Real Time Adaptive Face Recognition – Under the Hood

REAL-TIME LEARNING WITHOUT EXPLICIT FEEDBACK

Everyday Sensing and Perception

Online Algorithm

Inputs:

an unlabeled example \mathbf{x}_t a quantized data adjacency graph $W_t \downarrow_1$ vertex multiplicities \mathbf{v}_{t-1}

Algorithm:

Similarity Matrix

Defined over set of faces, higher weights to the pixels in the center

$$w_{ij} = \exp\left[-\frac{d^{2}(\mathbf{x}_{i}, \mathbf{x}_{j})}{2\sigma^{2}}\right],$$

where $d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \min\left\{ \begin{aligned} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2,\psi}, \\ \|(\mathbf{x}_{i} - \bar{\mathbf{x}}_{i}) - (\mathbf{x}_{j} - \bar{\mathbf{x}}_{j})\|_{2,\psi}, \\ \|\mathbf{x}_{i}/\bar{\mathbf{x}}_{i} - \mathbf{x}_{j}/\bar{\mathbf{x}}_{j}\|_{2,\psi} \end{aligned}\right\}$

Data Quantization

- Cannot store all the past data Similarity graph needs to be reasonably small
- Greedily find the closest pair of nodes Represent the two nodes by a single one Keep track of multiplicities

 $\hat{\boldsymbol{\ell}}_u = (\hat{L}_{uu} + \gamma_q V)^{-1} \hat{W}_{ul} \boldsymbol{\ell}_l$

Regularized Harmonic Solution

if the graph W_{t-1} has less then n_q vertices add a new vertex \mathbf{x}_t to the graph W_{t-1} $v_t(l) = v_{t-1}(l)$ for $l = 1, \ldots, t-1$ $v_t(t) = 1$

else

find the vertices i and j that minimize $v_{t-1}(j)d(\mathbf{x}_i,\mathbf{x}_j)$ replace the *j*-th vertex of the graph W_{t-1} with \mathbf{x}_t $v_t(l) = v_{t-1}(l)$ for $l = 1, \ldots, n_g$ $v_t(i) = v_{t-1}(i) + v_{t-1}(j)$ $v_t(j) = 1$ $W_t = W_{t-1}$ $\hat{W}_t = V_t W_t V_t$ compute the Laplacian \hat{L} of the graph \hat{W}_t infer labels on the graph: $\hat{\boldsymbol{\ell}} = \arg\min_{\boldsymbol{\ell}} \boldsymbol{\ell}^{\mathsf{T}} (\hat{L} + \gamma_g V_t) \boldsymbol{\ell}$

s.t. $\ell_i = y_i$ for all labeled examples up to the time t make a prediction $\hat{y}_t = \operatorname{sgn}(\hat{\ell}_t)$

Minimum satisfies the harmonic property and has a closed form solution.

Regularization controls the amount of extrapolation to unlabeled data. The lower the regularizer, the more we trust unlabeled data

Prediction Error Analysis

 $\frac{1}{n} \sum_{t} (\hat{\ell}_t - y_t)^2 \le \frac{9}{2n} \sum_{t} (\hat{\ell}_t - \tilde{\ell}_t)^2 + \frac{9}{2n} \sum_{t$

Quality of

quantization

Outputs:

a prediction \hat{y}_t a quantized data adjacency graph W_t vertex multiplicities \mathbf{v}_t

Online harmonic function solution at the time step t. The main parameters of the algorithm is the regularizer γ_{q} and the maximum number of vertices n_{α} .

 $\frac{9}{2n}\sum_{t}(\tilde{\ell}_t - \ell_t^*)^2 +$ $\frac{9}{2n}\sum_{t}(\ell_t^* - y_t)^2.$

Difference between the offline and online prediction

 $O(\sqrt{n})$ by the algorithm stability argument of [Cortes et at. 2008]

PROJECT TEAM

BRANISLAV KVETON, Intel Labs Santa Clara MICHAL VALKO, University of Pittsburgh

MATTHAI PHILIPOSE, Intel Labs Seattle KENNETH LAFOND, Intel Labs Seattle

Copyright © 2009, Intel Corporation. All right reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others

