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What? — BAI for finitely-armed bandits

I Goal: given a set of unknown measurement distributions, find
the best one (µ? = arg maxi µi );

I Motivation: hyperparameter tuning, A/B/C testing, clinic
trial design;

I A BAI algorithm is composed of:
I sampling rule;

– selects an arm I at each round
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I Goal: given a set of unknown measurement distributions, find
the best one (µ? = arg maxi µi );

I Motivation: hyperparameter tuning, A/B/C testing, clinic
trial design;

I A BAI algorithm is composed of:
I sampling rule;
I stopping rule τ ;

– Fixed-budget: stops when reach the budget τ = n
– Fixed-confidence: stops when the probability of recommending

a wrong arm is less than δ, minimize E [τδ]
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What? — BAI for finitely-armed bandits

I Goal: given a set of unknown measurement distributions, find
the best one (µ? = arg maxi µi );

I Motivation: hyperparameter tuning, A/B/C testing, clinic
trial design;

I A BAI algorithm is composed of:
I sampling rule;
I stopping rule τ ;
I recommendation rule.

– outputs a guess of the best arm J when the algorithm stops
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What? — BAI for finitely-armed bandits

I Goal: given a set of unknown measurement distributions, find
the best one (µ? = arg maxi µi );

I Motivation: hyperparameter tuning, A/B/C testing, clinic
trial design;

I A BAI algorithm is composed of:
I sampling rule;
I stopping rule τ ;
I recommendation rule.

We are interested in TTTS (Top-Two Thompson Sampling,
Russo 2016)
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Why?

I Beyond fixed-budget and fixed-confidence: anytime BAI
framework [Jun and Nowak 2016];

I A Bayesian competitor for BAI as Thompson sampling to UCB
for regret minimizing?

– It’s often easier to sample from the fitted model than compute
complicated optimistic estimates;

– Strong practical performance?
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How? - Contributions

I New theoretical insights on TTTS;
I Computational improvement.
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Outline

Top-Two Thompson Sampling

New Theoretical Insights on TTTS

Alleviate the Computational Burden: T3C

Experimental Illustrations



What we know about TTTS...

1: Input: β
2: for n = 1, 2, . . . do
3: ∀i ∈ A, θi ∼ Πn
4: I(1) = arg maxi=0,...,m θi
5: if U(∼ U([0, 1])) > β then
6: while I(2) 6= I(1) do
7: ∀i ∈ A, θ′i ∼ Πn
8: I(2) ← arg maxi=0,...,m θ

′
i

9: end while
10: I(1) ← I(2)

11: end if
12: evaluate arm I(1)

13: update Πn
14: end for
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What we know about TTTS... (Posterior convergence)
Assumptions
I Measurement distributions are in the canonical one

dimensional exponential family;
I The parameter space is a bounded open hyper-rectangle;
I The prior density is uniformly bounded;
I The log-partition function has bounded first derivative.

Theorem (Russo 2016)
Under TTTS and under the previous boundedness assumptions, it
holds almost surely that

lim
n→∞

−1
n log(1− αn,I?) = Γ?β,

where
αn,i , Πn(θi > max

j 6=i
θj).
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What we know about TTTS... (Complexity)

Definition
Let ΣK = {ω :

∑K
k=1 ωk = 1, ωk ≥ 0} and define for all i 6= I?

Ci (ω, ω
′) , min

x∈I
ωd(µI? ; x) + ω′d(µi ; x),

where d(µ, µ′) is the KL-divergence. We define

Γ?β , max
ω∈ΣK
ωI?=β

min
i 6=I?

Ci (ωI? , ωi ).

In particular, for Gaussian bandits...

Γ?β = max
ω:ωI?=β

min
i 6=I?

(µI? − µi )
2

2σ2(1/ωi + 1/β)
.
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What we want to know about TTTS

I Can we ‘relax’ the aforementioned assumptions?

Fixed-confidence guarantees for Bayesian BAI Inria SequeL - 9/21



What we want to know about TTTS

I Can we ‘relax’ the aforementioned assumptions?
I What can we say about the sample complexity in the

fixed-confidence setting?

Fixed-confidence guarantees for Bayesian BAI Inria SequeL - 9/21



What we want to know about TTTS

I Can we ‘relax’ the aforementioned assumptions?
I What can we say about the sample complexity in the

fixed-confidence setting?

Lower bound
Under any δ-correct strategy satisfying Tn,I?/n→ β,

lim inf
δ→0

E [τδ]

ln(1/δ)
≥ 1

Γ?β
.
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What we want to know about TTTS

I Can we ‘relax’ the aforementioned assumptions?
I What can we say about the sample complexity in the

fixed-confidence setting?
I Can we have finite-time guarantees?
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Main result — Posterior convergence

Theorem
Under TTTS, for Gaussian bandits with improper Gaussian priors, it
holds almost surely that

lim
n→∞

−1
n log(1− αn,I?) = Γ?β.

Theorem
Under TTTS, for Bernoulli bandits and uniform priors, it holds
almost surely that

lim
n→∞

−1
n log(1− αn,I?) = Γ?β.
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Main result — Sample complexity

Theorem
The TTTS sampling rule coupled with the Chernoff stopping rule
form a δ-correct BAI strategy. Moreover, if all the arms means are
distinct, it satisfies

lim sup
δ→0

E [τδ]

log(1/δ)
≤ 1

Γ?β
.
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form a δ-correct BAI strategy. Moreover, if all the arms means are
distinct, it satisfies

lim sup
δ→0

E [τδ]

log(1/δ)
≤ 1

Γ?β
.

