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MY PAST 10 YEARS WITH GRAPH IN ML

Bandits and MDPs with discrete  
and continuous variables

Online semi-supervised learning for 
personalization

Building good models takes time 
and they are often unavailable

Labels are 
often costly or 

unavailable
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Online anomaly detection for  
medical decisions

online decision-making

DiSRe

online graph sparsification
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online influence  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smoothness of rewards

Graph bandits: Side observations
Example 2: Directed observation
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Monte-Carlo 
tree search

adaptive structural 
exploration

new master course  Graphs in ML at ML MSc program in Paris
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ONLINE 
LEARNING

when we reason on the fly



IN 2007 IT ALL STARTED WITH AN IDEA...

• Develop sequential machine 
learning recognition system 

• System with minimal feedback 
• 90% accurate over 90% of time 
• With theory that guarantee’s its 

performance 
• Efficient (e.g., mobile device)

9
from B. Kveton



... AND RESULTED IN A REAL SYSTEM IN 2009

• adaptive graph-based 
recognition system 
– highly accurate 
– trained from a small amount 

of labeled data 
– real-time running time 
– robust to outliers 
– theoretical analysis
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HEALTH:	  CONDITIONAL	  ANOMALY	  DETECTION

Conditional anomalies are often medical errors. 
“Medical errors account for 200 000 preventable deaths a year. “ 

(HealthGrades study, Wall Street Journal, July 27th 2004)
11
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Online	  Semi-‐Supervised	  Learning	  on	  Quantized	  Graphs.	  In	  Proceedings	  of	  the	  26th	  Conference	  on	  Uncertainty	  in	  Artificial	  Intelligence,	  California,	  July	  2010.	  
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FACE-RECOGNITION FOR INTEL
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THIS CAN’T SCALE: CONNECTED CAR  

Personalization
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2 BIG REAL-WORLD ISSUES

SIZE and SPEED 

ANOMALIES
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HUGE AND/OR ONLINE
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MV, Kveton, Huang, Ting: Online Semi-Supervised Learning on Quantized Graphs UAI 2010 

Kveton, MV,  Rahimi, Huang:  Semi-Supervised Learning with Max-Margin Graph Cuts AISTATS 2010 

Calandriello, Lazaric, MV: Distributed sequential sampling for kernel matrix approximation AISTATS 2017 

Calandriello, Lazaric, MV: Second-order kernel online convex optimization with adaptive sketching, ICML 2017 

Calandriello, Lazaric, MV: Efficient second-order online kernel learning with adaptive embedding, NIPS 2017 
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Industry	  transfer	  to	  

• Context	  Aware	  Vehicle	  
– recognizes	  when	  your	  face	  is	  turned	  to	  the	  side	  

• Everyday	  Sensing	  and	  Perception	  
– 	  health	  monitoring	  and	  assisted	  living	  

• Google	  TV	  project	  
– Personalized	  advertisement	  

• Connected	  Cars	  
– Ford,	  Toyota,	  Audi/VW	  Group,	  Nissan	  

• Intel	  Phone	  (marketed	  in	  2015)	  
– adaptive	  logging	  in	  

 
6870	  lines	  of	  code	  in	  C++	  using	  OpenCV	  library	  	  

2-‐3	  years	  of	  research	  +	  development

17



Technology transfer to                 (2011) 

3 NIH grants $2,961,032 

14 GB of data,  27667 lines of code, 2007-2011. 

Homer Warner Award 2010   

Example: Heparin Induced Thrombocytopenia  
BEFORE: about 10 years of creating the rule  
BEFORE: Rule definition has 5 pages  

BEFORE: Every adjustment takes 3 months  

AFTER: 5 years of historical data (no supervision needed) 
AFTER: Better performance (prediction/recall) than for the rule 

Large study: 734 decisions (orders) for 40 000 cases 
Evaluation: 54.5% of alerts found useful 
Used by Department of Clinical Care 
Explainability

18



ONLINE 
DECISION-

MAKING
when we want to act



Example of a graph bandit problem

movie recommendation 

recommend movies to a single user 

goal: maximise the sum of the ratings  
(minimise regret) 

good prediction after just a few steps 

extra information  

ratings are smooth on a graph 

main question: can we learn faster?
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GETTING REAL

Let’s be lazy and ignore the structure 

Multi-armed bandit problem! 

Worst case regret (to the best fixed strategy) 

Matching lower bound (Auer, Cesa-Bianchi, Freund, Schapire 2002)   

How big is N?  Number of movies on http://www.imdb.com/stats:  5,310,913  

Problem:  Too many actions!

#actions

#rounds

21
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LEARNING FASTER

Arm independence is too strong and unnecessary 

Replace N with something much smaller 

problem/instance/data dependent 

example: linear design  N to D 

Here use Graphs to encode structure of decision making! 

sequential problems where actions are nodes on a graph 

find strategies that replace N with a smaller graph-dependent quantity

#actions

#rounds

#dimensions

22



GRAPH BANDITS: GENERAL SETUP

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#
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Every round t the learner 

picks a node 

incurs a loss 

optional feedback 

The performance is total expected regret

23



5. Polymatroid bandits

In this chapter, we first introduce polymatroids and illustrate them on practical problems. We use
the problem of the minimum-cost flow (Megiddo 1974) on a network as an illustrative example
before we give the formal definition of polymatroids and learning with them.

⌅ Example 5.1 Consider a flow network with L source nodes and one sink node. The network is
illustrated in Figure 5.1.

Source'1' Source'2'

1'1'

1.5' 1.5'

1.5'

K'

...'
Source'3' Source'4'

1'1'

Source'L'0'1' Source'L'

1'1'

Figure 5.1: The flow network contains L source nodes and the maximum flow is K. The capacity of
the link is shown next to the link.

The network is defined by three constraints. First, the maximum flow through any source node
is 1. Second, the maximum flow through any two consecutive source nodes, e and e+ 1 where
e = 2i�1 for i 2 {1, . . . ,L/2}, is 3

2 . Third, the maximum flow is K. We assume that K is an integer
multiple of 3

2 . The cost of the flow from source node e is a Bernoulli random variable with mean:

w(e) =
⇢

0.5�D/2 e  4
3 K

0.5+D/2 otherwise. (5.1)

STRUCTURES IN ONLINE (RL/BANDIT) PROBLEMS

24

GRAPHS

DISCOUNT FACTOR in MDPs

CONTINUOUS FUNCTIONS

KERNELS

STRUCTURES WITHOUT TOPOLOGY

…

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄⇤

I Limited sampling resources n

At time t  n one can either

I sample a new arm ⌫Kt from the
reservoir distr. with mean
µKt ⇠ F , and set It = Kt,

I or choose an arm It among the
Kt�1

observed arms {⌫k}kKt�1 ,

and then collect Xt ⇠ ⌫kt

Objective: after n rounds, return an
arm bk whose mean µbk is as large as
possible. Minimize the simple regret

rn = µ̄⇤ � µbk,

where µ̄⇤ is the right end point of
1� F .

At time t...:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

etc...

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015



SPECIFIC GRAPH BANDIT SETTINGS

smoothness spectral bandits 
side observations  on graphs

influence maximisation revealing bandits

Revealing Graph bandits: Influence Maximization
Ignoring the structure again? The best we can do is eO �p

r⇤TN
�

We aim to do better: RT = eO �p
r⇤TD⇤

�
D⇤ - detectable dimension dependent on T and the structureI good case: star-shaped graph can have D⇤ = 1I bad case: a graph with many small cliques.I the worst case: all nodes are disconnected except 2Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes
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Exp3-IX regret bound
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Next step
Generalization of the setting to combinatorial actions
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Spectral Bandits Summary
I Spectral bandit setting (smooth graph functions).I SpectralUCB

I Regret bound
RT = eO

⇣

d

p
T ln

T

⌘

I SpectralTS
I Regret bound

RT = eO
⇣

d

p
T ln

N

⌘

I Computationally more e�cient.I SpectralEliminator
I Regret bound

RT = eO
⇣p

d

T ln
T

⌘

I Better upper, empirically does not seem to work well (yet)
I Bounds scale with e�ective dimension
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SPECTRAL 
BANDITS

exploiting smoothness of 
rewards on graphs

MV, Munos, Kveton, Kocák: Spectral Bandits for Smooth Graph Functions, ICML 2014 

Kocák, MV, Munos, Agrawal: Spectral Thompson Sampling, AAAI 2014 

Hanawal, Saligrama, MV, Munos: Cheap Bandits, ICML 2015
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SPECTRAL BANDITS

Online Decision Making on Graphs

Movie recommendation: (in each time step)
I Recommend movies to a single user.
I Good prediction after a few steps (T ⌧N).

