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More formally: Adversarial MAB 

Observe (noisy) loss ℓ𝑡(𝑖𝑡) ∈ [0,1]

repeat

Expected Regret in T rounds:

……

Select an arm it from {1,2,…K}
At round t,

State of the art: 𝜃( 𝐾𝑇 )

Auer et. al. Finite-time analysis of the multiarmed bandit problem. Machine Learning  2002.

𝑅𝑇 =

𝑡=1

𝑇

ℓ𝑡(𝑖𝑡) − ℓ𝑡(𝑖
∗)

𝑙𝑡(1) 𝑙𝑡(2) ….. 𝑙𝑡(K)𝑙𝑡(3)

- EXP3 Algorithm



Many Applications: 

- Clinical Trials

- Wireless Communication

- Social Networks

- Search Engine Optimization

- Recommender Systems

- many more …

But fixed decision 

(arm) space is often 

Unrealistic

EXP3 fails!



Search Engine Optimization:



Recommender Systems



Guess the most liked flavour?

Retail Chain



Wireless Communication



Sleeping Bandits



Arm-1 Arm-2 Arm-3 Arm-K

. . . . . . 

At round t = 1

Unavailable (Cannot be picked !!)
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Sleeping Bandits



. . . . . . 

At round t = 2
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Arm-1 Arm-2 Arm-3 Arm-K

Sleeping Bandits



. . . . . . 

At round t = 3, and so on…..

Type of Availabilities:

Arm-1 Arm-2 Arm-3 Arm-K

Sleeping Bandits
1. Stochastic

2. Adversarial



Formally: Adversarial MAB + Stochastic Availabilities 

Observe (noisy) loss ℓ𝑡(𝑖𝑡) ∈ [0,1]

repeat

Regret in T rounds:

……

Select an arm it from St

At round t,

Auer et. al. Finite-time analysis of the multiarmed bandit problem. Machine Learning  2002.

𝑙𝑡(1) 𝑙𝑡(2) ….. 𝑙𝑡(K)𝑙𝑡(3)



Kanade et al (2009): 

G. Neu, M. Valko. Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial Rewards. NIPS 2014

We achieved optimal dependence on T:                    and computationally efficient  

Existing Results

Kanade et al. Sleeping experts and bandits with stochastic action availability and adversarial rewards. AISTATS 2009

Neu et al (2014): 

𝑂(𝑇4/5)

𝑂(𝑇2/3)

EXP4 algorithm: 𝑂(𝑇1/2) Computationally Inefficient



Problem: With Independent Availabilities
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Availability Vectors: 

At any time t:  



Our Algorithm (Independent Availabilities)
Sleeping-EXP3
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Sleeping-EXP3 (Independent Availabilities)
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Loss Estimate

EXP3 Update

Estimated availability

Item Probability

Regret:
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Our Algorithm (General Availabilities)
Sleeping-EXP3G



Sleeping-EXP3G (General Availabilities)
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Loss Estimate

EXP3 Update

Item Probability

Regret:



Empirical Evaluations
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Regret vs Time:

6/25/2020

Final Regret vs K:

Independent Availabilities



Regret vs Time:
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General Availabilities



Results Summary:

Independent Availabilities:

General Availabilities:
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Existing result: 

We achieved optimal dependence in T 

Suboptimal in K 

Computationally Efficient



Several Future Directions:
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i. Exact lower bound? Is Ω( 𝐾𝑇) really tight or it is Ω(𝐾 𝑇)?

ii. Improved algorithms with optimal dependency in K.

iii. Extending similar ideas to related setups: Rotting or Dying bandits

iv. Regret vs Effective-dimension: Extension to large arm-space

(potentially infinite)?
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