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Main Ideas

• Goal:  Adaptation to patterns with minimal human feedback 
(labels)
– Most of data around is unlabeled

– Labeling is expensive

• Solution:  Semi – Supervised learning (Machine Learning)
– Labeled examples are provided in the beginning

• Provide initial bias

– Unlabeled examples come as available

• Approach:  Regularized graph–based inference + quantization



Semi-supervised learning
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Semi-supervised learning
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Face Similarities
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Face Similarities
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Graph from faces
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Harmonic Function Solution (HFS)

• Labels of unlabeled vertices are inferred using the 
harmonic function solution
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Regularized HFS
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Regularization
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Online HFS

Inputs: an example xt, a data adjacency graph W

Algorithm:

Add xt to the graph W and compute the Laplacian L

Infer labels on the graph:

Predict 

Outputs: a prediction    , an updated data adjacency graph W
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Online HFS

Inputs: an example xt, a data adjacency graph W

Algorithm:

If the graph W has more than M vertices, quantize it

Add xt to the graph W and compute the Laplacian L

Infer labels on the graph:

Predict 

Outputs: a prediction    , an updated data adjacency graph W
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Incremental k-centers
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Incremental k-centers
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Incremental k-centers
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Demostration
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Theoretical Guarantees

• We seek a regret bound of the form:

• The errors should be bounded on the order of
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OfficeSpace Dataset

• 8 people 

• Only 4 faces are labeled
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Results (OfficeSpace)
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Our method

Nearest Neighbor



Adaptation Dataset
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• 3 locations, different light conditions

• 8 camera positions



Results (Adaptation)
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Our method

Nearest Neighbor

Online Semi-
Supervised 
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Conclusions

• Algorithm for semi-supervised learning

– Takes advantage of the manifold structure in the data

• Requires minimal feedback

– Only 1 or few labeled examples

• Works online and requires constant storage

• Theoretical guarantees on success rates of our 
methods

• Future work: 

– other data reduction methods

– other domains: object recognition, augmented reality
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