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Stochastic Shortest Path (SSP)
[Bertsekas, 2012]
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Many popular RL problems are goal-oriented tasks:
Minimize the cumulative cost to reach the goal

This paper
First study of exploration-exploitation dilemma

in goal-oriented RL
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https://github.com/furfa/LunarLander-v2-Solve/blob/master/img/preview.gif
https://raw.githubusercontent.com/CM-Data/Noisy-Dueling-Double-DQN-MountainCar/master/trained.gif
https://www.youtube.com/watch?v=TmPfTpjtdgg
https://github.com/maximecb/gym-minigrid/blob/master/figures/multi-room.gif


SSP-Markov Decision Process
[Bertsekas, 2012]
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State space S ′ = S ∪ {s}
- Starting state s0 ∈ S ( )

- Goal state s ( )

Action space A =
{
Up,Down, Left,Right

}
Transition p(s′|s, a)

- Goal is absorbing p(s|s, a) = 1

Cost function c(s, a)

- Empty state c(s, a) = 1 ( )

- Easy state c(s, a) = 0.1 ( )

- Goal state c(s, a) = 0

� Discounted and finite-horizon MDPs are sub-classes of SSP-MDPs [e.g., Bertsekas, 2012]
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SSP-MDP
[Bertsekas, 2012]
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Policy π : S → A

Goal-reaching time

τπ(s) := min
{
t ≥ 0 : st+1 = s | s1 = s, π

}
Value function

V π(s) := E

[
τπ(s)∑
t=1

c(st, π(st))
∣∣∣ s1 = s

]



SSP-MDP
Policy categorization
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Time to goal τπ(s0)

Cumulative cost

+∞ 6 9

+∞ 5 4.4

Proper policies

⇒ Objective: reach the goal while minimizing the cumulative cost
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Assumptions
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Assumption
¬ There exist known constants 0 < cmin ≤ cmax such that c(s, a) ∈ [cmin, cmax] for all
(s, a) ∈ S ×A.
 There exists at least one proper policy (i.e., that reaches the goal s with probability 1 from
any state in S).

Lemma (SSP problem is well-posed, see [Bertsekas, 2012])
Under Asm. 1&2, there exists an optimal policy that is proper, stationary and deterministic

π? ∈ arg min
π

V π

Lemma
Under Asm. 1&2, we have ‖V ?‖∞ ≤ cmaxD, where we introduce the SSP-diameter D

D := max
s∈S

min
π

E [τπ(s)] < +∞

shortest path from s to the goal s



Assumptions
6

Assumption
¬ There exist known constants 0 < cmin ≤ cmax such that c(s, a) ∈ [cmin, cmax] for all
(s, a) ∈ S ×A.
 There exists at least one proper policy (i.e., that reaches the goal s with probability 1 from
any state in S).

Lemma (SSP problem is well-posed, see [Bertsekas, 2012])
Under Asm. 1&2, there exists an optimal policy that is proper, stationary and deterministic

π? ∈ arg min
π

V π

Lemma
Under Asm. 1&2, we have ‖V ?‖∞ ≤ cmaxD, where we introduce the SSP-diameter D

D := max
s∈S

min
π

E [τπ(s)] < +∞

shortest path from s to the goal s



Assumptions
6

Assumption
¬ There exist known constants 0 < cmin ≤ cmax such that c(s, a) ∈ [cmin, cmax] for all
(s, a) ∈ S ×A.
 There exists at least one proper policy (i.e., that reaches the goal s with probability 1 from
any state in S).

