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Motivation Movie recommendation

Movie recommendation: (in each time step)
» Recommend movies to a single user.
> Good prediction after a few steps (T < N).
Goal:

> Maximize overall reward (sum of ratings).
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Motivation Movie recommendation

Movie recommendation: (in each time step)

» Recommend movies to a single user.
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> Maximize overall reward (sum of ratings).

Assumptions:

> Unknown reward function f : V(G) — R.
» Function f is smooth on a graph.

> Neighboring movies = similar preferences.

. . . . . i g2 7
> Similar preferences 4 neighboring movies. M,
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> Graph G with vertex set V(G) ={1,..., N} and edge set E(G).
> fi,...,fy: Values of the function on the vertices of the graph.

> w; ;. Weight of the edge connecting nodes i and j.

Smoothness of the function:
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Smooth graph functions and graph Laplacian Smooth graph function
Smooth graph function

> Graph G with vertex set V(G) ={1,..., N} and edge set E(G).
> fi,...,fy: Values of the function on the vertices of the graph.

> w; ;. Weight of the edge connecting nodes i and j.

Smoothness of the function:
1 2
Se(f) =3 > wi(fi—£)
ij<N

Smaller value of Sg(f), smoother the function f is.
Examples:

» Complete graph: Only constant function has smoothness 0.

> Edgeless graph: Every function has smoothness 0.

> Constant function: Smoothness 0 for every graph.
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Smooth graph functions and graph Laplacian Graph Laplacian

Graph Laplacian

> W: N x N matrix of the edge weights w; ;.

» D: Diagonal matrix with the entries d; = Zj Wi j.

» L =D —W: Graph Laplacian.

» Positive semidefinite matrix.
» Diagonally dominant matrix.

Example:

4
-1
L= 0
-1
—2
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Smooth graph functions and graph Laplacian Smoothness with respect to Laplacian

Smoothness of the function and Laplacian

> f=(f,...,fy)": Vector of function values.
> Let £L = QAQT be the eigendecomposition of the Laplacian.

» Diagonal matrix A whose diagonal entries are eigenvalues of L.
» Columns of Q are eigenvectors of L.
» Columns of Q form a basis.

» a*: Unique vector such that Qa* = f Note: Q'f = a*

N
Sc(f) = FLF=FQAQf = o A" = [l |3 =D Ni(e))?

i=1

Smoothness and regularization: Small value of

(@) Sg(f) (b) A norm of a*  (c) af for large A;
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Setting Formulation of the problem
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Learning setting for a bandit algorithm 7
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Setting Formulation of the problem

Setting

Learning setting for a bandit algorithm 7
> In each time t step choose a node 7(t).
> the 7(t)-th row x,(;) of the matrix Q corresponds to the arm 7(t).
» QObtain noisy reward r; = x;(t)a* + &¢. Note: X (o™ = fr(y)
> ¢; is R-sub-Gaussian noise. V¢ € R, E[e**] < exp (€°R?/2)
» Minimize cumulative regret
T
Rr=T max (xja™) — Zx;(t)a*.
t=1

» Can't we just use linear bandits?

. Cbreia—
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Setting  Solutions

Solutions
> Linear bandit algorithms (Existing solutions)
» LinUCB (Li et al., 2010)
> Regret bound ~ DvTIn T
» LinearTS (Agrawal and Goyal, 2013)

» Regret bound =~ DV T InN

Note: D is ambient dimension, in our case N, length of x;.
Number of actions, e.g., all possible movies - HUGE!
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> Linear bandit algorithms (Existing solutions)
» LinUCB (Li et al., 2010)
> Regret bound ~ DvTIn T
» LinearTS (Agrawal and Goyal, 2013)

» Regret bound =~ DV T InN

Note: D is ambient dimension, in our case N, length of x;.
Number of actions, e.g., all possible movies - HUGE!

> Spectral bandit algorithms (Our solutions)

» SpectralUCB (Valko et al., ICML 2014)
> Regret bound =~ dvTInT

» SpectralTS (Kocak et al., AAAI 2014)
» Regret bound =~ dv T InN

Note: d is effective dimension, usually much smaller than D.
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Setting  Solutions

Solutions
> Linear bandit algorithms (Existing solutions)
» LinUCB (Li et al., 2010)
> Regret bound ~ DvTIn T
» LinearTS (Agrawal and Goyal, 2013)

» Regret bound =~ DV T InN

Note: D is ambient dimension, in our case N, length of x;.
Number of actions, e.g., all possible movies - HUGE!

