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(image sources 1, 2, 3, 4)

Stochastic Shortest Path (SSP)

[Bertsekas, 2012]
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Many popular RL problems are tasks:

Minimize the cumulative cost to reach the goal

First study of
in goal-oriented RL



https://github.com/furfa/LunarLander-v2-Solve/blob/master/img/preview.gif
https://raw.githubusercontent.com/CM-Data/Noisy-Dueling-Double-DQN-MountainCar/master/trained.gif
https://www.youtube.com/watch?v=TmPfTpjtdgg
https://github.com/maximecb/gym-minigrid/blob/master/figures/multi-room.gif

SSP-Markov Decision Process

[Bertsekas, 2012]

m State space S’ = SU {5}
- Starting state so € S (H)
- Goal state 5 (M)

m Action space A = {Up, Down, Left, Right}
m Transition p(s'[s,a)

- Goal is absorbing p(5[5,a) =1
m Cost function ¢(s,a)

- Empty state c¢(s,a) =1 (H)

- Easy state c(s,a) = 0.1 (@)

- Goal state ¢(5,a) =0
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SSP-Markov Decision Process
[Bertsekas, 2012]

m State space S’ = SU {5}
- Starting state so € S (H)
- Goal state 5 (M)

m Action space A = {Up, Down, Left, Right}
m Transition p(s'[s,a)
- Goal is absorbing p(5[5,a) =1

m Cost function ¢(s,a)

- Empty state c¢(s,a) =1 (H)
- Easy state c(s,a) = 0.1 (@)

- Goal state ¢(5,a) =0
& Discounted and finite-horizon MDPs are sub-classes of SSP-MDPs [e.g., Bertsekas, 2012]
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SSP-MDP

[Bertsekas, 2012]

m Policyn:S— A

» Goal-reaching time
Tx(8) := min {t >0:841=5|s1= s,7r}

m Value function
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SSP-MDP

Policy categorization

Time to goal 7 (s0) +o00

Cumulative cost +oo
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Proper policies




SSP-MDP

Policy categorization

Time to goal 7 (s0) +o00

Cumulative cost +oo

Proper policies

= Objective: reach the goal while minimizing the cumulative cost
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Assumptions

Assumption

@ There exist known constants 0 < ¢min < Cmax Such that ¢(s,a) € [emin, Cmax] for all

(s,a) € S x A.

@ There exists at least one proper policy (i.e., that reaches the goal s with probability 1 from
any state in S).
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Assumptions

Assumption

@ There exist known constants 0 < ¢pin < Cmax SUch that ¢(s,a) € [Cmin, Cmax) for all
(s,a) € S x A.

@ There exists at least one proper policy (i.e., that reaches the goal s with probability 1 from
any state in S).

Lemma (SSP problem is well-posed, see [Bertsekas, 2012])

Under Asm. 1& 2, there exists an optimal policy that is proper, stationary and deterministic

7 € argmin V7™
s
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Assumptions

Assumption

@ There exist known constants 0 < ¢min < Cmax Such that ¢(s,a) € [emin, Cmax] for all
(s,a) € S x A.

@ There exists at least one proper policy (i.e., that reaches the goal s with probability 1 from
any state in S).

Lemma (SSP problem is well-posed, see [Bertsekas, 2012])

Under Asm. 1& 2, there exists an optimal policy that is proper, stationary and deterministic
7 € argmin V7™

Lemma
Under Asm. 1& 2, we have ||V*||co < cmaxD, where we introduce the SSP-diameter D

| :‘

D := max minE [7:(s)] < 400

shortest path from s to the goal s
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Learning Problem

Input: S,3, A, chin, Cmax, NO prior knowledge of p
for episodes k =1,2,..., K do
Set h = 0 and initial state 550 = so
while Sk,h #+3 do
Execute Ak, h = Wkﬁh(skyh)
Observe cost Cie,h = c(sk’h,ak’h) and next state Sk,h4+1 ™~ p(-lSk’h, ak,h)
Update policy 7 p,
Seth=h+1
end

end
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Learning Problem

‘ If executing a non-proper policy 7, episodes may never terminate

7
/

Input: S,3, A, cuin, Cmax, NO prior knowJédge of p
for episodes k =1,2,..., K do )
Set h = 0 and initial state $k,0-= S0

while Sk,h #£3% do<«—"
Execute Ak, h = Wk’h(skyh)
Observe cost Cie,h = c(sk’h,ak’h) and next state Sk,h4+1 ™~ p(-lSk’h, ak,h)
Update policy 7 p,

