M

$$
\mathbb{E}\left[R_{T}\right]=\mathbb{E}\left[L_{T}^{*}\right]-\mathbb{E}\left[L_{T}\right]
$$

GLOBAL DIFFUSION PROCESS OF A MARKOV CHAIN Cnでáa

- Sets of progressive diffusion
- modeling diffusion steps
- Random stopping time
- but bounded
* Topological ordering

$$
\begin{aligned}
\mathcal{S}^{0} \triangleq \mathcal{S}_{t} \\
\mathcal{S}^{\tau+1} \triangleq\left\{u_{2} \in \mathcal{V}_{\mathcal{S}_{t}, v}: u_{2} \notin \cup_{\tau^{\prime}=0}^{\tau} \mathcal{S}^{\tau^{\prime}} \text { and } \exists e=\left(u_{1}, u_{2}\right) \in \mathcal{E}_{\mathcal{S}_{t}, v} \text { s.t. } u_{1} \in \mathcal{S}^{\tau} \text { and } \mathbf{w}(e)=1\right\}
\end{aligned}
$$

EMPIRICAL RESULTS

Figure 1: Left: Barabási-Albert
Middle left: Facebook. Middle right: Enron. Right: Gnutella.

Enron and Facebook vs. Gnutella (decentralised)

(a)

(b)

(c)

(d)

topology	$C_{\mathcal{G}}$ (worst-case $\left.C_{*}\right)$	$R^{\alpha \gamma}(n)$ for general X	$R^{\alpha \gamma}(n)$ for X $=\mathbf{I}$
bar graph	$\mathcal{O}(\sqrt{K})$	$\widetilde{\mathcal{O}}(d K \sqrt{n} /(\alpha \gamma))$	$\widetilde{\mathcal{O}}(L \sqrt{K n} /(\alpha \gamma))$
star graph	$\mathcal{O}(L \sqrt{K})$	$\widetilde{\mathcal{O}}\left(d L^{\frac{3}{2}} \sqrt{K n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{2} \sqrt{K n} /(\alpha \gamma)\right)$
ray graph	$\mathcal{O}\left(L^{\frac{5}{4}} \sqrt{K}\right)$	$\widetilde{\mathcal{O}}\left(d L^{\frac{7}{4}} \sqrt{K n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{9}{4}} \sqrt{K n} /(\alpha \gamma)\right)$
tree graph	$\mathcal{O}\left(L^{\frac{3}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d L^{2} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}} \sqrt{n} /(\alpha \gamma)\right)$
grid graph	$\mathcal{O}\left(L^{\frac{3}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d L^{2} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{\frac{5}{2}} \sqrt{n} /(\alpha \gamma)\right)$
complete graph	$\mathcal{O}\left(L^{2}\right)$	$\widetilde{\mathcal{O}}\left(d L^{3} \sqrt{n} /(\alpha \gamma)\right)$	$\widetilde{\mathcal{O}}\left(L^{4} \sqrt{n} /(\alpha \gamma)\right)$

Table 1: $C_{\mathcal{G}}$ and worst-case regret bounds for different graph topologies

FACEBOOK EXPERIMENT

- real Facebook (a small subgraph)
* weights from $\mathrm{U}(0,0.1)$
* nodetovec with $\mathrm{d}=10$
- imperfect
- $K=10$
- CUCB with no linear generalisation

NEXT STEPS

- Active learning on graphs: online influence maximization
- learning the graph while acting on it optimally
- global cascading model with edge level feedback
- difficulty of the problem and scaling with it
- What is next?
- node-level feedback
- dynamic/evolving graphs
- realistic accessibility constraints

Survey:http://researchers.lille.inria.fi/-valko/hp/publications/valko2016bandits.pdf

SCALE UP!!!

