Graph-Based Anomaly Detection with Soft Harmonic Functions

Michal Valko

Advisor: Milos Hauskrecht

Computer Science Department, University of Pittsburgh, Computer Science Day 2011, March 18th, 2011.

Anomaly (Outlier) Detection

- Goal: identify unusual patterns in data
- Focus: <u>conditional</u> anomalies
- Contribution: graph-based method for conditional anomaly detection
- Application: medical error detection

Conditional Anomaly

 Patient electronic records have: demographics, conditions, labs, medications administered, procedures performed,...

Conditional Anomaly

Assumption: <u>Conditional</u> anomalies correspond to medical errors "*Mediatriceling* somecont forg 2000 000 pg events lake y de Oth Beinyleandt" (Health Keate Kostae Netwoly, sky Thirstee December 19¹/2720200)4)

Traditional Anomaly Detection

- Nearest Neighbor
 - Distance anomalies are distant (NN)
 - Density anomalies in low density regions (LOF, COF, LOCI)
- Classification
 - Model based (separate models for (ab)normal distributions)
 - 1-class (1-class SVM)
 - Classify normal vs. abnormal (when labels available)
- Statistical
 - > 3std

Challenges for CAD

Task: detect anomalies in labels

Dataset adopted from [Papadimitriou and Faloutsos, 2003]

Related Work (CAD)

Cross Outlier Detection (Papadimitriou, 2003)

CAD approaches

• OneClass SVM, LOF, ...

Discriminative Approach

• SVM-CAD

Regularized Discriminative Approach

• Connectivity AD, Soft Harmonic AD

regularizing unconditional outliers,

Conditional Anomaly Detection Goal

Problem statement (\bigstar) : For a dataset $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^n$ find pairs of $(\mathbf{x}_i, \mathbf{y}_i)$ such that $P(\mathbf{y} \neq \mathbf{y}_i | \mathbf{x}_i)$ is high.

time avoid unwanted

Class Outlier Approach

- Take a test case (x,y)
- Take any unconditional anomaly method
- Find out if x is anomalous wrt { x | x has class y }

Problems:

- Fringe points
- Unconditional outliers
- Anomaly (alert) scores for class 1 and class 2 may not be comparable

ignores the other class(es)

Discriminative Approach

- $P(\mathbf{y}|\mathbf{x})$ is high \rightarrow conditional anomaly
- Learn Model/Build Projections
- Bayes Network

$$d(y|\mathbf{x}) = P(y'|\mathbf{x}) \quad y' \neq y$$

bigger the alert score → more anomalous

Support Vector Machines projections

$$d(y|\mathbf{x}) = -y(\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0)$$

Support Vector Machines projections

A new approach

- Disadvantages of the SVM-CAD
 - only linear decision boundary
 - can become overly confident in the areas with little data
 - Isolated points (unconditional outliers)
- Soft Harmonic Anomaly Detection
 - Non-parametric
 - Graph-based
 - Regularization
 - Control the influence of unconditional outliers
 - Can incorporate <u>unlabeled</u> examples
 - Missing medical records
 - Tests not done frequently because of the budget constraints

Harmonic Solution

[Zhu et al., 2003]

Dealing with Outliers

Dealing with Outliers

Regularization

Soft Harmonic Solution

Unconstrained Regularization

- Close form solution $\ell = (C^{-1}K + I)^{-1}\mathbf{y}$
- when ℓ_i is rewritten as $|\ell_i| \operatorname{sgn}(\ell_i)$
- $|\ell_i|$ can be interpreted as a confidence
- $|\ell_i| >> 0.5$ and $\operatorname{sgn}(\ell_i) \neq y_i$ Conditional Anomaly!

Synthetic Data

- evaluation of conditional anomaly methods is challenging
- synthetic data with known distribution
- flip 3% of the labels
- compare how the anomaly score agrees with true score

Synthetic Data: Results

- Evaluation metric:
 - How the anomaly score agrees with the true score

	Dataset D1	Dataset D2	Dataset D3
QDA	73.8% (2.1)	29.4% (5.2)	61.0% (1.2)
SVM	58.8% (7.0)	49.8% (1.7)	46.1% (3.1)
1-class SVM	51.3% (0.9)	47.7% (0.6)	64.7% (0.7)
wk–NN	74.2% (1.9)	56.5% (1.7)	61.4% (2.1)

Top 5 best scoring anomalies for different methods on the synthetic dataset D3

Medical Data

- 4486 patients from UPMC
- Cardiac surgery (2002-2007)
- 45767 patient-day events/states
- 9K attributes
- 222 states evaluated by 15 experts
- nearest neighbor graph
- Metric: How much the score agrees with the experts.
- ▶ 1. Laboratory tests (LABs)
 - 2. Medications (MEDs)
 - 3. Visit features/demographics
 - 4. Procedures
 - 5. Heart support devices

PCP data set: Segmentation

PCP Dataset: PLT Lab feature

Last value: A

Last value difference = B-A

Last percentage change = (B-A)/B

Last slope = (B-A) / (tB-tA)

Nadir = D

Nadir difference = A-D

Nadir percentage difference = (A-D)/D

Baseline = F

Drop from baseline = F-A

Medical Data Results

 Outperforming SVM method over the range of settings of regularization parameters

Medical Data Results

 Outperforming standard weighted nearest neighbors on the same graph

Conclusion & Future Work

- A non-parametric graph-based approach
 - Successfully detect conditional anomalies
- Future work
 - Online Soft Harmonic Anomaly Detection
 - Parallelization of harmonic solution

Adapt to changes in medical practice

Come to my poster

Thanks to: Branislav Kveton, Greg Cooper, Tomas Singliar, Shyam Visweswaram, Iyad Batal, Amy Seybert, Hamed Valizadegan, Saeed Amizadeh, Quang Nguyen, Dave Krebs