Recall (Lower bound)
Under any δ-correct strategy satisfying Tn,I?/n→ β,

lim inf
δ→0

E [τδ]

ln(1/δ)
≥ 1

Γ?β
.

Fixed-confidence guarantees for Bayesian BAI Inria SequeL - 11/21



Sample complexity sketch — δ-correctness

Stopping rule

τCh.
δ , inf

{
n ∈ N : max

i∈A
min

j∈A\{i}
Wn(i , j) > dn,δ

}
. (1)
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Sample complexity sketch — δ-correctness

Stopping rule

τCh.
δ , inf

{
n ∈ N : max

i∈A
min

j∈A\{i}
Wn(i , j) > dn,δ

}
. (1)

Transportation cost
Let µn,i ,j , (Tn,iµn,i + Tn,jµn,j)/(Tn,i + Tn,j), then we define

Wn(i , j) ,
{

0 if µn,j ≥ µn,i ,
Wn,i ,j + Wn,j,i otherwise,

(2)

where Wn,i ,j , Tn,i d (µn,i , µn,i ,j) for any i , j .

Fixed-confidence guarantees for Bayesian BAI Inria SequeL - 12/21



Sample complexity sketch — δ-correctness

Stopping rule

τCh.
δ , inf

{
n ∈ N : max

i∈A
min

j∈A\{i}
Wn(i , j) > dn,δ

}
. (1)

In particular, for Gaussian bandits...

Wn(i , j) =
(µn,i − µn,j)

2

2σ2(1/Tn,i + 1/Tn,j)
1{µn,j < µn,i}.
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Sample complexity sketch — δ-correctness

Stopping rule

τCh.
δ , inf

{
n ∈ N : max

i∈A
min

j∈A\{i}
Wn(i , j) > dn,δ

}
. (1)

Theorem
The TTTS sampling rule coupled with the Chernoff stopping rule
(1) with a threshold dn,δ ' log(1/δ) + c log(log(n)) and the
recommendation rule Jt = arg maxi µn,i , form a δ-correct BAI
strategy.

Fixed-confidence guarantees for Bayesian BAI Inria SequeL - 12/21



Sample complexity sketch — Sufficient condition for
β-optimality

Lemma
Let δ, β ∈ (0, 1). For any sampling rule which satisfies
E
[
T ε
β

]
<∞ for all ε > 0, we have

lim sup
δ→0

E [τδ]

log(1/δ)
≤ 1

Γ?β
,

if the sampling rule is coupled with stopping rule (1).
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Sample complexity sketch — Sufficient condition for
β-optimality

Lemma
Let δ, β ∈ (0, 1). For any sampling rule which satisfies
E
[
T ε
β

]
<∞ for all ε > 0, we have

lim sup
δ→0

E [τδ]

log(1/δ)
≤ 1

Γ?β
,

if the sampling rule is coupled with stopping rule (1).

T ε
β , inf

{
N ∈ N : maxi∈A |Tn,i/n − ωβi | ≤ ε,∀n ≥ N

}
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Sample complexity sketch — Core theorem

Theorem
Under TTTS, E

[
T ε
β

]
< +∞.

The proof is inspired by Qin et al. (2017), but some technical
novelties are introduced. In particular, our proof is much more
intricate due to the randomized nature of the two candidate arms...
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Alleviate the computational burden?

1: Input: β
2: for n = 1, 2, . . . do
3: ∀i ∈ A, θi ∼ Πn
4: I(1) = arg maxi=0,...,m θi
5: if U(∼ U([0, 1])) > β then
6: while I(2) 6= I(1) do
7: ∀i ∈ A, θ′i ∼ Πn

8: I(2) ← arg maxi=0,...,m θ
′
i {Re-sampling phase}

9: end while
10: I(1) ← I(2)

11: end if
12: evaluate arm I(1)

13: update Πn
14: end for
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2: for n = 1, 2, . . . do
3: ∀i ∈ A, θi ∼ Πn
4: I(1) = arg maxi=0,...,m θi
5: if U(∼ U([0, 1])) > β then
6: I(2) ← arg mini 6=I(1) Wn(I(1), i){T3C}
7: I(1) ← I(2)

8: end if
9: evaluate arm I(1)

10: update Πn
11: end for
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Main result — Sample complexity T3C

Theorem
The T3C sampling rule coupled with the Chernoff stopping rule
form a δ-correct BAI strategy. Moreover, if all the arms means are
distinct, it satisfies

lim sup
δ→0

E [τδ]

log(1/δ)
≤ 1

Γ?β
.
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Some illustrations — Time consumption

Sampling rule T3C TTTS Uniform

Execution time (s) 1.6× 10−5 2.3× 10−4 6× 10−6

Table: average execution time in seconds for different sampling rules.
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Some illustrations — Average stopping time
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Still far from the Holy Grail...

I Finite-time analysis (fixed-budget setting?)
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Conclusion

More details on TTTS and T3C
Check out [Shang et al. 2020].
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