Goal:
I Maximize overall reward (sum of ratings).

Assumptions:
I Unknown reward function f : V (G) ! R.
I Function f is smooth on a graph.
I Neighboring movies ) similar preferences.
I Similar preferences 6) neighboring movies.
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Let’s be lazy: Ignore the structure!

Another problem of the typical bandits strategies for recommendation?

If there is no information shared, we need to try all of the options!

UCB/MOSS and likely TS start with pulling each of the arms once

This is a problem both algorithmically and theoretically . . . .

Watch all the movies and then I tell you which one you like . . . .

What do we need for movie recommendation?

An algorithm useful in the case T ⌧ N!

Exploiting the structure is a must!

Michal Valko – Graphs in Machine Learning SequeL - 10/40

Assumptions

Desiderata

27



FLIXSTER DATASmooth graph functions: Flixster eigenvectors
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Eigenvector 9Eigenvectors from the Flixster data corresponding to the smallest

few eigenvalues of the graph Laplacian projected onto the first
principal component of data. Colors indicate the values.
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LINEAR VS. SPECTRAL BANDITS
Online Decision Making on Graphs: Smoothness

I Linear bandit algorithms
I LinUCB (Li et al., 2010)

I Regret bound ⇡ D

p
T ln T

I LinearTS (Agrawal and Goyal, 2013)
I Regret bound ⇡ D

p
T ln N

Note: D is ambient dimension, in our case N, length of xi .
Number of actions, e.g., all possible movies ! HUGE!

I Spectral bandit algorithms
I SpectralUCB (Valko et al., ICML 2014)

I Regret bound ⇡ d

p
T ln T

I Operations per step: D

2

N

I SpectralTS (Kocák et al., AAAI 2014)
I Regret bound ⇡ d

p
T ln N

I Operations per step: D

2 + DN

Note: d is e�ective dimension, usually much smaller than D.

Michal Valko – Graphs in Machine Learning SequeL - 14/40
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SPECTRALUCB REGRET BOUND
SpectralUCB: Regret Bound

I
d : E�ective dimension.

I �: Minimal eigenvalue of ⇤ = ⇤L + �I.
I

C : Smoothness upper bound, k↵⇤k⇤  C .
I xT

i ↵
⇤ 2 [�1, 1] for all i .

The cumulative regret RT of SpectralUCB is with probability 1 � �
bounded as

RT 
 

8R

r

d ln �+ T

�
+ 2 ln 1

�
+ 4C + 4

!

r

dT ln �+ T

�
.

R

T

⇡ d

p
T ln T
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GRAPH 
BANDITS  

WITH SIDE 
OBSERVATIONS
exploiting free observations from 

neighbouring nodes

Kocák, Neu, MV, Munos: Efficient learning by implicit exploration in bandit problems 
with side observations, NIPS 2014 

Kocák, Neu, MV: Online learning with Erdos-Rényi side-observation graphs  
UAI 2016  

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016 



SIDE OBSERVATIONS: UNDIRECTEDGraph bandits: Side observations

Example 1: undirected observations
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Graph bandits: Side observations

Example 1: Graph Representation

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 9/66

32



SIDE OBSERVATIONS: DIRECTEDGraph bandits: Side observations
Example 2: Directed observation
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Graph bandits: Side observations

Example 2

A B

C

DE

F
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SIDE OBSERVATIONS - AN INTERMEDIATE GAME

Full-information 

observe losses of all actions 

example: Hedge

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T )

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT )

A B

C

DE

F

A B

C

DE

F
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Bandits 

observe losses of the chosen action 

example: EXP3

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T )

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT )
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From Experts to Bandits 
Mannor and Shamir 2011



KNOWLEDGE OF OBSERVATION GRAPHS

ELP (Mannor and Shamir 2011)  

EXP3 - with “LP balanced exploration”   

undirected  O(√(αT))  ✅  -  needs to know Gt 

directed case  O(√(cT)) - needs to know Gt 

EXP3-SET (Alon, Cesa-Bianchi, Gentile, Mansour, 2013) 

undirected  O(√(αT))  ✅   does not need to know Gt    ✅  

EXP3-DOM (Alon, Cesa-Bianchi, Gentile, Mansour, 2013) 

directed  O(√(αT))  ✅       -  need to know Gt  

calculates dominating set

35

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT )

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T )

A B

C

DE

F
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Graph bandits: Side observation - Directed case
Side observation (Directed case)

I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = eO(

p
↵T )

Exp3-IX - Kocák et. al
I No need to know graph
I RT = eO(

p
↵T )

A B

C

DE

F
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EXP3-IX: IMPLICIT EXPLORATION

2.2 Performance guarantees for EXP3-IX
Algorithm 1 EXP3-IX

1: Input: Set of actions S = [d],
2: parameters �

t

2 (0, 1), ⌘
t

> 0 for t 2 [T ].
3: for t = 1 to T do

4: w
t,i

 (1/d) exp (�⌘
t

bL
t�1,i

) for i 2 [d]
5: An adversary privately chooses losses `

t,i

for i 2 [d] and generates a graph G
t

6: W
t

 P
d

i=1

w
t,i

7: p
t,i

 w
t,i

/W
t

8: Choose I
t

⇠ p
t

= (p
t,1

, . . . , p
t,d

)

9: Observe graph G
t

10: Observe pairs {i, `
t,i

} for (I
t

! i) 2 G
t

11: o
t,i

 P
(j!i)2Gt

p
t,j

for i 2 [d]

12: ˆ`
t,i

 `t,i

ot,i+�t
1{(It!i)2Gt} for i 2 [d]

13: end for

Our analysis follows the footsteps of Auer et al.
[3] and Györfi and Ottucsák [9], who provide
an improved analysis of the adaptive learning-
rate rule proposed by Auer et al. [4]. However,
a technical subtlety will force us to proceed a
little differently than these standard proofs: for
achieving the tightest possible bounds and the
most efficient algorithm, we need to tune our
learning rates according to some random quan-
tities that depend on the performance of EXP3-
IX. In fact, the key quantities in our analysis are
the terms

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

,

which depend on the interaction history F
t�1

for all t. Our theorem below gives the performance
guarantee for EXP3-IX using a parameter setting adaptive to the values of Q

t

. A full proof of the
theorem is given in the supplementary material.

Theorem 1. Setting ⌘
t

= �
t

=

q
(log d)/(d+

P
t�1

s=1

Q
s

) , the regret of EXP3-IX satisfies

R
T

 4E
"r⇣

d+
P

T

t=1

Q
t

⌘
log d

#
. (3)

Proof sketch. Following the proof of Lemma 1 in Györfi and Ottucsák [9], we can prove that
dX

i=1

p
t,i

ˆ`
t,i

 ⌘
t

2

dX

i=1

p
t,i

⇣
ˆ`
t,i

⌘
2

+

✓
logW

t

⌘
t

� logW
t+1

⌘
t+1

◆
. (4)

Taking conditional expectations, using Equation (2) and summing up both sides, we get
TX

t=1

dX

i=1

p
t,i

`
t,i


TX

t=1

⇣⌘
t

2

+ �
t

⌘
Q

t

+

TX

t=1

E
✓

logW
t

⌘
t

� logW
t+1

⌘
t+1

◆����Ft�1

�
.

Using Lemma 3.5 of Auer et al. [4] and plugging in ⌘
t

and �
t

, this becomes
TX

t=1

dX

i=1

p
t,i

`
t,i

 3

r⇣
d+

P
T

t=1

Q
t

⌘
log d+

TX

t=1

E
✓

logW
t

⌘
t

� logW
t+1

⌘
t+1

◆����Ft�1

�
.