> Spectral bandit algorithms (Our solutions)

» SpectralUCB (Valko et al., ICML 2014)
> Regret bound =~ dvTInT
» Operations per step: D?°N

» SpectralTS (Kocak et al., AAAI 2014)

» Regret bound =~ dv T InN
» Operations per step: D? + DN

Note: d is effective dimension, usually much smaller than D.
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Effective dimension Definition and properties

Effective dimension

» Effective dimension: Largest d such that

T
d—DA\g < ———————.
(d=a < i/
> Function of time horizon and graph properties
> )\;: i-th smallest eigenvalue of A.

» \: Regularization parameter of the algorithm.

Properties:

v

d is small when the coefficients \; grow rapidly above time.

v

d is related to the number of “non-negligible” dimensions.

v

Usually d is much smaller than D in real world graphs.

» Can be computed beforehand.
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Effective dimension Empirical comparison

Effective dimension vs. Ambient dimension

Barabasi-Albert graph N=500

Flixster graph: N=4546
! ' ' ' T T T T

effective dimenstion
IS

effective dimenstion
£

0 50 100 150 200 250 300 350 400 450 500 500 1000 1500 2000 2500 3000 3500 4000 4500
time T

d<< D

Note: In our setting T < N = D.
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SpectralUCB  Algorithm

UCB style algorithms: Estimate

Expected reward

Michal Valko: Bandits on Graphs

CMLA seminar - 12/50



SpectralUCB  Algorithm

UCB style algorithms: Sample

Expected reward
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SpectralUCB  Algorithm

SpectralUCB

1: Input:

2 N, T,{Az,Q}, \,6,R, C L

3: Run:

4 A~ A+

5. d<max{d:(d—1)Aa < T/In(1+ T/N\)}
6: fort =1to T do

7:  Update the basis coefficients &:

8: Xi [X,r(l), e ,X,r(t_l)]T

9: v [r, ..., r—1]

10: Vt < th-{ + A

110 &+ Vi IXr

12 ¢« 2R\/dIn(1 +t/\) +2In(1/8) + C
13:  7(t) « argmax, (x:d + Ct”Xa”v;l)

14:  Observe the reward r;

15: end for
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SpectralUCB  Algorithm

SpectralUCB

1: Input:

2 N, T,{Az,Q}, \,6,R, C L

3: Run:

4 A~ A+

5. d<max{d:(d—1)Aa < T/In(1+ T/N\)}
6: fort =1to T do

7:  Update the basis coefficients &:

8: Xi [X,r(l), e ,X,r(t_l)]T
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10: Vt — th-{ + A

110 &+ Vi IXr
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15: end for
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SpectralUCB Regret bound

SpectralUCB regret bound

d: Effective dimension.

v

v

A: Minimal eigenvalue of A = Az + Al

v

C: Smoothness upper bound, ||a*|[a < C.

v

xJa* € [—1,1] for all i.

The cumulative regret Rt of SpectralUCB is with probability 1 — §
bounded as

Rt < <8R\/dln)\—f\T+2ln%+4C+4> dTIn)\T\T.

Rr~dvTInT
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Performance of the algorithms Empirical comparison

Synthetic experiment

o Barabasi—Albert N=250, basis size=3, effective d=1
5 T T T T T T T T
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‘f
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Empirical comparison

Performance of the algorithms
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Improvi

Performance of the algorithms Reduced basis

ng the running time: reduced eigenbasis

> Reduced basis: We only need first few eigenvectors.

> Getting J eigenvectors: O(Jmlog m) time for m edges

» Computationally less expensive, comparable performance.

-
5
8

cumulative regret
@
2

computational time in seconds

- 10
4 1
e
/ 10
0 10 20 0 40 . 50 60 70 80 90 10¢ 10 J=20 J=200 J=2000
time T
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SpectralTS  Algorithm

How to make it faster?

» UCB-style algorithms need to (re)-compute UCBs every t
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» UCB-style algorithms need to (re)-compute UCBs every t
» Can be a problem for large set of arms — D*N — N3

» Optimistic (UCB) approach vs. Thompson Sampling
» Play the arm maximizing probability of being the best
» Sample fi from the distribution N(f, v’B™1)
» Play arm which maximizes b"fi and observe reward

» Compute posterior distribution according to reward received
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SpectralTS  Algorithm

How to make it faster?

v

UCB-style algorithms need to (re)-compute UCBs every t

Can be a problem for large set of arms — D?*N — N3

v

v

Optimistic (UCB) approach vs. Thompson Sampling
» Play the arm maximizing probability of being the best
» Sample fi from the distribution N(f, v’B™1)
» Play arm which maximizes b"fi and observe reward

» Compute posterior distribution according to reward received

v

Only requires D? + DN — N? per step update

. Clreia—
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SpectralTS  Algorithm

Thomson Sampling: Estimate
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SpectralTS  Algorithm

