

HOW DIFFICULT ARE ROTTING BANDITS?

https://www.afterclasse.fr

Julien SEZNEC

with A. Locatelli, A. Carpentier, A. Lazaric, M. Valko

SequeL @ Inria Lille — Nord Europe

WHEN BANDITS GO ROTTING ...

WHEN BANDITS GO ROTTING ...

2 days before the national exam

WHEN BANDITS GO ROTTING ...

CHAPITRE 1 L'origine des séismes et des éruptions volcaniques

CHAPITRE 2

Les changements climatiques actuels et leurs conséquences

2 days before the national exam

CHAPITRE 3

Les impacts des activités humaines sur l'environnement

CHAPITRE 8

Le fonctionnement du système nerveux

CHAPITRE 4 La nutrition à l'échelle cellulaire

ROTTING BANDITS ARE ...

Stochastic bandits ...

- ▶ *K*arms
- At each round *t*, agent pulls arm *i* and receives a noisy reward $r_t \leftarrow \mu_i + \epsilon_t$ (ϵ_t i.i.d.; σ -subgaussian)
- Maximize cumulative reward : $\mathbb{E}\left[\sum_{t \in T} r_t\right]$

ROTTING BANDITS ARE ...

Stochastic bandits ...

- ▶ *K*arms
- At each round *t*, agent pulls arm *i* and receives a noisy reward $r_t \leftarrow \mu_i + \epsilon_t$ (ϵ_t i.i.d.; σ -subgaussian)
- ▶ Maximize cumulative reward : $\mathbb{E}\left[\sum r_t\right]$

... with rotting arms

▶ $\{\mu_i\}$ are *non-increasing* functions of $N_{i,t}$ the *number of pulls of arm* i at time t

Algorithm 1 \mathcal{A}_0 (Heidari et al., 2016)

- 1: for $t \leftarrow 1, 2, ...$ do
- 2: SELECT : $\operatorname{arg\,max}_{i \in \mathcal{K}} \mu_i(N_{i,t})$
- 3: end for

$$R_T(\pi) = \sum_{i \in \text{UP}} \sum_{s=N_{i,T}^{\pi}+1}^{N_{i,T}^{\star}} \mu_i(s) - \sum_{i \in \text{OP}} \sum_{s=N_{i,T}^{\star}+1}^{N_{i,T}^{\pi}} \mu_i(s)$$

Worst-case minimax optimal rate : $R_T(\pi_{A_2}) \leq KL$

Algorithm 3 SWA (Levine et al., 2017)
Input: K, L, T, σ
1: $h \leftarrow \widetilde{\mathcal{O}}(\left(\frac{\sigma T}{KL}\right)^{2/3})$
2: for $t \leftarrow Kh + 1, Kh + 2, \dots$ do
3: SELECT : $\operatorname{arg} \max_{i \in \mathcal{K}} \widehat{\mu}_i^h(N_{i,t})$
4: end for

Algorithm 3 SWA (Levine et al., 2017)
Input: K, L, T, σ
1: $h \leftarrow \widetilde{\mathcal{O}}(\left(\frac{\sigma T}{KL}\right)^{2/3})$
2: for $t \leftarrow Kh + 1, Kh + 2, \dots$ do
3: SELECT : $\operatorname{arg} \max_{i \in \mathcal{K}} \widehat{\mu}_i^h(N_{i,t})$
4: end for

Regret due to bias:

 $\widetilde{O}\left(LKh\right)$

h = 3

Regret due to bias: $\widetilde{O}(LKh)$ Regret due to variance : $\widetilde{O}(\sigma T \sqrt{h}^{-1})$

h = 100

Regret due to bias: $\widetilde{O}(LKh)$ Regret due to variance : $\widetilde{O}(\sigma T \sqrt{h}^{-1})$ Worst case regret : $\widetilde{O}(K^{1/3}T^{2/3})$ More the second sec

THE FAILURE OF wSWA

Sample	old																			last
Arm 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0

THE FAILURE OF wSWA

Sample	old																			last
Arm 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0

Won't we benefit from a data-adaptive window ?

Algorithm 4 FEWA

Input: K, σ, α 1: for $t \leftarrow K + 1, K + 2, \dots$ do $\delta_t \leftarrow \frac{1}{Kt^{\alpha}}$ 2: 3: $h \leftarrow 1$ 4: $\mathcal{K}_1 \leftarrow \mathcal{K}$ do 5: $\mathcal{K}_{h+1} \leftarrow \left\{ i \in \mathcal{K}_h \,|\, \widehat{\mu}_i^h(N_{i,t}) \ge \max_{j \in \mathcal{K}} \widehat{\mu}_j^h(N_{j,t}) - 2c(h, \delta_t) \right\}$ 6: $h \leftarrow h + 1$ 7: while $h \leq \min_{i \in \mathcal{K}_h} N_{i,t}$ 8: SELECT : $\{i \in \mathcal{K}_h \mid h > N_{i,t}\}$ 9:

10: **end for**

Sample	old																			last
Arm 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0

