Learning predictive models for combinations of heterogeneous proteomic data sources

Michal Valko, Richard Pelikan, Milos Hauskrecht University of Pittsburgh, Pittsburgh, Pennsylvania

Classifier for Pancreatic Cancer

- Measuring expression levels of protein mixtures
 - Mutliplexed protein arrays
 - Mass Spectrometry profiling
 - Expression Arrays

more sources » more information » better classifier

Pancreatic Cancer Dataset

- 109 samples (from UPitt Cancer Institute)
 - 56 cases
 - 53 controls (smoking, age and gender matched to cases)
 - 2 data sources
 - 1554 peaks from SELDI-TOF-Mass Spec
 - 30 measurements from Luminex xMAP [®] arrays
- Several classifiers

SELDI-TOF MS

Surface Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry

SELDI-TOF-MS preprocessing

- 1. variance stabilization
- 2. baseline correction
- 3. smoothing
- 4. intensity normalization
- 5. profile alignment steps
- 60264 variables from SELDI-TOF was reduced to 1554 by preprocessing

Luminex arrays

Luminex Corporation's xMAP[®] technology

Smaller number of output variables (up to 100)
30 variables in our data

Linear Support Vector Machine

- Learn linear decision boundary
- Separates n-dimensional feature space into 2 partitions

• Classification: which half-space new point falls in

Random Forest Classifier

- Ensemble classifier :
 - Combines the result of multiple *decision trees*
 - Random Feature selection
- Construction of each tree:
 - 1. Sample with replacement (from training set)
 - 2. Randomly select subset of variables
 - 3. Train a tree classifier
- Class that is selected by voting

Evaluation

- Random subsampling
 - 40 splits (70% train, 30% test)
- Statistics:
 - Classification Error
 - Sensitivity
 - Specificity
 - Receiver Operating Characteristics (ROC)

Data Fusion

Data fusion (Linear SVM)

Data fusion (Random Forest)

Model Fusion

- Simple data merging resulted in worse performance
- Need for classifier that combines both sources

Soft Output from Classifiers

- Soft output from the best classifiers
 - SVM: distance from the separating hyperplane
 - Random Forest: Ratio of Trees that favor predicted class

Model Composition

Model Fusion vs. Data Fusion

Data Fusion

		Error	SN	SP
SELDI PEAKS + LUMINEX	CART	22.94%	68.00%	88.87%
	std	16.07%	25.71%	22.71%
	NB	44.63%	74.21%	37.74%
	std	9.97%	26.28%	25.40%
	LogisticR	38.38%	60.72%	62.56%
	std	9.30%	12.51%	12.11%
	RF	21.54%	76.58%	82.37%
	std	7.98%	13.67%	13.22%
	SVM	34.49%	50.82%	79.83%
	std	12.12%	36.76%	22.42%

Standard deviation

Model Fusion

		Error	SN	SP
SVM(seldi) + RF(luminex)	NB	8.82%	91.28%	91.60%
	std	4.42%	7.90%	7.91%
SVM(seldi) + luminev	RF	9.71%	'91.29%	89.88%
S V WI(SCIUI) + Tuillinex	Std	4.53%	7.22%	8.40%
saldi naaks + PF (luminav)	SVM	8.46%	92.56%	91.03%
sciul peaks + Kr (luiinitex)	Std	3.78%	5.98%	6.58%
T_tast50(soldi) + luminav	RF	9.85%	88.83%	92.12%
I_ICSUSU(SCIUI) + IUIIIIIEX	std	4.78%	9.23%	7.24%

Conclusion

- Simple data merging deteriorates the classification accuracy
- Combine classifiers that work well for certain type of data
- Using soft output from classifiers
- Model inclusion/model composition
- Significant improvement over mere data merging

Acknowledgments

- USAMRAA W81XWH-05-2-0066
- NLM training grant 5 T15 LM007059-20
- NCI grant P50 CA090440-06.
- Dr. Bigbee, Dr. Zeh, and Dr. Whitcomb for the data used in our analyses.