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Anomaly Detection

 Goal: Identify unusual patterns in data.

 Methods:  from statistics and machine learning

 Contribution: conditional anomaly detection framework

 Application:  medical error detection

2



Conditional Anomaly

 Patient electronic records have: demographics, 
conditions, labs, medications administered, 
procedures performed,…
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Conditional Anomaly

Assumption: Anomalies correspond to medical errors

“Medical errors account for 200 000 preventable deaths a year. “
(HealthGrades study, Wall Street Journal, July 27th 2004)
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Model

Current  patient 
record

Anomaly Call

P(Decisions | Description , Model) <   ?

Description     (Contex)                   +   Decision(s)

Group of similar 
patientsMedical Database

Hauskrecht, Valko, Kveton, Visweswaram, Cooper (AMIA 2007)
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Model

Current  patient 
record

Medical Database

Hauskrecht, Valko, Kveton, Visweswaram, Cooper (AMIA 2007)

6

Group of similar 
patients

Anomaly Call

P(Decisions | Description , Model) <   ?

Description     (Contex)                   +   Decision(s)



Selecting Similar Patients
 All other patients in the database 

 Select only the closest patients 

 What is a good distance metric?

 Euclidean, Mahalanobis …

 don’t take into the account the decision variables

 Learn the metric which puts patients with the similar 
decisions closer together. 

Valko, Hauskrecht (FLAIRS 2008, to appear) 7



Neighborhood Component Analysis
Original Linear Projection
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Original Data

Goldberger et al. NIPS2004
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Neighborhood Component Analysis

9

Original Data
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Current  patient 
record

Group of similar 
patientsMedical Database
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Anomaly Call
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Learn Probabilistic Model
 Bayesian Network with 

Fixed structure 

 Learn the Bayesian Network structure 
and parameters from the data
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Experiments

 PORT dataset 
(Kapoor 1996)

 Patients 
diagnosed with 
the community 
acquired 
pneumonia 

15



 2287 patient cases

 19 binary attributes  

 100 evaluated by 
the panel of three 
physicians

 23 anomalies

Experiments
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 Goal:  Detect 
whether the 
decision of 
hospitalization is 
anomalous, 
conditioning on 
the description 
variables

Experiments
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Evaluation
 Algorithm catches many anomalies  

 high sensitivity

 Algorithm’s predictions are accurate 

 high specificity

 Combine sensitivity and specificity for various 
detection thresholds
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BASELINE

Results

MODEL METRIC SELECTION RESULT

any ALL 11.6%

Euclidean CLOSEST 40 16.4%

Learned Metric CLOSEST 40 16.8%

any ALL 13.8%

Euclidean CLOSEST 40 17.8%

Learned Metric CLOSEST 40 26.4%

Naïve Bayes

Learn Bayes 

Network Structure 

and Parameters BEST
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Conclusion: Two-fold improvement over baseline.



Conclusion
 Selection of closest patients

 Models tuned to the individual patient 

 Metric learning

 Lowers the influence of irrelevant data

 Structure learning

 Gives more accurate representation of relation between 
the variables
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Current/Future Work
 Automatic population size selection

 Multiple decisions 

 UPMC dataset of patients with cardiac surgery with 
thousands of records per patient

 Anomaly detection in time.
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Evaluation

 Algorithm needs to have high 
specificity

 Specificity  >= 95%   (at most 1 error 
in 20 alarms ) 

 Catch as many anomalies 

 high sensitivity.
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Neighborhood Component Analysis
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Learn Probabilistic Model
 Bayesian Network with 

Fixed structure 

 Probabilities from metric

 Learn the Bayesian Network structure 
and parameters from the data
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BASELINE

Results
MODEL METRIC SELECTION RESULT

any ALL 11.6%

Euclidean CLOSEST 40 16.4%

Learned Metric CLOSEST 40 16.8%

Euclidean ALL 8.0%

Euclidean CLOSEST 40 8.0%

Learned Metric ALL 18.0%

Learned Metric CLOSEST 40 20.2%

any ALL 13.8%

Euclidean CLOSEST 40 17.8%

Learned Metric CLOSEST 40 26.4%

Naïve Bayes

Probability from 

the Distance 

Metric 

Learn Bayes 

Network Structure 

and Parameters
BEST
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Conclusion: Two-fold improvement over baseline.