Thomson Sampling: Sample
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SpectralTS  Algorithm

Thomson Sampling: Estimate
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SpectralTS  Algorithm

Thomson Sampling: Sample

. brezia~

Michal Valko: Bandits on Graphs CMLA seminar - 19/50



SpectralTS  Algorithm

Thomson Sampling: Estimate ...
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SpectralTS  Algorithm

Spectral TS algorithm

1: Input:

2 N, T,{A£,Q}, N4, R C

3: Initialization:

4:  v=Ry\/6dlog((A+T)/6N)+ C
5: &= ON

6: f =0y

7. V=A+ Ay

8: Run:

9: fort=1to T do
10:  Sample & ~ N (&, v*V™1)
11:  7(t) < argmax, x}&
12:  Observe a noisy reward r(t) = x; " + &
13: 4 Xz yr(t)
14:  Update V = V + Xx()X] (1)
15: Update & + V71f
16: end for

. Cbreia—
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1: Input:
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Spectral TS algorithm

1: Input:

2 N, T,{A£,Q}, N4, R C

3: Initialization:

4:  v=Ry\/6dlog((A+T)/6N)+ C
5: &= ON

6: f =0y

7. V=Ar+ Ay

8: Run:

9: fort=1to T do
10:  Sample & ~ N (&, v*V™1)
11:  7(t) < argmax, x &
12:  Observe a noisy reward r(t) = x o™ + et
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SpectralTS  Algorithm

Spectral TS algorithm

1: Input:

2 N, T,{A£,Q}, N4, R C

3: Initialization:

4:  v=Ry\/6dlog((A+T)/6N)+ C
5: &= ON

6: f =0y

7 V=A+ Ay

8: Run:

9: fort=1to T do
10:  Sample & ~ N (&, v*V™1)
11:  7(t) < argmax, x}&
12:  Observe a noisy reward r(t) = x; " + &
13: 4 Xz yr(t)
14: Update V « V + xﬂ(t)x;(t)
15: Update & «+ V7 If
16: end for

. Crzia—~
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Spectral TS Regret bound

Spectral TS regret bound

v

d: Effective dimension.

> \: Minimal eigenvalue of A = A, + Al

> C: Smoothness upper bound, ||a*||a < C.
> xJa* € [-1,1] for all i.

The cumulative regret Rt of SpectralTS is with probability 1 — §
bounded as

11g\/4+4)\ A+ T 1 g<11 2
Ry <—= dT | — = ([ — 2l /olog =
T < o X og X -I—_,_-I-p \/X+ og(S

where p = 1/(4e\/7) and

T T)T2
g = /4log TN <R 6d log (’\;—/\) +C> +R\/2d|og (%) 4 C.

Rr~d+/TloghN
" v Bt on G CMLAsmiwe2ys
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Performance of the algorithms Empirical comparison

Synthetic experiment

o Barabasi—Albert N=250, basis size=3, effective d=1
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Performance of the algorithms Empirical comparison

Real world experiment

MovielLens dataset of 6k users who rated one million movies.

Movielens data N=2019, average of 10 users, T=200,d =5
T T T T T

300 T T T T »
- - - S L d

2500 'pectraIUCB Len -7 |
] = == LinUCB ="

& 2001 SpectralTS e - 7
2 150} LinearTS ot > ]
s ==
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Performance of the algorithms Empirical comparison

Spectral Bandits Summary

> New spectral bandit setting (for smooth graph functions).
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Performance of the algorithms Empirical comparison

Spectral Bandits Summary

> New spectral bandit setting (for smooth graph functions).
» SpectralUCB
> Regret bound =~ dvTInT
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Performance of the algorithms Empirical comparison

Spectral Bandits Summary

> New spectral bandit setting (for smooth graph functions).
» SpectralUCB

» Regret bound ~ dvTInT
» SpectralTS

» Regret bound ~ dv/TInN
» Computationally more efficient.
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Performance of the algorithms Empirical comparison

Spectral Bandits Summary

> New spectral bandit setting (for smooth graph functions).
SpectralUCB

» Regret bound ~ dvTInT
SpectralTS

» Regret bound ~ dv/TInN
» Computationally more efficient.

v

v

v

SpectralEliminator

» Regret bound =~ vdT InT
» Side result: LinearEliminator with O(v' DT In T) regret for
(contextual) linear bandits.
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Performance of the algorithms Empirical comparison

Spectral Bandits Summary

> New spectral bandit setting (for smooth graph functions).
SpectralUCB

» Regret bound ~ dvTInT
SpectralTS

» Regret bound ~ dv/TInN
» Computationally more efficient.