Taking expectations on both sides, the second term on the right hand side telescopes into

E

logW

1

⌘
1

� logW
T+1

⌘
T+1

�
 E


� logw

T+1,j

⌘
T+1

�
= E


log d

⌘
T+1

�
+ E

h
ˆL
T,j

i

for any j 2 [d], giving the desired result as
TX

t=1

dX

i=1

p
t,i

`
t,i


TX

t=1

`
t,j

+ 4E
"r⇣

d+
P

T

t=1

Q
t

⌘
log d

#
,

where we used the definition of ⌘
T

and the optimistic property of the loss estimates.

Setting m = 1 and c = �
t

in Lemma 1, gives the following deterministic upper bound on each Q
t

.
Lemma 2. For all t 2 [T ],

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

 2↵
t

log

✓
1 +

dd2/�
t

e+ d

↵
t

◆
+ 2.

5

Graph bandits: Comparison of loss estimates
Typical algorithms - loss estimates

ˆ̀t,i =

(
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i
ot,i

ot,i + 0(1 � ot,i) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

(
`t,i/(ot,i + �) if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i

ot,i + �
ot,i + 0(1 � ot,i) = `t,i � `t,i

�

ot,i + �
 `t,i

No mixing!
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Optimistic bias for the loss estimates

Benefits of the implicit exploration 

no need to know the graph before 

no need to estimate dominating set 

no need for doubling trick  

no need for aggregation

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵T ln N
⌘

Next step
Generalization of the setting to combinatorial actions
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FOLLOW UPS

EXP3-IX (Kocák, Neu, MV, Munos, 2014) 

directed  O(√(αT))  ✅   does not need to know Gt    ✅  

EXP3.G (Alon, Cesa-Bianchi, Dekel, Koren, 2015) 

directed  O(√(αT))  ✅   does not need to know Gt    ✅ 

mixes uniform distribution 

more general algorithm for settings beyond bandits 

high-probability bound 

 Neu 2015: high-probability bound for EXP3-IX 

TextBook:  Bandit Algorithms T. Lattimore & Cs. Szepesvári

37

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT )

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T )

A B

C

DE

F
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EXTENSION: COMPLEX GRAPH ACTIONSGraph bandits: Complex actions

A B C

DEF

G H I

JKL

I Play action Vt 2 S ⇢ {0, 1}N , kvk
1

 m from all v 2 S
I Obtain losses VT

t `t

I Observe additional losses according to the graph
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Graph bandits: Complex actions

FPL-IX - regret bound

RT = eO
0

@m3/2

vuut
TX

t=1

↵t

1

A = eO
⇣

m3/2

p
↵T

⌘
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Example: online shortest path semi-bandits with observing traffic on the side streets



EXTENSION: NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε 

reliable: use as exact 

unreliable: rubbish 

then we can improve over pure bandit setting! 

2) Treating noisy observation induces bias 

What can we hope for?

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘
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Can we learn without knowing either ε or α* ? 

� "

� "

� "

� "

< "

� "

39

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘
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30 Chapter 2. Side observations

Here we used the fact that Ot,i is independent of Kt,i and has expectation ot,i given Ft�1. We
call this algorithm Follow-the-Perturbed-Leader with Implicit eXploration (FPL-IX, Kocák et al.
2014a). Note that the geometric resampling procedure can be terminated as soon as Kt,i becomes
well-defined for all i with Ot,i = 1. As noted by Neu and Bartók (2013), this requires generating
at most N copies of OOOt on expectation. As each of these copies requires one access to the linear
optimization oracle over S , we conclude that the expected running time of FPL-IX is at most N
times that of the expected running time of the oracle. A high-probability guarantee of the running
time can be obtained by observing that Ut,i  log

� 1
d

�

/gt holds with probability at least 1�d and
thus we can stop sampling after at most d log

�N
d

�

/gt steps with probability at least 1� d . The
regret guarantee for FPL-IX using the approximation e

at of at is stated below.

Theorem 2.2.2 — Regret of FPL-IX by Kocák et al. (2014a). Assume that for all t 2 [T ],

at/C  e

at  at  N for some C > 1. Setting ht = gt =
q

(logN +1)/
�

m
�

N +Ât�1
s=1 eas

��

and
assuming mN > 4, the regret of FPL-IX satisfies

RT  Hm3/2
q

�

N +C ÂT
t=1 at

�

(logN +1), where H = O(log(mNT )).

2.3 Noisy side observations

Until now in this chapter, we studied situations when the learner observes losses associated with
some additional actions besides its own loss. This setting fails to address one important practical
concern: in reality, one can rarely expect perfect side-observations to be available. In the current
section, we propose a similar model that can incorporate imperfect side-observations corrupted by
various levels of noise, depending on the problem structure.

As an illustration of noisy setting, consider the problem of controlling solar panels so as to
maximize their power production. In this problem, the learner has to repeatedly decide about the
orientation of the panels so as to find alignments with strong sunshine. Besides the amount of
the energy being actually produced in the current alignment, the learner can also possibly base
its decisions on measurements of sensors installed on the solar panel. However, the observations
generated by these sensors can be of variable quality depending on visibility conditions, the quality
of the sensors and the alignment of the panels. Overall, this problem can be seen as a bandit problem
with noisy side-observations fitting into our framework, where actions correspond to alignments
and the noisy side observations give information about similar alignments.

Formally, the learning protocol (Figure 2.5) additionally assumes the knowledge of the weight
of each arc i ! j in Gt , which is denoted as st,(i, j) and assumed to lie in [0,1]. The feedback that
the learner in the noisy setting is

ct,i = st,(It ,i) · `t,i +
�

1� st,(It ,i)
�

·xt,i

for every arm i, where xt,i is the observation noise. We assume that each xt,i is zero-mean, satisfies
|xt,i| R for some known constant R � 0, and is generated independently of all other noise terms
and the history of the process2.

2We are mainly interested in the setting where R = Q(1), that is, we are neither in the easy case where R is close to
zero or the hard one where it may be as large as W(

p
T ).

known weight

zero-mean noise

Graph bandits: Noisy Side Observations

eO
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 eO
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effective independence number



NEW DIRECTIONS

Learning on the graph while learning the graph? 

most of algorithms require  (some) knowledge of the graph 

not always available to the learner 

Question: Can we learn faster without knowing the graphs? 

example: social network provider has little incentive to reveal the graphs to 
advertisers 

Answer: Cohen,  Hazan, and Koren:  Online learning with feedback graphs without 
the graphs (ICML 2016) 

NO!   (in general we cannot, but possible in the stochastic case) 

NEXT in the talk: examples where we can do something! 

Erdös-Rényi side observation graphs  

Influence Maximisation 

40

: UNKNOWN GRAPHS!



EXTENSION: ERDÖS-RÉNYI GRAPHS
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2 PROBLEM DEFINITION

We now formalize our learning problem. We consider a
sequential interaction scheme between a learner and an en-
vironment, where the following steps are repeated in every
round t = 1, 2, . . . , T :

1. The environment chooses r
t

2 [0, 1] and a loss func-
tion over the arms, with `

t,i

being the loss associated
with arm i 2 [N ]

def= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some
randomness), the learner draws an arm I

t

2 [N ].

3. The learner suffers loss `
t,It .

4. For all i 6= I
t

, O
t,i

is independently drawn from
a Bernoulli distribution with mean r

t

. Furthermore,
O

t,It is set as 1.

5. For all i 2 [N ] such that O
t,i

= 1, the learner observes
the loss `

t,i

.

The goal of the learner is to minimize its total expected
losses, or, equivalently, to minimize the total expected re-

gret (or, in short, regret) defined as

R
T

= max

i2[N ]

E
"

TX

t=1

(`
t,It � `

t,i

)

#
.

We will denote the interaction history between the learner
and the environment up to the beginning of round t
by F

t�1

. We also define p
t,i

= P [I
t

= i| F
t�1

].

The main challenge in our setting is leveraging side obser-
vations without knowing r

t

. Had we had access to the exact
value of r

t

, we would be able to define the following esti-
mate of `

t,i

:

b̀?
t,i

=

O
t,i

`
t,i

p
t,i

+ (1� p
t,i

)r
t

(1)

It is easy to see that the loss estimates defined this way
are unbiased in the sense that E

h
b̀
t,i

���F
t�1

i
= `

t,i

for
all t and i. It is also straightforward to show that an ap-
propriately tuned instance of the Exp3 algorithm of Auer
et al. (2002a) fed with these loss estimates is guaranteed to
achieve a regret of O(

pP
t

(1/r
t

) logN) (see also Seldin
et al. 2014).