Sample	old																			last
Arm 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0

informatics mathematics

8

Sample	old																			last
Arm 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0

informatics mathematics

Sample	old																			last
Arm 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0

informatics mathematics

1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0
	1 X	1 0 X 1	1 0 0 X 1 1	1 0 0 0 X 1 1 1	1 0 0 0 1 X 1 1 1 1	1 0 0 0 1 0 X 1 1 1 1 1	1 0 0 0 1 0 0 X 1 1 1 1 1 1	1 0 0 0 1 0 0 0 X 1 1 1 1 1 1 1	1 0 0 0 1 0 0 0 0 X 1 1 1 1 1 1 1 1	1 0 0 0 1 0 0 0 1 X 1 1 1 1 1 1 1 0	1 0 0 0 1 0 0 0 1 0 X 1 1 1 1 1 1 1 0 1	1 0 0 0 1 0 0 0 1 0 0 X 1 1 1 1 1 1 1 0 1 1	1 0 0 0 1 0 0 0 1 0 0 1 X 1 1 1 1 1 1 1 1 0 1 1 0	1 0 0 0 1 0 0 0 1 0 0 1 0 X 1 1 1 1 1 1 1 1 0 1 1 0 1	1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 X 1 1 1 1 1 1 1 1 0 1 1 0 1 1	1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 X 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0	1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 X 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Sample	old																			last
Arm 1																				
Arm 2	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1
Arm 3	Х	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0
Arm 3	~	~	1	1	1	1	1	1	1 h = 1	7	0	1	1	0	1	1	0	1	1	0
informatio	s mathen	natics							8						6		eli	vre	SCO	olair

Sample	old																			last
Arm 1																				
Arm 2																				
<u>Arm 3</u>	Χ	Χ	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0
									h = 1	8										
		matics	1						8						G) l	eli	vre	SCC	laire

UPPER BOUNDS

Worst-case upper bound

$$\mathbb{E}\left[R_T(\pi_{\rm F})\right] \le C\sigma\sqrt{KT\log(KT)} + KL$$

Comparison w/ wSWA $\mathbb{E}\left[R_T(\pi_{\text{wSWA}})\right] = \tilde{O}\left(L^{1/3}\sigma^{2/3}K^{1/3}T^{2/3}\right)$

UPPER BOUNDS

Worst-case upper bound

$$\mathbb{E}\left[R_T\left(\pi_{\rm F}\right)\right] \le C\sigma\sqrt{KT}\log(KT) + KL$$

Comparison w/ wSWA

$$\mathbb{E}\left[R_T(\pi_{\text{wSWA}})\right] = \tilde{O}\left(L^{1/3}\sigma^{2/3}K^{1/3}T^{2/3}\right)$$

Problem-dependent upper bound

$$\mathbb{E}\left[R_T(\pi_{\mathrm{F}})\right] \leq \sum_{i \in \mathcal{K}} O\left(\frac{\log(KT)}{\Delta_{i,h_{i,T}^+-1}}\right)$$

Comparison w/ wSWA

Pure worst-case strategy

lelivrescolaire.fr

- $\Delta_{i,h}$ Difference between the average of the h first overpulls of arm i and the worst reward pulled by the optimal policy
- $h_{i,T}^+$ High-probability upper bound on the number of overpulls for FEWA

UPPER BOUNDS

Worst-case upper bound

$$\mathbb{E}\left[R_T(\pi_{\rm F})\right] \le C\sigma\sqrt{KT\log(KT)} + KL$$

Comparison w/ wSWA

$$\mathbb{E}\left[R_T(\pi_{\text{wSWA}})\right] = \tilde{O}\left(L^{1/3}\sigma^{2/3}K^{1/3}T^{2/3}\right)$$

Problem-dependent upper bound

$$\mathbb{E}\left[R_T(\pi_{\mathrm{F}})\right] \leq \sum_{i \in \mathcal{K}} O\left(\frac{\log(KT)}{\Delta_{i,h_{i,T}^+-1}}\right)$$

 $\Delta_{i,h} = \Delta_i$ on a stationner bandits problem $\Delta_{i,h_{i,T}^+-1}$ is a problem-dependent quantity

Comparison w/ wSWA

Pure worst-case strategy

2-ARMS EXPERIMENTS

2-ARMS EXPERIMENTS

CONTRIBUTIONS

Rotting bandits are not harder than stochastic bandits

- $\vec{O} \quad \tilde{O} \left(\sqrt{KT} \right) \text{ worst-case bound} \\ \vec{O} \quad \tilde{O} \left(\log \left(t \right) \right) \text{ problem-dependent bound} \\$

CONTRIBUTIONS

Rotting bandits are not harder than stochastic bandits

- $\vec{O} \quad \tilde{O} \left(\sqrt{KT} \right) \text{ worst-case bound} \\ \vec{O} \quad \tilde{O} \left(\log \left(t \right) \right) \text{ problem-dependent bound} \\$

FEWA, a policy

with a new data-adaptive window mechanism \checkmark agnostic to L

2

CONTRIBUTIONS

Rotting bandits are not harder than stochastic bandits

- $\vec{O}\left(\sqrt{KT}\right) \text{ worst-case bound}$ $\vec{O}\left(\log\left(t\right)\right) \text{ problem-dependent bound}$

FEWA, a policy

with a new data-adaptive window mechanism \checkmark agnostic to L

2

EFF-FEWA, a policy

with FEWA's regret guarantees Iogarithmic space and time complexity