v

v

v

SpectralEliminator

» Regret bound =~ vdT InT
» Side result: LinearEliminator with O(v' DT In T) regret for
(contextual) linear bandits.

v

Bounds scale with effective dimension d < D.
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Performance of the algorithms Empirical comparison

Spectral Bandits Summary

> New spectral bandit setting (for smooth graph functions).
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v

v

v

SpectralEliminator

» Regret bound =~ vdT InT
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Exploiting side observations
Example 1: undirected observations
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Learning with Side Observations  Side Observations in Recommender Systems

Exploiting side observations
Example 1: undirected observations
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Learning with Side Observations  Side Observations in Recommender Systems

Example 1: Graph Representation

Michal Val Bandits on Graphs CMLA seminar - 26/50



Learning with Side Observations Example 2

Example 2: Directed observation

REVIDIT S
Mobile Ultra

64GB Mg
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Learning with Side Observations Example 2

Example 2: Directed observation

REVIDIT S
Mobile Ultra

64GB Mgy
xXC 1
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Learning with Side Observations Example 2

Example 2
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Problem definition Learning setting

Learning setting
In each timestept=1,..., T

> Environment (adversary):

» Privately assigns losses to actions
» Generates an observation graph

. Crzia—~
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Problem definition Learning setting
Learning setting
In each timestept=1,..., T

> Environment (adversary):

» Privately assigns losses to actions
» Generates an observation graph

> Undirected / Directed
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Problem definition Learning setting

Learning setting
In each timestept=1,..., T

> Environment (adversary):

» Privately assigns losses to actions
» Generates an observation graph

> Undirected / Directed
> Disclosed / Not disclosed
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Problem definition Learning setting

Learning setting
In each timestept=1,..., T

> Environment (adversary):

» Privately assigns losses to actions
» Generates an observation graph

> Undirected / Directed
> Disclosed / Not disclosed

» Learner:

» Plays action /; € [N]
» Obtain loss ¢, ;, of action played
» Observe losses of neighbors of /;
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Problem definition Learning setting

Learning setting
In each timestept=1,..., T

> Environment (adversary):
» Privately assigns losses to actions
» Generates an observation graph

> Undirected / Directed
> Disclosed / Not disclosed

» Learner:

» Plays action /; € [N]
» Obtain loss ¢, ;, of action played
» Observe losses of neighbors of /;
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Problem definition Learning setting

Learning setting
In each timestept=1,..., T

> Environment (adversary):
» Privately assigns losses to actions
» Generates an observation graph

> Undirected / Directed
> Disclosed / Not disclosed

» Learner:

» Plays action /; € [N]
» Obtain loss ¢, ;, of action played
» Observe losses of neighbors of /;

» Graph: disclosed
> Performance measure: Total expected regret
T
Rt = maxE Z(ét"f N

i€[N] )

. brzia~
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Problem definition Full information and Bandit setting

Full Information setting Bandit setting
> Pick an action (e.g. action A) > Pick an action (e.g. action A)
> Observe losses of all actions » Observe loss of a chosen action

» Ry =O(VT) » Ry = O(VNT)

CMLA seminar - 30



Problem definition Side observation - Undirected case

Side observation (Undirected case)

> Pick an action (e.g. action A)

> Observe losses of neighbors
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Problem definition Side observation - Undirected case

Side observation (Undirected case)

> Pick an action (e.g. action A)

> Observe losses of neighbors
Mannor and Shamir (ELP algorithm)

> Need to know graph

> Clique decomposition (c cliques)

> Rr=O(VcT)
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Problem definition Side observation - Undirected case

Side observation (Undirected case)

> Pick an action (e.g. action A)

> Observe losses of neighbors
Mannor and Shamir (ELP algorithm)

> Need to know graph

> Clique decomposition (c cliques)

> Ry = O(VeT)
Alon, Cesa-Bianchi, Gentile, Mansour

> No need to know graph

» Independence set of a actions

> Rr=0(\aT)

. brezia~
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Problem definition Side observation - Directed case

Side observation (Directed case)
> Pick an action (e.g. action A)

> Observe losses of neighbors
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Problem definition Side observation - Directed case

Side observation (Directed case)
> Pick an action (e.g. action A)

> Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
» Exp3-DOM
> Need to know graph
> Need to find dominating set

» Ry =O(VaT)
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Problem definition Side observation - Directed case

Side observation (Directed case)
> Pick an action (e.g. action A)

> Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
» Exp3-DOM
> Need to know graph
> Need to find dominating set
> Rr = O(VaT)
Our solution: Exp3-1X
> No need to know graph

> Rr=0(aT)

. brezia~
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Exp3 Algorithms in general

Exp3 algorithms in general

» Compute weights using loss estimates lﬁn;.
= exp ( nz& ,)

> Play action /; such that
Wt i Wt i

P(ly = i) = psi = Wt = 2:N7W
j=1 "Vt,j

> Update loss estimates (using observability graph)

. brezia~

Michal Valko: Bandits on Graphs CMLA seminar - 33/50



Exp3 Algorithms in general

Exp3 algorithms in general

» Compute weights using loss estimates &7;.
= exp ( 77265 ,)

> Play action /; such that
Wt i Wt i

P(ly = i) = psi = Wt = 2:N7W
j=1 Wt,j

> Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?