Then, one might consider a simple algorithm that devotes
a number of observations to obtain an estimate br

t

of r
t

and
plug this estimate into (1). However, notice that since r

t

is
allowed to change arbitrarily over time, we can only work
with a severely limited sample budget for estimating r

t

:
only N �1 independent observations! Thus, we can obtain
only very loose confidence intervals around r

t

which trans-
late to even more useless confidence intervals around b̀?

t,i

.

Below, we describe a simple trick for obtaining loss esti-
mates that have similar properties to the ones defined in (1)
without requiring exact knowledge or even explicit estima-
tion of r

t

. Our procedure is based on the geometric resam-
pling method of Neu and Bartók (2013). To get an intuition
of the method, let us assume that we have access to the in-
dependent geometrically distributed random variable G?

t,i

with parameter o
t,i

= p
t,i

+ (1 � p
t,i

)r
t

. Then, replac-
ing 1/o

t,i

by G?

t,i

in the definition of b̀?
t

and ensuring that
G?

t,i

is independent of O
t,i

, we can obtain an unbiased loss
estimate essentially equivalent to b̀?

t

.

The challenge posed by this approach is that in our set-
ting, we do not have exact sample access to the geometric
random variable G?

t,i

. In the next section, we describe our
algorithm that is based on replacing G?

t,i

in the above defi-
nition by an appropriate surrogate.

3 ALGORITHM

Our algorithm is called Exp3-Res and displayed as Algo-
rithm 1. It is based on the Exp3 algorithm of Auer et al.
(2002a) and crucially relies on the construction of a surro-
gate G

t,i

of G?

t,i

. Throughout this section, we will assume
that r

t

� log T

2N�2

, which implies that the probability of hav-
ing no side observations in round t is of order 1/

p
T .

The algorithm is initialized by setting w
1,i

= 1/N for all
i 2 [N ], and then performing the updates

w
t+1,i

=

1

N
exp

⇣
�⌘

t+1

bL
t,i

⌘
(2)

after each round t, where ⌘
t+1

> 0 is a parameter of the
algorithm called the learning rate in round t and bL

t,i

is cu-
mulative sum of the loss estimates b̀

s,i

up to (and including)
time t. In round t, the learner draws its action I

t

such that
I
t

= i holds with probability p
t,i

/ w
t,i

. To simplify some
of the notation below, we introduce the shorthand notations
P
t

[·] = P [ ·| F
t�1

] and E
t

[·] = E [ ·| F
t�1

].

For any fixed t, i, we now describe an efficiently com-
putable surrogate G

t,i

for the geometrically distributed ran-
dom variable G?

t,i

with parameter o
t,i

that will be used for
constructing our loss estimates. In particular, our strategy
will be to construct several independent copies

�
O0

t,i

(k)
 

of O
t,i

and choosing G
t,i

as the index k of the first copy
with O0

t,i

(k) = 1. It is easy to see that with infinitely many
copies, we could exactly recover G?

t,i

; our actual surrogate
is going to be weaker thanks to the smaller sample size. For
clarity of notation, we will omit most explicit references to
t and i, with the understanding that all calculations need to
be independently executed for all pairs t, i.

Let us now describe our mechanism for constructing the
copies {O0

(k)}. Since we need independence of G
t,i

and
O

t,i

for our estimates, we use only side observations from

probability of side observation
probability of picking i

true loss

is loss of i observed?

i

It

actions [N ] \ {I
t

, i}. First, let’s define � as a uniform ran-
dom permutation of [N ] \ {I

t

, i}. For all k 2 [N � 2],
we define R(k) = O

t,�(k)

. Note that due to the construc-
tion, {R(k)}N�2

k=1

are pairwise independent Bernoulli ran-
dom variables with parameter r

t

, independent of O
t,i

. Fur-
thermore, knowing p

t,i

we can define P (1), . . . , P (N�2)
as pairwise independent Bernoulli random variables with
parameter p

t,i

. Using P (k) and R(k) we define the ran-
dom variable O0

(k) as

O0
(k) = P (k) + (1� P (k))R(k)

for all k 2 [N � 2]. Using independence of all previously
defined random variables, it is easy to check that the vari-
ables {O0

(k)}N�2

k=1

are pairwise independent Bernoulli ran-
dom variables with expectation o

t,i

= p
t,i

+ (1 � p
t,i

)r
t

.
Now we are ready to define G

t,i

as

G
t,i

= min {k 2 [N � 2] : O(k)0 = 1} [ {N � 1} . (3)

The following lemma states some properties of G
t,i

.
Lemma 1. For any value of g we have

E [G
t,i

] =

1

o
t,i

� 1

o
t,i

(1� o
t,i

)

N�1

E
⇥
G2

t,i

⇤
=

2� o
t,i

o2
t,i

+

1

o2
t,i

(1� o
t,i

)

N�2⇥

⇥
⇣
o2
t,i

+ o
t,i

� 2 + 2o
t,i

(N � 2)(o
t,i

� 1)

⌘

Proof. The proof follows directly from using the definition
of G

t,i

and simplifying the sums

E [G
t,i

] =

N�2X

k=1

⇥
ko

t,i

(1� o
t,i

)

k�1

⇤
+

+ (N � 1) (1� o
t,i

)

N�2,

E
⇥
G2

t,i

⇤
=

N�2X

k=1

⇥
k2o

t,i

(1� o
t,i

)

k�1

⇤
+

+ (N � 1)

2

(1� o
t,i

)

N�2.

Using Lemma 1, it is easy to see that G
t,i

follows a trun-
cated geometric law in the sense that

P [G
t,i

= m] = P
⇥
min

�
G?

t,i

, N � 1

 
= m

⇤

holds for all m 2 [N � 1]. Using all this notation, we
construct an estimate of `

t,i

as

b̀
t,i

= G
t,i

O
t,i

`
t,i

. (4)

The rationale underlying this definition of G
t,i

is rather
delicate. First, note that p

t,i

is deterministic given the his-
tory F

t�1

and therefore, does not depend on O
t,i

. Second,

Algorithm 1 Exp3-Res
1: Input:
2: Set of actions [N ].
3: Initialization:
4: bL

0,i

 0 for i 2 [N ].
5: Run:
6: for t = 1 to T do
7: ⌘

t

 
r

logN
.⇣

N2

+

P
t�1

s=1

P
N

i=1

p
s,i

(

b̀
s,i

)

2

⌘
.

8: w
t,i

 (1/N) exp(�⌘
t

bL
t�1,i

) for i 2 [N ].
9: W

t

 P
N

i=1

w
t,i

.
10: p

t,i

 w
t,i

/W
t

.
11: Choose I

t

⇠ p
t

= (p
t,1

, . . . , p
t,N

).
12: Receive the observation set O

t

.
13: Receive the pairs {i, `

t,i

} for all i s.t. O
t,i

= 1.
14: Compute G

t,i

for all i 2 [N ] using (3).
15: b̀

t,i

 `
t,i

O
t,i

G
t,i

for all i 2 [N ].
16: bL

t,i

=

bL
t�1,i

+

b̀
t,i

for all i 2 [N ].
17: end for

O
t,i

is also independent of O
t,j

for j 62 {i, I
t

}. As a result,
G

t,i

is independent of O
t,i

, and we can use the identity
E
t

[G
t,i

O
t,i

] = E
t

[G
t,i

]E
t

[O
t,i

]. The next lemma relates
the loss estimates (4) to the true losses, relying on the ob-
servations above and the assumption r

t

� log T

2N�2

.

Lemma 2. Assume r
t

� log T

2N�2

. Then, for all t and i,

0  `
t,i

� E
t

h
b̀
t,i

i
 1p

T
.

Proof. Fix an arbitrary t and i. Using Lemma 1 along with
E
t

[O
t,i

] = o
t,i

and the independence of G
t,i

and O
t,i

, we
get

E
t

h
b̀
t,i

i
= E

t

[G
t,i

O
t,i

`
t,i

] = `
t,i

� `
t,i

(1� o
t,i

)

N�1,

which immediately implies the lower bound on `
t,i

�
E
t

h
b̀
t,i

i
. For proving the upper bound, observe that

`
t,i

(1� o
t,i

)

N�1  (1� r
t

)

N�1  e�rt(N�1)  1p
T

holds by our assumption on r
t

, where we used the elemen-
tary inequality 1� x  ex that holds for all x 2 R.

