Face Recognition Using Random Walks on Graphs: Real-Time Learning without Explicit Feedback

Michal Valko (Computer Science Department) Branislav Kveton, Ling Huang, Daniel Ting

Grad Expo 2010, March 22nd, 2010

Main Ideas

- **Goal**: Adaptation to patterns with minimal human feedback (labels)
 - Most of data around is unlabeled
 - Labeling is expensive
- **Solution**: Semi Supervised learning (Machine Learning)
 - Labeled examples are provided in the beginning
 - Provide initial bias
 - Unlabeled examples come as available
- **Approach**: Regularized graph–based inference + quantization

Semi-supervised learning

Semi-supervised learning

Face Similarities

?

Face Similarities

?

Face Similarities

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \min \begin{cases} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2, \psi}, \\ \|(\mathbf{x}_{i} - \bar{\mathbf{x}}_{i}) - (\mathbf{x}_{j} - \bar{\mathbf{x}}_{j})\|_{2, \psi} \\ \|\mathbf{x}_{i}/\bar{\mathbf{x}}_{i} - \mathbf{x}_{j}/\bar{\mathbf{x}}_{j}\|_{2, \psi} \end{cases}$$

7

Graph from faces

Harmonic Function Solution (HFS)

• Labels of unlabeled vertices are inferred using the harmonic function solution

Dealing with Outliers

Regularized HFS

Regularization

Online HFS

Inputs: an example x_t, a data adjacency graph W

Outputs: a prediction \hat{y}_t , an updated data adjacency graph W

Online HFS

Inputs: an example x_t, a data adjacency graph W

Algorithm:

If the graph W has more than M vertices, quantize it Add x_t to the graph W and compute the Laplacian L Infer labels on the graph: $\min_{\lambda \in \Re^N} \lambda^T (L + \gamma_g I) \lambda \quad \text{s.t. } \lambda_i = y_i \text{ for all } i \in l$

Outputs: a prediction \hat{y}_t , an updated data adjacency graph W

Incremental k-centers

Incremental k-centers

Incremental k-centers

Demostration

Theoretical Guarantees

• We seek a regret bound of the form:

• The errors should be bounded on the order of $O(\sqrt{N})$

OfficeSpace Dataset

Snapshots

V1

V2

- 8 people
- Only 4 faces are labeled

Results (OfficeSpace)

Adaptation Dataset

- 3 locations, different light conditions
- 8 camera positions

Conclusions

- Algorithm for semi-supervised learning
 - Takes advantage of the manifold structure in the data
- Requires minimal feedback
 - Only 1 or few labeled examples
- Works online and requires constant storage
- Theoretical guarantees on success rates of our methods
- Future work:
 - other data reduction methods
 - other domains: object recognition, augmented reality