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Problem and Objectives

We treat the hyper-parameter tuning prob-
lem for supervised learning tasks.
• global optimisation task: min{f (λ) : λ ∈ Ω};
• f (λ) , E
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 measures the
generalization power;

Our contribution: a simple, robust, (almost)
parameter-free bandit algorithm.

How and Why

How?
We see the problem as best arm identification in
a stochastic infinitely-armed bandit: arms’ means
are drawn from some reservoir distribution ν0.

In each round:
→ (optional) query a new
arm from ν0
→ sample an arm that was
previously queried

Goal: output an arm with mean close to µ?

D-TTTS  a dynamic algorithm built on TTTS [1]

Why?
→ TTTS is anytime for finitely-armed bandits
→ the flexibility of this Bayesian algorithm allows
to propose a dynamic version for the infinite BAI
→ unlike previous approaches, D-TTTS does not
need to fix the number of arms queried in advance,
and naturally adapts to the difficulty of the task

HPO as a BAI problem

BAI HPO

query ν0 pick a new configuration λ˙

sample an arm˙ train the classifier gλ

reward cross-validation loss

In the Context of BAI...

• Beta-Bernoulli Bayesian bandit model
• a uniform prior over the mean of new arms

Posterior distribution on arm i at time t:
Beta(1 + St,i, Nt,i − St,i + 1).

D-TTTS principle: in each round, query a new arm
endowed with a Beta(1,1) prior, without sampling
it, and run TTTS on the new set of arms.

Implementation tricks

Binarization trick: When a reward Yt,i ∈
[0, 1] is observed, the algorithm is updated with
a fake binary reward Y ′t,i ∼ Ber(Yt,i) ∈ {0, 1}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Order statistic trick: with Lt−1 the list of
arms that have been effectively sampled at time
t, we run TTTS on the set Lt−1∪{µ0} where µ0 is
a pseudo-arm with posterior Beta(t− |Lt−1|, 1).

Figure: Posterior distributions of 4 arms and the pseudo-arm

Sampling Rule

1: Input: β
2: Initialization: µ1 ∼ ν0; A = {µ1}; m = 1;
S1, N1 = 0

3: while budget still available do
4: µm+1 ∼ ν0; A ← A∪ {µm+1}
5: Sm+1, Nm+1← 0; m← m + 1
6: ∀i ∈ A, θi ∼ Beta(Si + 1, Ni − Si + 1)
7: I (1) = arg maxi=0,...,m θi
8: if U(∼ U([0, 1])) > β then
9: while I (2) 6= I (1) do

10: ∀i ∈ A, θ′i ∼ Beta(Si + 1, Ni − Si + 1)
11: I (2)← arg maxi=0,...,m θ

′
i

12: end while
13: I (1)← I (2)

14: end if
15: Y ← evaluate arm I (1); X ∼ Ber(Y )
16: SI (1) ← SI (1) + X ; NI (1) ← NI (1) + 1
17: end while

Recommendation Rule

We recommend the arm with the largest posterior
probability of being optimal:

̂
In , arg max

i∈A
Πn(Θi),

where Θi ,
θ ∈ Θ | θi > maxj 6=i θj

.

Experimental Setting

Classifier Hyper-parameter Type Bounds
SVM C R+ [10−5, 105]

γ R+ [10−5, 105]
Table: hyper-parameters to be tuned for UCI experiments.

Classifier Hyper-parameter Type Bounds
MLP hidden_layer_size Integer [5, 50]

alpha R+ [0, 0.9]
learning_rate_init R+ [10−5, 10−1]

Table: hyper-parameters to be tuned for MNIST experiments.

Results for HPO

(a) wine (b) breast cancer

(c) adult (d) MNIST

Understanding the Algorithm

Adaptation to the difficulty: for a "difficult"
reservoir, the pseudo-arm µ0 is sampled more often
(i.e. more arms are effectively sampled)
 efficiently sampled arms for Beta(α, 1) reservoirs:

Figure: α

 efficiently sampled arms for Beta(1, β) reservoirs:

Figure: β

 efficiently sampled arms for shifted Beta reser-
voirs:

Figure: shift
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