. Crzia—~
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Bias variance tradeoff Different approaches

Bias variance tradeoff approaches

» Approach of previous algorithms — Mixing

» Bias sampling distribution p; over actions

> p; = (1 — 7)p: + st — mixed distribution

> s; — probability distribution which supports exploration
» Loss estimates lﬁty,- are unbiased

> Approach of our algorithm — Implicit eXploration (IX)

> Bias loss estimates ¢; ;

> Biased loss estimates = biased weights
> Biased weights — biased probability distribution

» No need for mixing

. Crzia—~
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Bias variance tradeoff ~ ELP

Mannor and Shamir - ELP algorithm
> E[2t7;] = {; ; — unbiased loss estimates

> Pé,i = (1 — ¥)ps,i + yst,; — bias by mixing

> s, ={s¢1, ..., SN} — probability distribution over the action set
St = argmax | min | s;; + Z Stk = arg max {min qw}
St JEIN] KEN. . st JEIN]
3J

> g:,; — probability that loss of j is observed according to s;

. brezia~
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Bias variance tradeoff ELP
Mannor and Shamir - ELP algorithm
> IE[[%,-] = {; ; — unbiased loss estimates

> Pé,i = (1 — ¥)ps,i + yst,; — bias by mixing

> s, ={s¢1, ..., SN} — probability distribution over the action set
St = argmax | min | s;; + Z Stk = arg max {min qw}
St JEIN] KEN. . st JEIN]
3J

> g:,; — probability that loss of j is observed according to s;

» Computation of s;

» Graph needs to be disclosed
» Solving simple linear program

» Needs to know graph before playing an action
» Graphs can be only undirected

. brezia~
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Bias variance tradeoff Exp3-DOM

Alon, Cesa-Bianchi, Gentile, Mansour - Exp3-DOM
> E[@t,,-] = {;; — unbiased loss estimates

> p,; = (1 —7)pe,; + 7St — bias by mixing

> s; = {St1, ..., Sy} — probability distribution over the action set
1 ifieR; |R|l=r ~«
Sti = .
’ 0 otherwise.

» R — dominating set of r elements
» s; — uniform distribution over R
» Needs to know graph beforehand

> Graphs can be directed

. brezia~
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Bias variance tradeoff ~ Exp3-IX
Previous algorithms - loss estimates

b Ly i]ok i if 4; ; is observed
t,i — .
0 otherwise.

t,i

~ lii
IE[Et,i] = Oiot,i + 0(1 - Ot,i) = Et,i
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Bias variance tradeoff ~ Exp3-IX
Previous algorithms - loss estimates

b Ly i]ok i if 4; ; is observed
t,i — .
0 otherwise.

oy
E[Et :] =% Ot: + 0( Ot,i) = Et,i

t,i

Exp3-1X - loss estimates

7 Leif(0ri+ ) if ¢;; is observed
“ 7o otherwise.
B[] = — o, 4+ 0(1 00i) = le;— lei—L— < (
t,i Ot,,“v"y t,i t,i) — tt,i t7l0t’i+'}/_ t,i

» No mixing!

. brezia~
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Exp3 algorithms Analysis

Analysis of Exp3 algorithms in general

» Evolution of Wy q/W;

1 W 72 o
— log V;rl = - (1 - 772 Pt, :et: o ZPt,i(gt,i)2> s
t i=1

Ui

N N
2 log W;  log Wt+1 77
; pe,ilei < |: - 5 Z

Ul

> Taking expectation and summing over time

ELR

" =1

T N N
gzzpt,,-wt,,-)ﬂ
t=1 i

CMLA seminar - 38/50



Exp3-1X Regret bound

Regret bound of Exp3-1X

Lower bound of B (optimistic loss estimates: E[{] < E[¢])

T T
= [z e] > [Z z]
=1 =1
Upper bound of C (using definition of loss estimates)
T

T N
g Z Zl Pt,i(ét,i)2:| |:T2} Z Zl Otft—,’l_ -

. Crzia—~
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Exp3-1X Regret bound

