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Stochastic bandits …
   arms

 At each round  , agent pulls arm   and receives a noisy reward  
(     i.i.d. ;   -subgaussian)

Maximize cumulative reward : 

rt ← μi + ϵtϵt

𝔼[∑
t≤T

rt]
t

σ
i
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Stochastic bandits …
   arms

 At each round  , agent pulls arm   and receives a noisy reward  
(     i.i.d. ;   -subgaussian)

Maximize cumulative reward : 

rt ← μi + ϵtϵt

𝔼[∑
t≤T

rt]
t

σ
i

K

… with rotting arms
      are non-increasing functions of         the number of pulls of arm    at time 

                                                 L ≜ max
i∈K

max
n≤T

μi(n) − μi(n + 1)
{μi} iNi,t t
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RT(π) = ∑
i∈UP

N⋆
i,T

∑
s=Nπ

i,T+1

μi(s) − ∑
i∈OP

Nπ
i,T

∑
s=N⋆

i,T+1

μi(s)
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RT(πA2
) ≤ KLWorst-case minimax optimal rate :
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Õ (σT h
−1)Regret due to variance :

Õ (LKh)Regret due to bias: 

Õ (K1/3T2/3)Worst case regret : 

h = 100
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Won’t we benefit from a data-adaptive window ?
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Worst-case upper bound

𝔼 [RT (πF)] ≤ Cσ KT log(KT ) + KL 𝔼 [RT (πwSWA)] = Õ (L1/3σ2/3K1/3T2/3)
Comparison w/ wSWA
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Comparison w/ wSWA

Problem-dependent upper bound

𝔼 [RT (πF)] ≤ ∑
i∈𝒦

O ( log(KT )
Δi,h+

i,T−1 )
Δi,h

h+
i,T High-probability upper bound on the number of overpulls for FEWA

Difference between the average of the h first overpulls of arm i and 
the worst reward pulled by the optimal policy

Comparison w/ wSWA
Pure worst-case strategy
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Worst-case upper bound

𝔼 [RT (πF)] ≤ Cσ KT log(KT ) + KL 𝔼 [RT (πwSWA)] = Õ (L1/3σ2/3K1/3T2/3)
Comparison w/ wSWA

Problem-dependent upper bound

𝔼 [RT (πF)] ≤ ∑
i∈𝒦

O ( log(KT )
Δi,h+

i,T−1 )
Δi,h = Δi on a stationner bandits problem

is a problem-dependent quantity

Comparison w/ wSWA
Pure worst-case strategy

Δi,h+
i,T−1
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2-ARMS EXPERIMENTS 

σ = 1 ; L
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2-ARMS EXPERIMENTS 

σ = 1 ; L
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3 EFF-FEWA, a policy
   ✅ with FEWA’s regret guarantees  
   ✅ logarithmic space and time complexity 
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