The next theorem states our main result concerning
Exp3-Res with an adaptive learning rate.

Theorem 1. Assume that r
t

� log T

2N�2

holds for all t and

set

⌘
t

=

s
logN

N2

+

P
t�1

s=1

P
N

i=1

p
s,i

(

b̀
s,i

)

2

.

N-2 samples from Bernoulli(rt)   … R(k) 

N-2 samples from pti … P(k) 

O’(k) = P(k) + (1-P(k))R(k) 

Gti =  min{k : O’(k) = 1} U {N-1} 

E[Gti] ≈ 1/(pti +(1-pti)rt) 

If rt ≥ (log T)/(2N-2) then

0 100 200 300 400 5000

20

40

60

80

100

120

140

Time

Cu
m

ul
at

ive
 re

gr
et

 

 

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(a) Static sequence (rt)
T
t , rt = 0
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(b) Static sequence (rt)
T
t , rt = 0.06 ⇡

log(T )/(2N � 2)
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(c) Changing sequence (rt)
T
t with uni-

formly distributed rt on [0, 0.2]
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(d) Sequence (rt)
T
t generated as a random

walk on [0, 0.1]
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(e) Sequence (rt)
T
t generated as a random

walk on [0, 1]
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(f) Total regret for different values of static
(rt)

T
t

Figure 1: Comparison of algorithm for different amount of side information sequences (different sequences (r
t

)

T

t

)

6 CONCLUSION & FUTURE WORK

In this paper, we considered multi-armed bandit prob-
lems with stochastic side observations modeled by Erdős–
Rényi graphs. Our contribution is a computationally effi-
cient algorithm that operates under the assumption r

t

�
log T/(2N � 2), which essentially guarantees that at least
one piece of side observation is generated in every round,
with high probability. In this case, our algorithm guar-

antees a regret bound of O
✓q

logN
P

T

t=1

1

rt

◆
(Theo-

rem 1). In this section, we discuss several open questions
regarding this result.

The most obvious question is whether it is possible to re-
move our assumptions on the values of r

t

. We can only
give a definite answer in the simple case when all r

t

’s are
identical: In this case, one can think of simply computing
the empirical frequency br

t

of all previous side observations
in round t to estimate the constant r, plug the result into (1),
and then use the resulting loss estimates in an exponential-
weighting scheme. It is relatively straightforward (but also
rather tedious) to show that the resulting algorithm satisfies
a regret bound of eO

⇣p
T/r

⌘
for all possible values of r,

thanks to the fact that r̂
t

quickly concentrates around the

true value of r. Notice however that this approach clearly
breaks down if the r

t

’s change over time.

In the case of changing r
t

’s, the number of observations
we can use to estimate r

t

is severely limited, so much that
we cannot expect any direct estimate of r

t

to concentrate
around the true value. Our algorithm proposed in Section 3
gets around this problem by directly estimating the impor-
tance weights 1/o

t,i

instead of r
t

, which enables us to con-
struct reliable loss estimates, although only at the price of
our assumption on the range of r

t

. While we acknowledge
that this assumption can be difficult to confirm a priori in
practice, we remark that we find it quite surprising that any

algorithm whatsoever can take advantage of such limited
observations, even under such a restriction. We also point
out that for values of r

t

that are consistently below our
bound, it is not possible to substantially improve the regret
bounds of Exp3 which are of eO

⇣p
TN

⌘
, as shown by the

lower bounds of Alon et al. (2013). We expect that in sev-
eral practical applications, one can verify whether the r

t

’s
satisfy our assumption or not, and decide to use Exp3-Res
or Exp3 accordingly. In fact, our experiments suggest that
our algorithm performs well even if neither of these two
assumptions are verified: we have seen that the empirical
performance of Exp3-Res is only slightly worse than that

came from. Relaxing this assumption, however, has to
come with a price: As the very recent results of Cohen et al.
(2016) show, achieving nontrivial advantages from side
observations may be impossible without perfectly known
side-observation graphs when an adversary is allowed to
pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms
achieving strong improvements over the standard regret
guarantees under the assumption that the losses are gen-
erated in an i.i.d. fashion and the graphs may be gener-
ated adversarially. Complementing these results, we con-
sider the case of adversarial losses and make the assump-
tion that the side-observation graph in round t is gener-
ated from an Erd

˝

os–R

´

enyi model with an unknown and
time-dependent parameter r

t

. The main challenge for the
learner is then the necessity to exploit the side observa-
tions despite not knowing the sequence (r

t

). It is easy to
see that this model can be equivalently understood as each
non-chosen arm revealing its loss with probability r

t

, in-
dependently of all other observations. That said, we still
find it useful to think of the side observations as being
generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particu-
lar, the case of learning with Erdős–Rényi side-observation
graphs was considered before by Alon et al. (2013): Given
full access to the underlying graph structure, their algo-
rithm Exp3-SET can be shown to guarantee a regret bound
of O�pP

t

(1/r
t

)(1� (1� r
t

)

N

) logN
�
. While the as-

sumption of having full access to the graph be dropped rel-
atively easily in this particular case, exact knowledge of r

t

seems to be crucial for constructing reliable loss estimates
and use them to guide the choice of action in each round.

It turns out that the problem of estimating r
t

while striv-
ing to perform efficiently is in fact a major difficulty in our
setting. Indeed, as we allow r

t

to change arbitrarily be-
tween each round, we cannot rely on any past observations
to construct well-concentrated estimates of these parame-
ters. That is, the main challenge is estimating r

t

from only
a handful of samples. The core technical tool underlying
our approach is a direct estimation procedure for the losses
that does not estimate r

t

explicitly.

Armed with this estimation procedure, we propose a learn-
ing algorithm called Exp3-Res that guarantees a regret of
O(

pP
t

(1/r
t

) logN), provided that r
t

� log T/(2N�2)

holds for all rounds t. This assumption essentially corre-
sponds to requiring that, with high probability, at least 1
side observation is produced in every round, or, in other
words, the side-observation graphs encountered are all non-

empty. Notice that for the assumed range of r
t

’s, our regret
bound improves upon the standard regret bound of Exp3,
which is of O(

p
NT logN). It is easy to see that when r

t

becomes smaller than 1/N , side observations become un-
reliable and the bound of Exp3 cannot be improved. That
is, if our assumption cannot be verified a priori, then ignor-

ing all side observations and using the Exp3 algorithm of
Auer et al. (2002a) instead can yield a better performance.
On the other hand, given that our assumption holds, our
bounds cannot be significantly improved as suggested by
the lower-bound of ⌦(

p
T/r) proved for a static r by Alon

et al. 2013.

Many other partial-information settings have been studied
in previous work. One of the simplest of these settings
is the label-efficient prediction game considered by Cesa-
Bianchi et al. (2005), where the learner can observe either
losses of all the actions or none of them, not even the loss
of the chosen action. This observation can be queried by
the learner at most an " < 1 fraction of the total number of
rounds, which means no losses are observed in the remain-
ing rounds. An even more restricted information setting,
label efficient bandit feedback was considered by Allen-
berg et al. (2006), where the learner can only query the loss
of the chosen action, instead of all losses (see also Audibert
and Bubeck, 2010). Algorithms for these two settings have
regret of eO(

p
T/") and eO(

p
NT/"), respectively. While

these bounds may appear very similar to ours, notice that
our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be
much more challenging to exploit. In another related set-
ting, Seldin et al. (2014) consider M side observations that
the learner can proactively choose in each round without
limitations. Seldin et al. deliver an algorithm with regret
of eO(

p
(N/M)T ), also proving that choosing M observa-

tions uniformly at random is minimax optimal; given this
sampling scheme, it is not even necessary to observe the
loss of the chosen action. Their result is comparable to
ours and the result by Alon et al. (2013) for Erdős–Rényi
observation graphs with parameter r = M/N . However,
Seldin et al. also assume that M is known, which obviates
the need for estimating r. We provide a more technical dis-
cussion on the related work in Section 6.