Regret bound of Exp3-1X

logN /1 Z L e
Rr< 2=+ (249) Y E|Y 2
! Ul 2 2 — o+

T N
Pt,i
Rr~0O IogNZE[ —ul
= L= oni Ty

. Cbreia—
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Exp3-1X Regret bound

Regret bound of Exp3-1X

logN /1 Z L e
Rr< 2=+ (Z49) 3B |y 2
K 2 ; o1 Ol T

T

Rr~ 0|, |lgN) E
t=1

N
Pt,i

7 Ot +

. Cbreia—
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Graph lemma Statement

Graph lemma

> Graph G with V(G)={1, ..., N}
> d —in-degree of vertex i
» « — independence set of G

» Turan's Theorem + induction

N
1 N
< 2al 4=
> <2akog (145

i=1 i

. Cbreia—
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Graph lemma Application of lemma

Discretization
1

bi ~ R

YA A \ P2 P2

L L N L N

N N A
Pt,i Pt,i
. < g = : — +2
— Prit Z_jeNl__ Pejty 4 Prit ZjeN,-‘ Pt.j

I

N
Pti

o .
=il t,i + Y
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Graph lemma Application of lemma

Discretization
1

i ~ R

— P11 P1 \ P2 P2

N N N

Pt,i Pt,i Pr,i
K — b S — b — + 2
Ot,i +7 IZ:; Pt,i + ZjeNl__ Pt,j + ; Pt,i + Zje/\/i— Pt.j

i=1

Note: we set M = [N?/v]
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Graph lemma Application of lemma

Discretization
1

bi ~ R

AR A \ P2 P2

L L N L N

Pt,i Pt,i Pt.i
5 > S —~ 2 —~ 4 2
= Onit Pt,i + ZJENI_ Prj+ 7 ; pt,i + ZjeN,-_ Pt,j

N N N
i=1

Note: we set M = [N?/v]

N

Z Pe,i

i=1 Pt,i + ZjENr pt,J

. Cbreia—

Michal Valko: Bandits on Graphs CMLA seminar - 42/



Graph lemma Application of lemma

Example: let M =10

<
<
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Graph lemma Application of lemma

M,
Mbei+ > jen- Mbes

N
i=1

Example: let M =10

<
<
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Graph lemma Application of lemma

N & N
D D) BE
= Mbp; + ZJGNF Mb.; I keC; 1+d

1

Example: let M =10

<
<
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Graph lemma Application of lemma

N

Mpy i ( M-I—N)
<2alog 1+
> Y e :

=i llkEC

Example: let M =10

<
<
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Analysis Regret bound

Exp3-1X regret bound

-
log N N2 N
R < £+ <ﬂ+7)ZE [2oztlog <1+%) +2}
n 2 po Qi

Rr=0 ( aTlog(N))

. Cbreia—
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Analysis Regret bound

Exp3-1X regret bound

-
log N N2 N
R < £+ <ﬂ+7)ZE [2oztlog <1+%) +2}
n 2 po Qi

Rr=0 ( aTlog(N))

Next step

. brezia~
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Analysis Regret bound

Exp3-1X regret bound

-
log N N2 N
R < £+ <ﬂ+7)ZE [2oztlog <1+%) +2}
n 2 po Qi

Rr=0 ( aTlog(N))

Next step

Generalization of the setting to combinatorial actions

. brezia~
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Combinatorial setting Example
Example

usery

news feedy news feeds news feeds

content, contents
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Combinatorial setting Example
Example

usery  users  users usery,

news feedy news feeds news feeds

content, contents
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Combinatorial setting Example

Example

usery  users  users usery, user

users

news feedy

news feeds

> Play m out of N nodes (combinatorial structure)

[ Y4
news feeds

content, contents

» Obtain losses of all played nodes

> Observe losses of all neighbors of played nodes

. Clreia—
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Combinatorial setting Example

» »
> |
< <
% %

» Play action V, € SC {0, 1}", |lv|[ <mfroallve S

> Obtain losses V£,

> Observe additional losses according to the graph

Michal Valko: Bandits on Graphs
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FPL-IX Algorithm

FPL-IX algorithm
> Draw perturbation Z;; ~ Exp(1) for all i € [N]

> Play “the best” action V; according to total loss estimate Et_l
and perturbation Z,

V:=argminv' (nt/l:t,l — Zt>
veS

» Compute loss estimates

~

Ui =0 ;K i1{l;; is observed}

> K; ;. geometric random variable with

1

E[K, = — —
[Ke.] ori+ (1 —ori)y

. brezia~
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FPL-IX Regret bound

FPL-IX - regret bound

& (m2VaT)
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Conclusion

Side Observation Summary

> Implicit eXploration idea
» New algorithm for simple actions - Exp3-I1X

» Using implicit exploration idea

» Same regret bound as previous algorithm

» No need to know graph before an action is played
» Computationally efficient

» New combinatorial setting with side observations
» Algorithm for combinatorial setting - FPL-IX
> Future directions