Lemma (SSP problem is well-posed, see [Bertsekas, 2012])
Under Asm. 1&2, there exists an optimal policy that is proper, stationary and deterministic

π? ∈ arg min
π

V π

Lemma
Under Asm. 1&2, we have ‖V ?‖∞ ≤ cmaxD, where we introduce the SSP-diameter D

D := max
s∈S

min
π

E [τπ(s)] < +∞

shortest path from s to the goal s



Learning Problem
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Input: S, s,A, cmin, cmax, no prior knowledge of p
for episodes k = 1, 2, . . . ,K do

Set h = 0 and initial state sk,0 = s0

while sk,h 6= s do
Execute ak,h = πk,h(sk,h)
Observe cost ck,h = c(sk,h, ak,h) and next state sk,h+1 ∼ p(·|sk,h, ak,h)
Update policy πk,h
Set h = h+ 1

end
end
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If executing a non-proper policy πk, episodes may never terminate



SSP Regret
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∆(A,K) :=

K∑
k=1

[(
τk(s0)∑
h=1

c
(
sk,h , µk(sk,h)

))
− V ?(s0)

]

� In finite horizon we consider the expected performance of µk:
K∑
k=1

[
V µk(s0)− V ?(s0)

]

length of episode k

possibly non-stationary policy
followed during episode k

h-th state visited dur-
ing episode k

Cost of µk

V ?(s0)

regret ∆

Episodes K
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UC-SSP: Upper-Confidence SSP
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Input: S, s,A, cmin, cmax

for episodes k = 1, 2, . . . ,K do
¬ Compute an optimistic cost-weighted SSP policy π̃k
 Execute policy π̃k for up to Hk steps

if s is not reached then
Reach the goal as fast as possible,
by performing ¬ +  with unit costs c(s, a) = 1, c(s, a) = 0

end
end
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1) How to compute the policy π̃k?

2) How to select the horizon Hk?



1) How to compute the policy π̃k?
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We introduce an Extended Value Iteration scheme tailored to SSP problems.

Objective: select a policy π̃k with lowest optimistic value Ṽk.

Lemma
With high probability, for any episode k, we have for any s ∈ S,

Ṽk(s) ≤ V ?(s)



2) How to select the horizon Hk?
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Denote by τ̃k the optimistic goal-reaching time of the policy π̃k.

The horizon Hk is selected such that

max
s∈S

P
(
τ̃k(s) ≥ Hk

)
is small enough.

Lemma
With high probability, for any episode k,

Hk ≤
⌈

6
cmax

cmin
D log(2

√
K)

⌉

SSP-diameter D := max
s∈S

min
π

E [τπ(s)]



Regret Guarantee of UC-SSP
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Theorem
For any tabular SSP-MDP with cmin > 0, the regret of UC-SSP can be bounded with
high probability as follows:

∆(UC-SSP,K) = Õ

(
cmaxDS

√
cmax

cmin
ADK + cmaxS

2AD2

)

Dominant
√
K-order optimal term

Small constant “burn-in” term

� UC-SSP is the first no-regret learning algorithm for SSP



Extensions
13

cmin = 0
We offset all the costs by a small additive perturbation [Bertsekas and Yu, 2013]

We directly obtain a Õ(K2/3) regret
Later work [Cohen et al., 2020] (at this ICML) devise an algorithm with Bernstein
inequalities with a Õ(

√
K) regret when cmin = 0

D = +∞
The SSP-MDP is non-communicating
We truncate the SSP Bellman operator to avoid divergence at dead-end states
The regret’s dependency on D is replaced by a known upper bound of V ?(s0)



Experimental validation
(see paper for additional experiments)

14

If c(s, a) = 1 for all s 6= s and all a (i.e., uniform cost), the SSP problem is equivalent to an
infinite-horizon undiscounted problem.

UCRL2 [Jaksch et al., 2010] achieves sub-linear SSP-regret∗

However UC-SSP achieves better performance
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∗ UCRL2 is an algorithm for regret minimization in average reward MDPs



Conclusion
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Summary
Most of the theoretical literature on exploration focused on finite-horizon and
average-reward
SSP is a more general and practical setting
We propose the first exploration-exploitation algorithm for SSP

Future work
Model-free exploration in SSP
Linear function approximation



Details are in our paper:

No-Regret Exploration in Goal-Oriented Reinforcement Learning
https://arxiv.org/pdf/1912.03517
Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, Alessandro Lazaric

Thank you

https://arxiv.org/pdf/1912.03517
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