In our paper, we assume that, just like the observation prob-
abilities, the losses are adversarial, that is, they can change
at each time step without restrictions. Learning with side
observations and stochastic losses was studied by Caron
et al. (2012) and Buccapatnam et al. (2014). While this
is an easier setting that the adversarial one, the authors as-
sumed, in both cases, that the graphs have to be known
in advance. Recently, Carpentier and Valko (2016) stud-
ied another stochastic setting where the graph is also not
known in advance, however their setting considers differ-
ent feedback and loss structure (influence maximization)
which differs from the side-observation setting.

Furthermore, Alon et al. (2015) considered a strictly more
difficult setting than ours, where the loss of the chosen ac-
tion may not be a part of the received feedback.

Lower bound (Alon et al. 2013)

Get rid of rt ≥ (log T)/(2N-2)?



INFLUENCE 
MAXIMISATION

looking for the influential nodes 
while exploring the graph

Carpentier, MV: Revealing Graph Bandits for Maximising Local Influence, AISTATS 2016 

Wen, Kveton, MV: Influence Maximization with Semi-Bandit Feedback, NIPS 2017 



REVEALING BANDITS FOR LOCAL INFLUENCE
Revealing Graph bandits: Influence Maximization

Model: Unknown M = (pi ,j)i ,j symmetric matrix of influences

In each time step t = 1, . . . ,T
I learners picks a node kt
I set Skt ,t of influenced nodes is revealed

Select influential people = Find the strategy maximizing

LT =
TX

t=1

|Skt ,t | .

The number of expected influences of node k is by definition

rk = E [|Sk,t |] =
X

jN
pk,j .
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Oracle strategy always selects the best

Revealing Graph bandits: Influence Maximization

Oracle strategy always selects the best:

k⇤ = arg max
k

E
" TX

t=1

|Sk,t |
#
= arg max

k
Trk .

Let the reward of this node be r⇤ = rk⇤ . Its expected performance
if it consistently sampled k⇤ over n rounds is equal to

E [L⇤
T ] = Tr⇤.

Expected regret of any adaptive, non-oracle strategy unaware of M:

E [RT ] = E [L⇤
T ]� E [LT ] .
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This concludes the proof of Theorem 2. ⇤

A.2 Proof of Theorem 3

Recall that we use GS
t

,v

= (VS
t

,v

, ES
t

,v

) to denote the relevant subgraph of node v under the source
node set S

t

. Since Theorem 3 focuses on the influence from S
t

to v, and by definition all the paths
from S

t

to v are in GS
t

,v

, thus, it is sufficient to restrict to GS
t

,v

and ignore other parts of G in this
analysis.

We start by defining some useful notations.

Influence Probability with Removed Nodes: Recall that for any weight function w : E ! [0, 1],
any source node set S ⇢ V and any target node v 2 V , f(S, w, v) is the probability that S will
influence v under weight w (see Definition 1). We now define a similar notation for the influence
probability with removed nodes. Specifically, for any disjoint node set V

1

,V
2

✓ VS
t

,v

✓ V , we
define h(V

1

,V
2

, w) as follows:

• First, we remove nodes V
2

, as well as all edges connected to/from V
2

, from GS
t

,v

, and obtain
a new graph G0.

• h(V
1

,V
2

, w) is the probability that V
1

will influence the target node v in graph G0 under the
weight (activation probability) w(e) for all e 2 G0.

Obviously, a mathematically equivalent way to define h(V
1

,V
2

, w) is to define it as the probability
that V

1

will influence v in GS
t

,v

under a new weight ew, defined as

ew(e) =

⇢

0 if e is from or to a node in V
2

w(e) otherwise

Note that by definition, f(S
t

, w, v) = h(S
t

, ;, w). Also note that h(V
1

,V
2

, w) implicitly depends
on v, but we omit v in this notation to simplify the exposition.

Edge Set E(V
1

,V
2

): For any two disjoint node sets V
1

,V
2

✓ VS
t

,v

, we define the edge set E(V
1

,V
2

)

as
E(V

1

,V
2

) = {e = (u
1

, u
2

) : e 2 ES
t

,v

, u
1

2 V
1

, and u
2

/2 V
2

} .
That is, E(V

1

,V
2

) is the set of edges in GS
t

,v

from V
1

to VS
t

,v

\ V
2

.

Diffusion Process: Note that under any edge activation realization w(e), e 2 ES
t

,v

, on the relevant
subgraph GS

t

,v

, we define a finite-length sequence of disjoint node sets S0,S1, . . . ,Se⌧ as

S0

�

=S
t

S⌧+1

�

=

n

u
2

2 VS
t

,v

: u
2

/2 [⌧

⌧

0
=0

S⌧

0
and 9e = (u

1

, u
2

) 2 ES
t

,v

s.t. u
1

2 S⌧ and w(e) = 1

o

,

(22)

8⌧ = 0, . . . , e⌧ � 1. That is, under the realization w(e), e 2 ES
t

,v

, S⌧+1 is the set of nodes directly
activated by S⌧ . Specifically, any node u

2

2 S⌧+1 satisfies u
2

/2
S

⌧

⌧

0
=0

S⌧

0
(i.e. it was not activated

before), and there exists an activated edge e from S⌧ to u
2

(i.e. it is activated by some node in S⌧ ).
We define Se⌧ as the first node set in the sequence s.t. either Se⌧

= ; or v 2 Se⌧ , and assume this
sequence terminates at Se⌧ . Note that by definition, e⌧  |VS

t

,v

| always holds. We refer to each
⌧ = 0, 1, . . . , e⌧ as a diffusion step in this section.

To simplify the exposition, we also define S0:⌧

�

=

S

⌧

⌧

0
=0

S⌧

0
for all ⌧ � 0 and S0:�1

�

= ;. Since w

is random, (S⌧

)

e⌧
⌧=0

is a stochastic process, which we refer to as the diffusion process. Note that e⌧
is also random; in particular, it is a stopping time.

Based on the shorthand notations defined above, we have the following lemma for the diffusion
process (S⌧

)

e⌧
⌧=0

under any weight function w:
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modeling diffusion steps  
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but bounded 
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Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.
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Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear
regret up to time t = d, since there is no sharing of in-
formation and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer
linear for t > d and eventually detects the best node,
BARE is able to detect promising nodes much sooner
during its global exploration phase and we can see the
benefit of revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information on the
structure and the performance of BARE and Graph-
MOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnuttella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook
network with d = 4039 (Viswanath et al., 2009). We
used the same parameters as for the Barabási-Albert
case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depends heavily on the structure. In En-
ron and Facebook, the gain of BARE is significant
which suggests that the graphs from these networks

feature a relatively small number of influential nodes.
On the other hand, the gain of BARE in Gnutella was
much smaller which again suggests that this network
is more decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD⇤ and the detectable
horizon bT⇤. Notice that the smaller bD⇤, as compared
to d, and the smaller bT⇤ is as compared to n, the sooner
is BARE able to learn the most influential node as
compared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., identity of the influencing paths, our results could
extend more e�ciently.

Note that in our setting, we were completely agnos-
tic to the graph structure. Realistic networks often
exhibit some additional structural properties that are
captured by graph generator models, such as various
stochastic block models (Girvan & Newman, 2002).

In future, we would like to extend our approach to
cases where we can take advantage of the assump-
tions stemming from these models and consider the
subclasses of graph structures where we can further
improve the learning rates.

Enron and Facebook vs. Gnutella (decentralised)
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(a) (b) (c) (d)

Figure 1: a. Bar graph on 8 nodes. b. Star graph on 4 nodes. c. Ray graph on 10 nodes. d. Grid
graph on 9 nodes. Each undirected edge denotes two directed edges in opposite directions.

where CG is the maximum / worst-case (over w) C⇤ for the directed graph G, and the maximum
is obtained by setting w(e) = 1 for all e 2 E . Since CG is worst-case, it might be very far away
from C⇤ if the activation probabilities are small. Indeed, this is what we except a typical real-world
situation. Notice also that if max

e2E w(e) ! 0, then PS,e

! 0 for all e whose start node is not in S ,
and C⇤ ! C0

G
�

= maxS: |S|=K

qP
e2E(S)

N2

S,e

, where E(S) is the set of edges with start node in S .

Hence if K is small, C0

G is much less than CG in many topologies. Finally, it is worth pointing out
that there exists (G, w) such that C⇤ = ⇥(L2

). One such example is when G is a complete graph
with L nodes and w(e) = L/(L+ 1) for all edges e in this graph.

