Robust Face Recognition Using Online Learning

MICHAL VALKO, BRANISLAV KVETON, LING HUANG, DANIEL TING, MATTHAI PHILIPOSE

University of Pittsburgh

An example of a similarity graph over faces. The faces are vertices of the graph. The edges of the graph connect similar faces. Labeled faces are outlined by solid lines.

Goal
A face recognition algorithm that:
- Has a high accuracy
- Has a high recall
- Is robust to outliers
- Runs in real time

Approach
Online (real-time and incremental) learning of a similarity graph over observed faces and inference of face IDs based on the structure of the graph.

Algorithm (time step t):
- Remove outliers from the graph
- If the graph is too large, coarsen the adjacency graph by replacing the neighboring points with a set of local representative points
- Add the new face to the graph
- Infer the ID of the face based on the structure of the graph - a random walk that starts at the new face and terminates at the labeled faces

Challenges
High accuracy and a high recall are contradicting objectives. Achieving both with standard ML algorithms is typically impossible (unless the training set closely resembles the test set).

Adaptive ML algorithms can help to achieve this objective. The problem is that no explicit feedback (labels) is provided in real time.

Online Algorithm

Inputs:
an unlabeled example x_t
up to n_g representative vertices $C_{t-1} = \{c_1, c_2, \ldots \}$
vertex multiplicities v_{t-1}

Algorithm:

$C_t = C_{t-1}$
$v_t = v_{t-1}$
while ($|C_t| = n_g + 1$)

$R = 2R$
greedily choose $C_t \subseteq C_{t-1}$ with $\min_{a \in C_t} \|a - b\| > R$
update v_t based on the repartitioning if x_t is closer than R to any $c_i \in C_t$
$v_t(i) = v_t(i) + 1$
else
$v_t(|C_t| + 1) = 1$
add x_t to the position ($|C_t| + 1$) in C_t
build a similarity matrix W_t over the vertices C_t
build a matrix V_t whose diagonal elements are v_t
compute the Laplacian \hat{L} of the graph W_t
infer labels on the graph:

$\hat{y}_t = \arg \min_{\hat{y}} \langle \hat{L} + \gamma V_t \rangle \hat{y}$
s.t. $L_t = y_t$ for all labeled examples up to the time t make a prediction $\hat{y}_t = \text{sgn}(\hat{L}_t \hat{y}_t)$

Outputs:
a prediction \hat{y}_t
up to n_g representative vertices $C_t = \{c_1, c_2, \ldots \}$
vertex multiplicities v_t

Online harmonic solution at the time step t. The main parameters of the algorithm is the regularizer γ_t and the maximum number of vertices n_g.

Prediction Error Analysis

$\frac{1}{n} \sum_{t=1}^{n} (\hat{y}_t - y_t)^2$ vs $\frac{9}{2n} \sum_{t=1}^{n} (\hat{y}_t - \bar{y})^2$
$+$ $\frac{9}{2n} \sum_{t=1}^{n} (\hat{y}_t - \bar{y})^2$
$+$ $\frac{9}{2n} \sum_{t=1}^{n} (\hat{y}_t - \bar{y})^2$

True risk close to empirical by the algorithm stability argument of Cortes et al. (2008)
Difference between the offline and online prediction
Quality of quantization

Similarity Matrix
- Defined over set of faces, higher weights to the pixels in the center
- $w_{ij} = \exp \left[-\frac{d(x_i, x_j)}{2 \sigma^2} \right]$
 where $d(x_i, x_j) = \min \left\{ \|x_i - x_j\|_2, \|x_i - x_j\|_2, \|x_i - x_j\|_2 \right\}$

Data Quantization
- Cannot store all the past data
- Similarity graph needs to be reasonably small
- Use k-centers algorithm to maintain constant graph size
- Represent the multiple nodes by a single one
- Keep track of multiplicities $\hat{e}_t = (\hat{L} + \gamma V)^{-1} W_t \hat{e}_t$

Regularized Harmonic Solution
Minimum satisfies the harmonic property and has a closed form solution.

Robustness to outliers
Nearest Neighbor
Nearest Neighbor
Our Algorithm
Online Semi-Supervised Boosting
Snapshots from the Adaptation dataset. 3 locations and 2 camera positions.

Nearest Neighbor
Nearest Neighbor