Taylor Expansion
Policy Optimization

Yunhao Tang (Columbia University), Michal Valko (DeepMind), Rémi Munos (DeepMind)
Take-away messages

- Generalized formulation of TRPO
 - High-order objective \rightarrow new algorithm !!!
 - First-order objective \rightarrow TRPO
- Connections between TRPO vs. off-policy evaluation
 - TRPO \leftrightarrow special variant of Retrace $Q(\lambda)$
- Performance gains on large-scale algorithms
 - Distributed IMPALA & R2D2
Intuitions of high-order expansions

- Estimating value-function with off-policy data requires full IS

- First-order: one-step deviation (TRPO, PPO, MPO...)

- Second-order: two-step deviation
Background: Taylor expansions

- Consider a real function $f(x), x \in \mathbb{R}$
- Fixing a reference point x_0
- Any point could be evaluated with the expansion

$$f(x) = \sum_{i=0}^{k} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + o((x - x_0)^{k+1})$$

- Can we do Taylor expansion of Q–function and value–function?
Notations

- State space and action space \(x_t \in \mathcal{X}, a_t \in \mathcal{A} \)
- Policy
 - Target policy \(\pi \)
 - Behavior policy \(\mu \)
- Matrix & vector quantities
 - Reward and Q-function \(R, Q^{\pi} \in \mathbb{R}^{||\mathcal{X}|| \times ||\mathcal{A}||} \)
 - Matrix equality \(Q^{\pi} = (I - \gamma P^{\pi})^{-1} R \)
Taylor expansions of Q-function

- Useful matrix equality

\[(I - A)^{-1} = (I - B)^{-1} + (I - B)^{-1}(A - B)(I - A)^{-1}\]

- Expanding the Q-function equality w.r.t. \(\mu\)

\[Q^\pi = (I - \gamma P^\pi)^{-1} R\]
\[= Q^\mu + (I - \gamma P^\mu)^{-1}(P^\pi - P^\mu)Q^\mu\]

- Can recursively apply the above expansion
Taylor expansion of Q-function

- **Theorem 1.** Generic Taylor expansion

$$Q_\pi - Q^\mu = \sum_{k=1}^{K} \left(\gamma(I - \gamma P^\mu)^{-1}(P_\pi - P^\mu) \right)^k Q^\mu$$

K-th order expansion

Residual term

$$+ \left(\gamma(I - \gamma P^\mu)^{-1}(P_\pi - P^\mu) \right)^{K+1} Q_\pi$$

$$(P_\pi - P^\mu)^K$$
Taylor expansion of RL objective

- We care about policy optimization

\[
\max_{\pi} V^\pi(x_0) = \sum_{a \in A} \pi(a|x_0) Q^\pi(x_0, a)
\]

- Can apply similar expansions to value function
 - Make use of results from the Q–function
 - K-th order expansion

\[
V^\pi(x_0) = \left(\sum_{k=0}^{K} L_k(\pi, \mu) \right) + o(|\pi - \mu|^{K+1})
\]
Example: Zero-order expansion

- Zero-order

\[L_0(\pi, \mu) = V^\mu(x_0) \]
Example: First-order expansion

- First-order

\[L_1(\pi, \mu) = \mathbb{E}_{(x,a) \sim \mu | x_0} \left[\left(\frac{\pi(a|x)}{\mu(a|x)} - 1 \right) Q^\mu(x, a) \right] \]

- Can be estimated by samples \((x, a) \sim \mu | x_0\)
 - Surrogate objective for TRPO, PPO, MPO...

Schulman et al. 2015, 2017; Abdolmaleki et al. 2018
Example: Second-order expansion

- Second-order

\[
L_2(\pi, \mu) = \mathbb{E}_{(x, a) \sim \mu|x_0, (x', a') \sim \mu|x} \left[\left(\frac{\pi(a|x)}{\mu(a|x)} - 1 \right) \left(\frac{\pi(a'|x')}{\mu(a'|x')} - 1 \right) Q^\mu(x', a') \right]
\]

- Nested expectation
 - First sample \((x, a) \sim \mu|x_0\)
 - Then sample \((x', a') \sim \mu|x\)
Example: K-th order expansion

- General K-th order
 \[L_K(\pi, \mu) = \mathbb{E}_{(x^{(i)}, a^{(i)})_{1 \leq i \leq K}} \left[\prod_{i=1}^{K} \left(\frac{\pi(a^{(i)} | x^{(i)})}{\mu(a^{(i)} | x^{(i)})} - 1 \right) Q^\mu(x^{(K)}, a^{(K)}) \right] \]