> No need to know graph after an action is played
» Stochastic side observations

» Random graph models

» Exploiting the communities

. brezia~
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SpectralUCB analysis

Sylvester’s determinant theorem:
|A +xx"| = |A|]l + A" xx"| = |A|(1 +x"A"!x)
Goal:

> Upperbound determinant |A + xx"| for ||x|]2 <1

» Upperbound x"A~1x
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Sylvester’s determinant theorem:
|A +xx"| = |A|]l + A" xx"| = |A|(1 +x"A"!x)
Goal:

> Upperbound determinant |A + xx"| for ||x|]2 <1

» Upperbound x"A~1x
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SpectralUCB analysis

Sylvester’s determinant theorem:

|A +xx"| = |A|]l + A" xx"| = |A|(1 +x"A"!x)

Goal:
> Upperbound determinant |A + xx"| for ||x|]2 <1
» Upperbound x"A~1x
N
XTA71X _ XTQAiquX _ yTAfly — Z)\iyl?
i=1
>yl < 1.

> y is a canonical vector.

» x = Qy is an eigenvector of A.



SpectralUCB analysis

Corollary:
Determinant [V7| of V7 = A + ZtT:1 X¢X; is maximized when all
x; are aligned with axes.

V7| < erl,-ajTH()\i + t7)




SpectralUCB analysis

1
FILF=2 D wifi—£)° = Se(f)
ij<N
Proof:
N
fLf=FDF —FWF=Y"df’ — > wff

i=1 ij<N

(de2 23" W,,ff+Zd,f2> =5 D wiylfi—

ij<N /JSN

f)’



SpectralUCB analysis

SpectralUCB analysis sketch

» Derivation of the confidence ellipsoid for & with probability 1 — 4.
» Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

x"(& —a”)| < lx[ly- Vil
(& )| < xl, (m/zm(wm e

> Regret in one time step: re = xja" — X} (& < 26X (1) lly—2

» Cumulative regret:
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SpectralUCB analysis sketch

» Derivation of the confidence ellipsoid for & with probability 1 — 4.
» Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

x"(& —a”)| < lx[ly- [Vel'2
(&~ @) < [l <R,/z|n<5wm e

> Regret in one time step: re = xja" — X7}y < 2¢¢| X (1) lly—2
» Cumulative regret:

T T |V |
TY r2<2(cr+1) 2Tlnﬁ
t=1




SpectralUCB analysis

SpectralUCB analysis sketch

» Derivation of the confidence ellipsoid for & with probability 1 — 4.
» Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

x"(& —a”)| < lx[ly- [Vel'2
(& )| < xl, <R,/z|n<5|A|m e

> Regret in one time step: re = xja" — X7}y < 2¢¢| X (1) lly—2
» Cumulative regret:

u V7]

=
TY r2<2(cr+1)y/2TIn AL

t=1

> Upperbound for In(|V:|/|A[)

Vel _ V7| <A+ T)
n— <lIn <2dIn| ———
Al Al A



SpectralTS analysis

Spectral TS analysis sketch

Divide arms into two groups
> Ai=bip—bip < gl|billg- arm i is unsaturated

> A;=bip—bipu>gl|big arm i is saturated



SpectralTS analysis

Spectral TS analysis sketch

Divide arms into two groups
> Aj=blp—bip < glbjg- arm i is unsaturated
> Ai=bip—bip> glbilg- arm i is saturated
Saturated arm

» Small standard deviation — accurate regret estimate.

» High regret on playing the arm — Low probability of picking



SpectralTS analysis

Spectral TS analysis sketch

Divide arms into two groups

> Aj=blp—bip < glbjg- arm i is unsaturated

> A;=blpu—blu> g||b,-||B:1 arm i is saturated
Saturated arm

» Small standard deviation — accurate regret estimate.

» High regret on playing the arm — Low probability of picking
Unsaturated arm

> Low regret bounded by a factor of standard deviation

» High probability of picking



SpectralTS analysis

Spectral TS analysis sketch

» Confidence ellipsoid for estimate f1 of p (with probability 1 — 5/ T?2)
» Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

R |Br[t/2T2
bl —blu| < (R 2log (W +C ) lIbillg -



SpectralTS analysis

Spectral TS analysis sketch

» Confidence ellipsoid for estimate f1 of p (with probability 1 — 5/ T?2)
» Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

. |Br[t/2T2
b;ub,u|§<R 2|og(m +C ) llbillg -

> Our key result coming from spectral properties of B;.