MV, Kveton, Huang, Ting: Online Semi-Supervised Learning on Quantized Graphs UAI 2010
Kveton, MV, Rahimi, Huang: Semi-Supervised Learning with Max-Margin Graph Cuts AISTATS 2010
Calandriello, Lazaric, MV: Distributed sequential sampling for kernel matrix approximation AISTATS 2017
Calandriello, Lazaric, MV: Second-order kernel online convex optimization with adaptive sketching, ICML 2017
Calandriello, Lazaric, MV: Efficient second-order online kernel learning with adaptive embedding, NIPS 2017
Calandriello, Koutis, Lazaric, MV: Improved large-scale graph learning through ridge spectral sparsification, ICML 2018
code: http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py

SCALING UP GRAPH LEARNING

* Large graphs do not fit in a single machine memory
- multiple passes slow, distribution has communication costs
- removing edges impacts structure/accuracy
* Make the graph sparse, while preserving its structure for learning

$$
(1-\varepsilon) \mathbf{L}_{\mathcal{G}} \preceq \mathbf{L}_{\mathcal{H}} \preceq(1+\varepsilon) \mathbf{L}_{\mathcal{G}}
$$

$$
(1-\varepsilon) \mathbf{L}_{\mathcal{G}}-\varepsilon \gamma \mathbf{I} \preceq \mathbf{L}_{\mathcal{H}} \preceq(1+\varepsilon) \mathbf{L}_{\mathcal{G}}+\varepsilon \gamma \mathbf{I}
$$

Mixed multiplicative/additive error large (i.e. $\geq \gamma$) directions reconstructed accurately small (i.e. $\leq \gamma$) directions uniformly approximated ($\gamma \mathbf{I}$)

HOW DOES IT WORK?

\qquad

arbitrarily split in subgraphs that fit in a single machine

DISRE GUARANTEES

Theorem
Given an arbitrary graph \mathcal{G} w.h.p. DisRE satisfies
(1) each sub-graphs is an (ε, γ)-sparsifier
(2) with at most $\mathcal{O}\left(d_{\text {eff }}(\gamma) \log (n)\right)$ edges.

Dataset: Amazon co-purchase graph [Yang and Leskovec 2015]
\longrightarrow natural, artificially sparse (true graph known only to Amazon)
\longrightarrow we compute 4-step random walk to recover removed co-purchases [Gleich and Mahoney 2015]

Target: eigenvector \mathbf{v} associated with $\lambda_{2}\left(\mathbf{L}_{\mathcal{G}}\right)$ [Sadhanala et al. 2016] $n=334,863$ nodes, $m=98,465,352$ edges (294 avg. degree)

Alg.	Parameters	$\|\mathcal{E}\|\left(\times 10^{6}\right)$	$\\|\widetilde{\mathbf{f}}-\mathbf{v}\\|_{2}^{2}\left(\sigma=10^{-3}\right)$	$\\|\widetilde{\mathbf{f}}-\mathbf{v}\\|_{2}^{2}\left(\sigma=10^{-2}\right)$
EXACT		98.5	0.067 ± 0.0004	0.756 ± 0.006
kN	$k=60$	15.7	0.172 ± 0.0004	0.822 ± 0.002
DISRE	$\gamma=0$	22.8	0.068 ± 0.0004	$\mathbf{0 . 7 5 6} \pm 0.005$
DisRE	$\gamma=10^{2}$	11.8	$\mathbf{0 . 0 6 8} \pm 0.0002$	0.772 ± 0.004

Time: Loading \mathcal{G} from disk 90 sec, DISRE $120 \sec (k=4 \times 32$ CPU $)$, computing $\widetilde{\mathbf{f}} 120 \mathrm{sec}$, computing $\widehat{\mathbf{f}} 720 \mathrm{sec}$

CONCLUSION AND NEXT STEPS

- Graphs give way to reason and act with relationships
- step above over only considering entities
- high-level cognition - this is how children learn!
- online learning and online decision-making
- optimal allocation of resources (samples, time)
- trees and Monte-Carlo tree search
- tools to scale up the learning with near-linear time!
- What is next?
- find the way to low-level representation
- graph-networks that operate on the graphs and relational networks
- intrinsic exploration over graph and other structures

Michal Valko, SequeL, Inria Lille - Nord Europe, michal.valko@inria.fr http://researchers.lille.inria.fr/~valko/hp/

