ROTTING BANDITS ARE NOT HARDER THAN STOCHASTIC ONES

J. SEZNEC, A. LOCATELLI, A. CARPENTIER, A. LAZARIC, M. VALKO
julien.seznec@lelivrescolaire.fr

Setup

BANDITS:
- At each round t:
 - SELECT an action i
 - RECEIVE noisy reward

ROTTING HYPOTHESIS:
- Each time we pull an arm, reward decay
- Maximum decay between two pulls: L

GOAL: Maximize cumulative reward $\sum_{t=0}^{T-1} \mu(t)$

APPLICATIONS: education, economics …

What’s new?

FEWA algorithm
- Minimax optimal $T^{2/3} \rightarrow T^{1/2}$
- Solves an open problem
- First problem dependent guarantee - recovers bandits
- Adaptive to L - does not need it as an input

Prior work
- Heidari et al. (2016)
 - Optimal oracle - knows μ_i
 - Select the arm with largest next reward
 - Define regret against this optimal oracle
 $$ R_T(z) = \sum_{i=1}^{N} \mu_i(z) - \sum_{i=1}^{N} \sum_{t=0}^{T-1} \mu_i(z) $$
- No noise - but unknown μ_i
 - Select the arm with largest last reward
 - Is minimax optimal.

- Levine et al. (2017)
 - Noisy reward sliding window average:
 - Select the arm with largest average of the h last reward sample
 - Optimize h for the bias-variance trade-off
 $$ \mathbb{E} \left[R_T(\pi_{SWA}) \right] = O \left(L^{1/3} \sigma^{2/3} K^{1/3} T^{2/3} \right) $$

Algorithm

FEWA: Filtering on Expanding Window Average

Inputs: K, σ, α
1. for $t \leftarrow K + 1, K + 2, \ldots$ do
2. $\delta_t \leftarrow \frac{1}{\sigma^2}$
3. $h_t \leftarrow 1$
4. $K_{t+1} \leftarrow K$
5. do
6. $K_{h+1} \leftarrow \{ i \in K_h | \tilde{p}_i(x) \geq \max_{j \in K} \tilde{p}_j(x) - 2\epsilon(h, \delta_t) \}$
7. $h_t \leftarrow h_t + 1$
8. while $h_t \leq \min_{i \in K_h} N_{i,t}$
9. SELECT: $\{ i \in K_h | h > N_{i,t} \}$
10. end for

How does it work?
- **Method:** Filter the set of arms
- **Based on:** Expanding size of arms history (newest samples first)
- **Statistical tool:** New way of using Hoeffding bound to both
 - Select relevant data history
 - Select arm maximizing exploration/exploitation tradeoff

Lemma
- w.p. $1 - \delta_t$, $\forall h \leq N_{i,t}$, $\tilde{p}_i(x) \geq \max_{j \in \mathcal{X}} \mu_j(x) - 4\epsilon(h, \delta_t)$

Guarantees

WORST-CASE BOUND
$$ \mathbb{E} \left[R_T(\pi_T) \right] \leq C\sigma \sqrt{K} \log(KT) + KL $$

PROBLEM-DEPENDENT BOUND
$$ \mathbb{E} \left[R_T(\pi_T) \right] \leq \sum_{i \in \mathcal{X}} \mathcal{O} \left(\log(KT) \Delta_i,h_{i-1}^{-1} \right) $$

Δ_i,h_T = Difference between the worst reward pulled by the optimal policy and the average of the h first overpulls of arm i.

$\hat{h}_{i,T}$ = High-probability upper bound on the number of overpulls for FEWA.

Computational complexity

FEWA has an $O(t)$ time and space complexity:

1. Perform $\log(t)$ filters: $h_t \leftarrow 2h$
2. Keep $\log(t)$ statistics:

Experiments

2 arms - Minimal single drop experiment
- 1 constant arm
- 9 arms with abrupt decay at 1000 pulls
- Geometric sequence of decays: $0.002 \rightarrow 20$

10 arms - Adapting to multiple decays
- 1 constant arm
- 9 arms with abrupt decay at 1000 pulls
- Geometric sequence of decays: $0.002 \rightarrow 20$

Competing against UCB1
1. Filtering policy $< \text{UCB index policy}$
2. More possible events \rightarrow Looser CB