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Abstract
We investigate stochastic combinatorial semi-bandits, where the entire joint distribution of out-
comes impacts the complexity of the problem instance (unlike in the standard bandits). Typical
distributions considered depend on specific parameter values, whose prior knowledge is required
in theory but quite difficult to estimate in practice; an example is the commonly assumed sub-
Gaussian family. We alleviate this issue by instead considering a new general family of sub-
exponential distributions, which contains bounded and Gaussian ones. We prove a new lower
bound on the regret on this family, that is parameterized by the unknown covariance matrix, a
tighter quantity than the sub-Gaussian matrix. We then construct an algorithm that uses covariance
estimates, and provide a tight asymptotic analysis of the regret. Finally, we apply and extend our
results to the family of sparse outcomes, which has applications in many recommender systems.
Keywords: combinatorial stochastic semi-bandits, covariance, sparsity, confidence ellipsoid

1. Introduction

Complete automatic adaptation of algorithms to the processed data, as opposed to the requirement
of prior knowledge on underlying structure or to some manual tuning of parameters, is one of the
fundamental challenges in machine learning. We address this challenge for stochastic (combinato-
rial) semi-bandits, and provide an algorithm adaptive to the correlation structure of the data, leading
to provably faster learning in a sequential setting with limited feedback.

Stochastic multi-arm bandits (MAB) are decision-making problems where an agent sequentially
acts in an uncertain environment. At each round t ∈ N∗, the agent selects an arm i among a
ground set [n] , {1, . . . , n} of n ∈ N∗ arms. This choice generates some reward (or outcome)
Xi,t ∈ R, a random variable drawn from PXi , independently from previous rounds, where PXi is
some probability distribution — unknown to the agent — of mean µ∗i . The objective of the agent is
to maximize the expected cumulative reward, or equivalently, to minimize the regret, defined as the
difference between the expected cumulative reward achieved by always selecting the single optimal
arm and that achieved by the agent. To accomplish this objective (Robbins, 1952), the agent must
trade-off between exploration (gaining information about the arm distributions) and exploitation
(greedily using the information collected so far). To assess the learning policy followed by the
agent (also called a learning algorithm), upper bounds on the regret are often derived as a guarantee
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COVARIANCE SEMI-BANDITS

on its performance. These bounds are valid provided that (PX1 , . . . ,PXn) belongs to some family
of probability distributions, e.g., the family of sub-Gaussian outcomes.

There exist sophisticated learners adaptive to the environment, in the sense that their perfor-
mance guarantees improve (or stated otherwise, their regret upper bounds decrease) when the prob-
lem instance is “simpler” for some appropriate notions of complexity. For instance, Audibert et al.
(2009) and Mukherjee et al. (2017) proposed to estimate the variance of each arm to construct
adaptive confidence intervals for each mean µ∗i , based on Bernstein’s inequality. This leads to an
algorithm having variance-dependent regret bounds. Garivier and Cappé (2011) went beyond vari-
ance estimation and proposed a Kullback–Leibler divergence based confidence region, and provided
a tighter regret upper bound. Thompson sampling can also offer such adaptive regret upper bounds
(Kaufmann et al., 2012). Our objective is to attain such adaptivity, but for the challenging combina-
torial extension of bandits, called stochastic semi-bandits, described next.

Henceforth, for notation conveniences, we typeset vectors in bold and indicate components with
indices, i.e., a = (ai)i∈[n] ∈ Rn. In combinatorial semi-bandits (Cesa-Bianchi and Lugosi, 2012),
the action spaceA is a collection of subset of arms. At each round t, the agent chooses some action
At ∈ A, receives the total reward associated to the selected actions At, assumed to be

∑
i∈At Xi,t,

and observes the outcome of each base arm of At, i.e., the vector (Xi,tI{i ