Conditional Anomaly Detection with Adaptive Similarity Metric Michal Valko

Advisor: Miloš Hauskrecht Joint work with: Gregory Cooper, Amy Seybert, Shyam Visweswaram, Melissa Saul, James Harrison, Andrew Post

Funded by the National Library of Medicine: Grant R21-LM009102

Anomaly Detection

- Goal: Identify unusual patterns in data.
- Methods: from statistics and machine learning
- Contribution: <u>conditional</u> anomaly detection framework
- Application: medical error detection

Conditional Anomaly

 Patient electronic records have: demographics, conditions, labs, medications administered, procedures performed,...

Conditional Anomaly

Assumption: Anomalies correspond to medical errors *"Medical errors account for 200 000 preventable deaths a year."* (HealthGrades study, Wall Street Journal, July 27th 2004) Hauskrecht, Valko, Kveton, Visweswaram, Cooper (AMIA 2007)

Hauskrecht, Valko, Kveton, Visweswaram, Cooper (AMIA 2007)

Selecting Similar Patients

- All other patients in the database
- Select only the closest patients
- What is a good distance metric?
 - Euclidean, Mahalanobis ...
 - don't take into the account the decision variables
- Learn the metric which puts patients with the similar decisions closer together.

Valko, Hauskrecht (FLAIRS 2008, to appear) 7

Original Data

Learned Linear Projection

Learn Probabilistic Model

 Bayesian Network with Fixed structure

 Learn the Bayesian Network structure and parameters from the data

Experiments

- PORT dataset (Kapoor 1996)
- Patients

 diagnosed with
 the community
 acquired
 pneumonia

Target attributes						
Img						
X ₁ Hospitalization						
Prediction attributes						
$\begin{array}{l} \textbf{Demographic factors} \\ X_2 \qquad & \text{Age} > 50 \\ 1 = (\text{male} = \text{true}, \text{ female} = \text{false}) \end{array}$						
X ₃ Gender (male						
Coexisting heart failure						
X ₄ Congestive disease						
X ₅ Cerebiovasedisease						
X ₆ Neoplastic dist						
X ₇ Renal disease						
X ₈ Liver disease						
Physical-examination 125 / min						
V_{0} Pulse $\geq 125 / \min_{125 \geq 30 / \min}$						
V_{10} Respiratory rate ≥ 500 mm Hg						
V Systolic blood pressure 25° C or $> 40^{\circ}$ C						
V Temperature < 35 Cor						
A_{12} Laboratory and radiographic 30 mg / dl						
Blood urea nitrogen $\geq 50 \text{ ms}$						
X_{13} Glucose $\geq 250 \text{ mg}/\text{ di}$						
X_{14} Hematocrit $< 30\%$						
X_{15} Sodium < 130 mmol / 1 Sodium < 60 mm H	g					
X ₁₆ Solution Destial pressure of arternal oxygen						
X_{17} Partial pH < 7.35						
X ₁₈ Artenia pri	2222					
X ₁₉ Pleural citat						

Experiments

- 2287 patient cases
- 19 binary attributes
- 100 evaluated by the panel of three physicians
- 23 anomalies

Target attributes Hospitalization X_1 Prediction attributes **Demographic factors** Gender (male = true, female = false) Age > 50 X_2 X_3 **Coexisting illnesses** Congestive heart failure Cerebrovascular disease X_4 X5 Neoplastic disease X_6 Renal disease X_7 Liver disease Physical-examination findings X8 Pulse \geq 125 / min Respiratory rate \geq 30 / min Xo Systolic blood pressure < 90 mm Hg X10 Temperature $< 35 \,^{\circ}$ C or $\ge 40 \,^{\circ}$ C X_{11} Laboratory and radiographic findings X12 Blood urea nitrogen \geq 30 mg / dl Glucose \geq 250 mg / dl X13 Hematocrit < 30% X14 Sodium < 130 mmol / 1Partial pressure of arterial oxygen < 60 mm HgX15 X16 Arterial pH < 7.35 X_{17} X_{18} Pleural effusion X_{19}

Experiments

 Goal: Detect whether the decision of hospitalization is *anomalous*,
 conditioning on the description variables

Target attributes Hospitalization X_1 Prediction attributes Demographic factors Gender (male = true, female = false) Age > 50 X_2 Coexisting illnesses X_3 Congestive heart failure Cerebrovascular disease X_4 Neoplastic disease X_5 X_6 Renal disease X_7 Liver disease Physical-examination findings X_8 Pulse \geq 125 / min Respiratory rate \geq 30 / min Xg Systolic blood pressure < 90 mm Hg X10 Temperature $< 35 \,^{\circ}$ C or $\ge 40 \,^{\circ}$ C X_{11} Laboratory and radiographic findings X_{12} Blood urea nitrogen ≥ 30 mg / dl Glucose $\geq 250 \text{ mg} / \text{dl}$ X_{13} Hematocrit < 30% X_{14} Sodium < 130 mmol / 1Partial pressure of arterial oxygen < 60 mm Hg X_{15} X16 Arterial pH < 7.35 X17 Pleural effusion X18 X_{19}

Evaluation

Algorithm catches many anomalies

- high sensitivity
- Algorithm's predictions are accurate
 - high specificity
- Combine sensitivity and specificity for various detection thresholds

Results

MODEL	METRIC	SELECTION	RESULT	
	any	ALL	11.6%	BASELINE
Naïve Bayes	Euclidean	CLOSEST 40	16.4%	
	Learned Metric	CLOSEST 40	16.8%	
Learn Bayes	any	ALL	13.8%	
, Network Structure	Euclidean	CLOSEST 40	17.8%	
and Parameters	Learned Metric	CLOSEST 40	26.4%	BEST

Conclusion: Two-fold improvement over baseline.

Conclusion

Selection of closest patients

- Models tuned to the individual patient
- Metric learning
 - Lowers the influence of irrelevant data
- Structure learning
 - Gives more accurate representation of relation between the variables

Current/Future Work

- Automatic population size selection
- Multiple decisions
- UPMC dataset of patients with cardiac surgery with **thousands** of records per patient
- Anomaly detection in time.

Evaluation

IDEAL 100% Algorithm needs to have high specificity SENSITIVITY • Specificity >= 95% (at most 1 error in 20 alarms) Catch as many anomalies high sensitivity. 0% 95% 100% 0% SPECIFICITY

$$\|Ax_i - Ax_j\|^2$$

$$\sum_{j \in C_i} p_{ij}$$

Learn Probabilistic Model

- Bayesian Network with Fixed structure
- Probabilities from metric

$$p_{ij} = \frac{\exp(-\|Ax_i - Ax_j\|^2)}{\sum_{k \neq i} \exp(-\|Ax_i - Ax_k\|^2)} , \qquad p_{ii} = 0$$

 Learn the Bayesian Network structure and parameters from the data

Results

MODEL	METRIC	SELECTION	RESULT	
Naïve Bayes	any	ALL	11.6%	BASELINE
	Euclidean	CLOSEST 40	16.4%	
	Learned Metric	CLOSEST 40	16.8%	
Probability from the Distance Metric	Euclidean	ALL	8.0%	
	Euclidean	CLOSEST 40	8.0%	
	Learned Metric	ALL	18.0%	
	Learned Metric	CLOSEST 40	20.2%	
Learn Bayes Network Structure and Parameters	any	ALL	13.8%	
	Euclidean	CLOSEST 40	17.8%	
	Learned Metric	CLOSEST 40	26.4%	BEST

Conclusion: Two-fold improvement over baseline.