|Bt| T
log — < 2d1 1+ —
og A = og + N



SpectralTS analysis

Spectral TS analysis sketch

» Confidence ellipsoid for estimate fi of p (with probability 1 — §/T?2)
» Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

X A+ T)T2
171 — b < <R\/2d|og <¥) 4 c) b1l = €Iyl

oA

» Qur key result coming from spectral properties of B;.

|Bt| T
log — < 2d1 1+ —
og A= og + N



SpectralTS analysis

Spectral TS analysis sketch

» Confidence ellipsoid for estimate fi of p (with probability 1 — §/T?2)
» Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

X A+ T)T2
171 — b < <R\/2d|og <%) 4 c) Ibillg-1 = £lbillg+

» Qur key result coming from spectral properties of B;.

|Bt| T)
log — < 2d1 1+ —
og A= og + N

» Concentration of sample fi around mean fi (with probability 1 — 1/T?2)

» Using concentration inequality for Gaussian random variable.

. N / A+ T
bl i —b] | < (R 6d log (T) + C) ||b;||B:1\/4Iog(TN) = vai||B:1 V4 log(TN)



SpectralTS analysis

Spectral TS analysis sketch
Define regret’(t) = regret(t) - 1{|b] i(t) — bj | < €||b,-||B;1}

11g 1
regret’(t) < 7||ba(,f)||B;1 + 72



SpectralTS analysis

Spectral TS analysis sketch
Define regret/(t) = regret(t) - 1{|bjfi(t) — bjp| < {||bi[[g-1}
11g 1
regret’(t) < 7||ba(,r)||B;1 + 72
Super-martingale (i.e. E[Y; — Y, 1|7, 1] <0)

1l1g 1
X: = regret’(t) — THba(t)HB:l ~ T

t
Y, = ZXW.
w=1

(Yy; t=0,..., T) is a super-martingale process w.r.t. history F;.
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Spectral TS analysis sketch
Define regret/(t) = regret(t) - 1{|bjfi(t) — bjp| < {||bi[[g-1}
11g 1
regret’(t) < 7||ba(t)||B;1 + 72
Super-martingale (i.e. E[Y; — Y, 1|7, 1] <0)

1l1g 1
X: = regret’(t) — THba(t)HB:l -T2

t
Ye=) X
w=1
(Yy; t=0,..., T) is a super-martingale process w.r.t. history F;.

Azuma-Hoeffding inequality for super-martingale, w. p. 1 —¢/2:

LA 1lg 1 g /11 / 2
regret’(t) < —= b —1++<+2> 2T In=
; ( ) p ;1 || a(t)”Bt T p \[\ 5



SpectralTS analysis

Spectral TS analysis sketch

Define regret’(t) = regret(t) - 1{|bj () — bjp| < {|[bi||g-1}
11g 1
regret’(t) < 7||ba(t)||B;1 + 72

Super-martingale (i.e. E[Y; — Y, 1|7, 1] <0)

l1g 1
Xi = regret/(t) — —|| a(t)”B;1 )
Y%
w=1
(Yy; t=0,..., T) is a super-martingale process w.r.t. history F;.

Azuma-Hoeffding inequality for super-martingale, w. p. 1 —¢/2:

Zre ret’( —gi I +1+ <11+2> 2T|ng
¢ p o T T T ATV



Spectral Eliminator

Backup: SpectralEliminator pseudocode

Input:
N : the number of nodes, T : the number of pulls
{A.,Q} spectral basis of £
A\ @ regularization parameter
3, {tJ}JJ parameters of the elimination and phases
A1 — {Xl7 AN 7XK}.
for j=1to Jdo
th — A + A
for t=t; to min(tj;1 —1,7) do
Play x; € A; with the largest width to observe r;:
X; = arg maxxea, [[X||y -1
Vit < Vi + XX}

end for

Eliminate the arms that are not promising:
A -1

o < Vt [th, e ,Xt][rt—j7 ey rt]T

Ai1 = {x € Ap (e, x) + x| o1 8 > maxeen, | (G, x) — ||x|\v;1ﬁ}}
end for



Spectral Eliminator

Backup: SpectralEliminator analysis

SpectralEliminator

» Divide time into sets (t; =1 < tp < ...) to introduce
independence for Azuma-Hoeffding inequality and observe

Rr < Shooltisn — 5)[0¢ — xe,é5) + (I llys + leelly-1)5]
» Bound (x* — x, &;) for each phase

» No bad arms: (x* — x¢, &;) < (||x* ||V 1+ ||Xt||v 1)

ti
» By algorithm: Hx||2_1 < tfi]t-]l Zsfztj_1+1 Hx5||v_11
!

t; WA
Sy e min (L uxsnv;ll) < log ]

v
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