- Nested expectation
 - Sample all pairs sequentially
 - Can be estimated from a single trajectory
Generalized TRPO

- Generalized objective
 \[\max_{\pi} \sum_{k=1}^{K} L_k(\pi, \mu), \quad |\pi - \mu| < \epsilon \]

- With general K
 - Optimize via backprop and first-order SGD
 - **Theorem 2.** Monotonic improvement

- With large K, optimize the exact objective
 \[\lim_{K \to \infty} \sum_{k=1}^{K} L_k(\pi, \mu) = V^\pi(x_0) - V^\mu(x_0) \]
Trade-off of K

$$\max_{\pi} \sum_{k=1}^{K} L_k(\pi, \mu), \ |\pi - \mu| < \epsilon$$

Large bias Small bias
Small variance Large variance ?

Small K Large K
Variance reduction for K-th order

- Replace Q-function estimate by advantage estimate
 - Theorem 3. For general K

\[\mathbb{E}_{(x^{(i)}, a^{(i)})_{1 \leq i \leq K}} \left[\prod_{i=1}^{K} \left(\frac{\pi(a^{(i)}|x^{(i)})}{\mu(a^{(i)}|x^{(i)})} - 1 \right) A^\mu(x^{(K)}, a^{(K)}) \right] \]

\[Q^\mu(x^{(K)}, a^{(K)}) \]
Effect of high-order expansions

- Tabular MDP
 - Can calculate exact error
- Measure the error
 - Zero-order
 - First-order
 - Second-order
- Exact vs. Sample
TRPO as off-policy evaluation

- Taylor expansions naturally relate to off-policy evaluation

\[\sum_{k=1}^{K} L_k(\pi, \mu) + V^\mu(x_0) \approx V^\pi(x_0) \]

- All quantities on LHS are from behavior policy
- LHS becomes more accurate with large K
Background on off-policy evaluation

- Return-based off-policy evaluation
 - Retrace operator $R_{c}^{\pi,\mu}$
 - Evaluate by iterating the operator
 $$\lim_{K \to \infty} (R_{c}^{\pi,\mu})^{K} Q = Q^{\pi}$$

- Trace coefficient $c(x, a)$
 - Special case $c(x, a) = \lambda$
 - Converge only when $|\pi - \mu| < \epsilon$

Harutyunyan et al, 2016; Munos et al, 2016
Connections to off-policy evaluation

- K-th order Taylor expansion is off-policy evaluation
 - **Theorem 4.** Equivalence

\[Q^\mu + \sum_{k=1}^{K} U_k = (R_1^{\pi',\mu})^K Q^\mu \]

- Convergence
 - LHS: Taylor expansion convergence
 - RHS: operator contraction
Experiments: Second-order new algorithm

- Benchmark: Atari-57 games
- Metric: mean normalized scores
 - See more in paper
- Baseline distributed algorithm
 - Centralized learner π
 - Distributed actors μ
- Actors sync from learner periodically
 - Actors slightly lag behind learner
 - No explicit trust region (to ensure throughput)
 - Examples: IMPALA, R2D2

Espeholt et al, 2018; Kapturowski et al, 2018
Asynchronous actor-critic

- Learner + actors both placed on same TPU
 - Near on-policy?
 \[\pi \approx \mu \]
- Actor-critic updates
 - Zero-order
 - First-order (PPO)
 - Second-order
Distributed actor-critic: IMPALA agent

- Learner on GPU
- Actors on CPUs
- Create artificial updates

- Actor-critic updates
 - First-order
 - V-trace
 - Second-order
Distributed Q-learning: R2D2 agent

- Learner on GPU
- Actors on CPUs

- Q-learning
 - Zero-order
 - First-order
 - Retrace
 - Second-order
Take-home messages

● Taylor expansions generalize TRPO
 ○ Generalized policy optimization objective
 ○ Introduce non-linearity beyond first-order
● Taylor expansions \rightarrow off-policy evaluation
 ○ Taylor expansions \leftrightarrow a special variant of Retrace
● Empirical gains on distributed algorithms
Thank you! Please come to our poster

- Special thanks to Mark Rowland for insightful comments
- Many thanks to DeepMind teams for technical support
 - Special thanks to Florent Altche
 - Special thanks to other DeepMind teams for developments of great distributed agents