To give more intuition, in the rest of this subsection, we illustrate how CG , the worst-case C⇤, varies
with four graph topologies in Figure 1: bar, star, ray, and grid, as well as two other topologies:
general tree and complete graph. We fix the node set V = {1, 2, . . . , L} for all graphs. The bar
graph (Figure 1a) is a graph where nodes i and i + 1 are connected when i is odd. The star graph
(Figure 1b) is a graph where node 1 is central and all remaining nodes i 2 V \ {1} are connected
to it. The distance between any two of these nodes is 2. The ray graph (Figure 1c) is a star graph
with k =

⌃p
L� 1

⌥
arms, where node 1 is central and each arm contains either d(L � 1)/ke or

b(L� 1)/kc nodes connected in a line. The distance between any two nodes in this graph is O(

p
L).

The grid graph (Figure 1d) is a classical non-tree graph with O(L) edges.

To see how CG varies with the graph topology, we start with the simplified case when K = |S| = 1.
In the bar graph (Figure 1a), only one edge is relevant to a node v 2 V \ S and all the other edges
are not relevant to any nodes. Therefore, CG  1. In the star graph (Figure 1b), for any s, at
most one edge is relevant to at most L � 1 nodes and the remaining edges are relevant to at most
one node. In this case, CG 

p
L2

+ L = O(L). In the ray graph (Figure 1c), for any s, at most
O(

p
L) edges are relevant to L� 1 nodes and the remaining edges are relevant to at most O(

p
L)

nodes. In this case, CG = O(

p
L

1
2L2

+ LL) = O(L
5
4
). Finally, recall that for all graphs we can

bound CG by O(L
p
|E|), regardless of K. Hence, for the grid graph (Figure 1d) and general tree

graph, CG = O(L
3
2
) since |E| = O(L); for the complete graph CG = O(L2

) since |E| = O(L2

).
Clearly, CG varies widely with the topology of the graph. The second column of Table 1 summarizes
how CG varies with the above-mentioned graph topologies for general K = |S|.

4.2 Regret guarantees

Consider C⇤ defined in Section 4.1 and the recall the worst-case upper bound C⇤  (L�K)

p
|E|,

we have the following regret guarantees for IMLinUCB.

Theorem 1 Assume that (1) w(e) = xT
e

✓⇤ for all e 2 E and (2) ORACLE is an (↵, �)-approximation
algorithm. Let D be a known upper bound on k✓⇤k

2

, if we apply IMLinUCB with � = 1 and

c =

s

d log

✓
1 +

n|E|
d

◆
+ 2 log (n(L+ 1�K)) +D, (4)

5

topology CG (worst-case C⇤) R

↵�(n) for general X R

↵�(n) for X = I

bar graph O(
p
K) eO (dK

p
n/(↵�)) eO

⇣
L

p
Kn/(↵�)

⌘

star graph O(L
p
K) eO

⇣
dL

3
2
p
Kn/(↵�)

⌘
eO
⇣
L

2

p
Kn/(↵�)

⌘

ray graph O(L
5
4
p
K) eO

⇣
dL

7
4
p
Kn/(↵�)

⌘
eO
⇣
L

9
4
p
Kn/(↵�)

⌘

tree graph O(L
3
2 ) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

grid graph O(L
3
2 ) eO �

dL

2

p
n/(↵�)

� eO
⇣
L

5
2
p
n/(↵�)

⌘

complete graph O(L2) eO �
dL

3

p
n/(↵�)

� eO �
L

4

p
n/(↵�)

�

Table 1: CG and worst-case regret bounds for different graph topologies

then we have

R↵�

(n)  2cC⇤
↵�

s

dn|E| log
2

✓
1 +

n|E|
d

◆
+ 1 =

eO
⇣
dC⇤

p
|E|n/(↵�)

⌘
(5)

 eO
�
d(L�K)|E|

p
n/(↵�)

�
. (6)

Moreover, if the feature matrix X = I 2 <|E|⇥|E| (i.e., the tabular case), we have

R↵�

(n)  2cC⇤
↵�

p
n|E| log

2

(1 + n) + 1 =

eO
�
|E|C⇤

p
n/(↵�)

�
(7)

 eO
⇣
(L�K)|E| 32

p
n/(↵�)

⌘
. (8)

Please refer to Appendix A for the proof of Theorem 1, that we outline in Section 4.3. We now briefly
comment on the regret bounds in Theorem 1.

Topology-dependent bounds: Since C⇤ is topology-dependent, the regret bounds in Equations 5
and 7 are also topology-dependent. Table 1 summarizes the regret bounds for each topology5

discussed in Section 4.1. Since the regret bounds in Table 1 are the worst-case regret bounds for a
given topology, more general topologies have larger regret bounds. For instance, the regret bounds
for tree are larger than their counterparts for star and ray, since star and ray are special trees. The
grid and tree can also be viewed as special complete graphs by setting w(e) = 0 for some e 2 E ,
hence complete graph has larger regret bounds. Again, in practice we expect C⇤ to be far lower due
to activation probabilities.

Tighter bounds in tabular case and under exact oracle: Notice that for the tabular case with
feature matrix X = I and d = |E|, eO(

p
|E|) tighter regret bounds are obtained in Equations 7 and

8. Also notice that the eO(1/(↵�)) factor is due to the fact that ORACLE is an (↵, �)-approximation
oracle. If ORACLE solves the IM problem exactly (i.e., ↵ = � = 1), then R↵�

(n) = R(n).

Tightness of our regret bounds: First, note that our regret bound in the bar case with K = 1 matches
the regret bound of the classic LinUCB algorithm. Specifically, with perfect linear generalization, this
case is equivalent to a linear bandit problem with L arms and feature dimension d. From Table 1,
our regret bound in this case is eO (d

p
n), which matches the known regret bound of LinUCB that can

be obtained by the technique of [1]. Second, we briefly discuss the tightness of the regret bound in
Equation 6 for a general graph with L nodes and |E| edges. Note that the eO(

p
n)-dependence on time

is near-optimal, and the eO(d)-dependence on feature dimension is standard in linear bandits6[1, 34].
The eO(L�K) factor is due to the fact that the reward in this problem is from K to L, rather than
from 0 to 1. To explain the eO(|E|) factor in this bound, notice that one eO(

p
|E|) factor is due to the

fact that at most eO(|E|) edges might be observed at each round (see Theorem 3), and is intrinsic to
the problem similarly to combinatorial semi-bandits [22]; another eO(

p
|E|) factor is due to linear

generalization (see Lemma 1) and might be removed by better analysis. We conjecture that our
eO (d(L�K)|E|pn/(↵�)) regret bound in this case is at most eO(

p
|E|d) away from being tight.

5The regret bound for bar graph is based on Theorem 2 in the appendix, which is a stronger version of
Theorem 1 for disconnected graph.

6
p
d results are only known for impractical algorithms

6
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(a) Stars and rays: The log-log plots of the n-step regret of
IMLinUCB in two graph topologies after n = 104 steps. We vary
the number of nodes L and the mean edge weight !.
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Figure 2: Experimental results

4.3 Proof sketch

We now outline the proof of Theorem 1. For each round t  n, we define the favorable event
⇠
t�1

= {|xT
e

(✓
⌧�1

� ✓⇤)|  c
q
xT
e

M�1

⌧�1

x
e

, 8e 2 E , 8⌧  t}, and the unfavorable event ⇠
t�1

as
the complement of ⇠

t�1

. If we decompose E[R↵�

t

], the (↵�)-scaled expected regret at round t, over
events ⇠

t�1

and ⇠
t�1

, and bound R↵�

t

on event ⇠
t�1

using the naïve bound R↵�

t

 L�K, then,

E[R↵�

t

]  P (⇠
t�1

)E [R↵�

t

|⇠
t�1

] + P
�
⇠
t�1

�
[L�K].

Notice that by definition of ⇠
t�1

, w(e)  U
t

(e), 8e 2 E under event ⇠
t�1

. Using the monotonicity
of f in the probability weight, and the fact that ORACLE is an (↵, �)-approximation algorithm, we
have E [R↵�

t

|⇠
t�1

]  E [f(S
t

, U
t

)� f(S
t

, w)|⇠
t�1

] /(↵�).