Seth=h-+1
end

end
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SSP Regret
8
é Cost of py
’ length of episode k ‘ 3
V*(s0)
< Episodes K
K 7 (s0)
ARLE) =Y || > C< Skh 5 Hk(Sk,h) ) — V*(s0)
k=1 h=1

possibly non-stationary policy
followed during episode &

h-th state visited dur-
ing episode k

K
& |n finite horizon we consider the expected performance of y: Z {V“’“(so) — V*(s0)
k=1
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UC-SSP: Upper-Confidence SSP

Input: S, S, A, Cminy Cmax
for episodes k =1,2,...,K do
@® Compute an optimistic cost-weighted SSP policy 7y

@ Execute policy 7 for up to H,, steps

if 5 is not reached then

Reach the goal as fast as possible,

by performing © + @ with unit costs ¢(s,a) =1, ¢(5,a) =0
end

end

FACEBOOK Al



UC-SSP: Upper-Confidence SSP

1) How to compute the policy 77

/

Input: S, S, A, Cminy Cmax
for episodes k =1,2,...,K do

@ Execute policy 7 for up to H,, steps

\

if 5 is not reached then ~

end

end

Reach the goal as fast as possib/\c;,\\\»— -
by performing © + @ with unit costs ¢(s,a) =1, ¢(5,a) =0

/
/

pd

® Compute an optimistic cost-weighted SSP policy 7 <

— 2) How to select the horizon H}?
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1) How to compute the policy 77

We introduce an Extended Value Iteration scheme tailored to SSP problems.

Objective: select a policy 7, with lowest optimistic value Vi.

With high probability, for any episode k, we have for any s € S,

Vi(s) < V*(s)
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2) How to select the hor

izon H.?

Denote by 7, the optimistic goal-reaching time of the policy 7.

The horizon Hj, is selected such that

max P
SES

is small enough.

(ﬁ(s) > Hk)

Lemma

With high probability, for any episode k,

Hy < [60“1?" D log(2\/f)-‘

Cmin \

SSP-diameter D := maxminE [7(s)]

sES T
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Regret Guarantee of UC-ssP

For any tabular SSP-MDP with ¢, > 0, the regret of UC-SSP can be bounded with
high probability as follows:

A(Uc-ssRK):é(cmaxDS ‘max ADK + (:HMXSQAD2>

Cmin

m Dominant v K-order optimal term

m Small constant “burn-in" term

? UC-SSP is the first no-regret learning algorithm for SSP
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Extensions

Cmin = 0
We offset all the costs by a small additive perturbation [Bertsekas and Yu, 2013]
We directly obtain a O(K /%) regret
Later work [Cohen et al., 2020] (at this ICML) devise an algorithm with Bernstein
inequalities with a O(V'K) regret when ¢pin = 0

D =+o0
The SSP-MDP is non-communicating
We truncate the SSP Bellman operator to avoid divergence at dead-end states

The regret’s dependency on D is replaced by a known upper bound of V*(s)
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Experimental validation

(see paper for additional experiments)

If e(s,a) =1 for all s £3 and all a (i.e., uniform cost), the SSP problem is equivalent to an
infinite-horizon undiscounted problem.

m UCRL2 [Jaksch et al., 2010] achieves sub-linear SSP-regret®

m However UC-SSP achieves better performance
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FACEBOOK Al * UCRL2 is an algorithm for regret minimization in average reward MDPs



Conclusion

Summary

Most of the theoretical literature on exploration focused on finite-horizon and
average-reward

SSP is a more general and practical setting

We propose the first exploration-exploitation algorithm for SSP

Future work
Model-free exploration in SSP

Linear function approximation
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Details are in our paper:

No-Regret Exploration in Goal-Oriented Reinforcement Learning
https://arxiv.org/pdf/1912.03517
Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, Alessandro Lazaric

Thank you
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