The next observation is that, from the linearity of expectation, the gap f(S
t

, U
t

) � f(S
t

, w) de-
composes over nodes v 2 V \ S

t

. Specifically, for any source node set S ✓ V , any probability
weight function w : E ! [0, 1], and any node v 2 V , we define f(S, w, v) as the probability that
node v is influenced if the source node set is S and the probability weight is w. Hence, we have
f(S

t

, U
t

)� f(S
t

, w) =
P

v2V\S
t

[f(S
t

, U
t

, v)� f(S
t

, w, v)]. In the appendix, we carefully study
the first and second-order partial derivatives of f with respect the edge weights. Based on the
monotonicity and concavity of f(S

t

, w, v) with respect to w, and submodularity of f(S
t

, w, v) with
respect to a newly added edge, Theorem 3 in Appendix A bounds f(S

t

, U
t

, v)� f(S
t

, w, v) by the
edge-level gap U

t

(e)� w(e) on the observed relevant edges for node v,

f(S
t

, U
t

, v)� f(S
t

, w, v) 
P

e2ES
t

,v

E [1 {O
t

(e)} [U
t

(e)� w(e)]|H
t�1

,S
t

] , (9)

for any t, any history H
t�1

and S
t

such that ⇠
t�1

holds, and any v 2 V \ S
t

, where ES
t

,v

is the set of
edges relevant to v and O

t

(e) is the event that edge e is observed at round t. Based on Equation 9,
we can prove Theorem 1 using the standard linear-bandit techniques (see Appendix A).

5 Experiments

5.1 Stars and rays

In the first experiment, we evaluate IMLinUCB on stars and rays7 (Figure 1) and validate that its
regret grows with the number of nodes L and the maximum observed relevance C⇤ as shown in
Table 1. We focus on the tabular case (X = I) with K = |S| = 1, where the IM problem can be
solved exactly. We vary the number of nodes L; and edge weight w(e) = !, which is the same for all
edges e. We run IMLinUCB for n = 10

4 steps and verify that it converges to the optimal solution in
each experiment. We report the n-step regret of IMLinUCB for 8  L  32 in Figure 2a. Recall that
from Table 1, R(n) = eO(L2

) for star and R(n) = eO(L
9
4
) for ray.

In this experiment, we numerically estimate the growth of regret in L, the exponent of L, in the
log-log space of L and regret. In particular, since log(f(L)) = p log(L)+log(c) for any f(L) = cLp

7The stars and rays are undirected, which are special cases of directed stars and rays.

7

real Facebook (a small subgraph)  

weights from U(0,0.1)  

nodetovec with d=10 

imperfect 

K = 10 

CUCB with no linear generalisation



NEXT STEPS

Active learning on graphs: online influence maximization 

learning the graph while acting on it optimally 

global cascading model with edge level feedback 

difficulty of the problem and scaling with it  

What is next? 

node-level feedback 

dynamic/evolving graphs  

realistic accessibility constraints

48

Survey: http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf

i

http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf
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MV, Kveton, Huang, Ting: Online Semi-Supervised Learning on Quantized Graphs UAI 2010 

Kveton, MV,  Rahimi, Huang:  Semi-Supervised Learning with Max-Margin Graph Cuts AISTATS 2010 

Calandriello, Lazaric, MV: Distributed sequential sampling for kernel matrix approximation AISTATS 2017 

Calandriello, Lazaric, MV: Second-order kernel online convex optimization with adaptive sketching, ICML 2017 

Calandriello, Lazaric, MV: Efficient second-order online kernel learning with adaptive embedding, NIPS 2017 

Calandriello, Koutis, Lazaric, MV: Improved large-scale graph learning through ridge spectral sparsification, ICML 2018 

code: http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py

http://researchers.lille.inria.fr/~valko/hp/publications/squeak.py


SCALING UP GRAPH LEARNING

Large graphs do not fit in a single machine memory 

multiple passes slow, distribution has communication costs 

removing edges impacts structure/accuracy 

Make the graph sparse, while preserving its structure for learning

50

Graph Spectral Sparsification

Definition (Spielman and Srivastava 2011)

An "-sparsifier of G is a reweighted subgraph H whose Laplacian LH satisfies

(1 � ")LG � LH � (1 + ")LG (1)

Proposition (Spielman and Srivastava 2011; Kyng, Pachocki, et al. 2016)

There exists an algorithm that can construct an "-sparsifier
with only O(n log(n)/"2) edges
in O(m log2(n)) time and O(n log(n)/"2) space
a single pass over the data

Improved Large-Scale Graph Learning through Ridge Spectral Sparsification ICML18 - 4/20

Ridge Graph Spectral Sparsification

Definition (This paper)

An (", �)-sparsifier of G is a reweighted subgraph H whose Laplacian LH satisfies

(1 � ")LG � "�I � LH � (1 + ")LG + "�I (3)

Mixed multiplicative/additive error
large (i.e. � �) directions reconstructed accurately
small (i.e.  �) directions uniformly approximated (�I)

Adapted from Randomized Linear Algebra (RLA) community
PSD matrix low-rank approx. [Alaoui and Mahoney 2015]

RLA ! Graph: Improve over O(n log(n)) size exploiting regularization
Graph ! RLA: Exploit LG structure for fast (", �)-sparsification

Improved Large-Scale Graph Learning through Ridge Spectral Sparsification ICML18 - 6/20

Ridge Graph Spectral Sparsification

Definition (This paper)

An (", �)-sparsifier of G is a reweighted subgraph H whose Laplacian LH satisfies

(1 � ")LG � "�I � LH � (1 + ")LG + "�I (3)

Mixed multiplicative/additive error
large (i.e. � �) directions reconstructed accurately
small (i.e.  �) directions uniformly approximated (�I)

Adapted from Randomized Linear Algebra (RLA) community
PSD matrix low-rank approx. [Alaoui and Mahoney 2015]

RLA ! Graph: Improve over O(n log(n)) size exploiting regularization
Graph ! RLA: Exploit LG structure for fast (", �)-sparsification

Improved Large-Scale Graph Learning through Ridge Spectral Sparsification ICML18 - 6/20



HOW DOES IT WORK?
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DisRe

arbitrarily split in subgraphs that fit in a single machine

recursively merge-and-reduce until one graph left
additive error cumulates!

merge-and-resparsify

Improved Large-Scale Graph Learning through Ridge Spectral Sparsification ICML18 - 9/20



DISRE GUARANTEES
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DisRe guarantees

Theorem

Given an arbitrary graph G w.h.p. DisRe satisfies
(1) each sub-graphs is an (", �)-sparsifier
(2) with at most O(d

e�

(�) log(n)) edges.

Improved Large-Scale Graph Learning through Ridge Spectral Sparsification ICML18 - 13/20



DISRE EXPERIMENTS
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Experiments
Dataset: Amazon co-purchase graph [Yang and Leskovec 2015]

natural , artificially sparse (true graph known only to Amazon)
we compute 4-step random walk to recover removed co-purchases
[Gleich and Mahoney 2015]

Target: eigenvector v associated with �
2

(LG) [Sadhanala et al. 2016]

n = 334, 863 nodes, m = 98, 465, 352 edges (294 avg. degree)

Alg.

Parameters |E| (x10

6

) kef � vk2

2

(�=10

�3

) kef � vk2

2

(�=10

�2

)

EXACT 98.5 0.067 ± 0.0004 0.756 ± 0.006

kN k = 60 15.7 0.172 ± 0.0004 0.822 ± 0.002

DisRe �=0 22.8 0.068 ± 0.0004 0.756 ± 0.005

DisRe �=10

2

11.8 0.068 ± 0.0002 0.772 ± 0.004

Time: Loading G from disk 90sec, DisRe 120sec(k = 4 ⇥ 32 CPU),
computing ef 120sec, computing bf 720sec

Improved Large-Scale Graph Learning through Ridge Spectral Sparsification ICML18 - 15/20



CONCLUSION AND NEXT STEPS

Graphs give way to reason and act with relationships 

step above over only considering entities 

high-level cognition - this is how children learn! 

online learning and online decision-making 

optimal allocation of resources (samples, time)  

trees and Monte-Carlo tree search 

tools to scale up the learning with near-linear time! 

What is next? 

find the way to low-level representation 

graph-networks that operate on the graphs and relational networks 

intrinsic exploration over graph and other structures
54
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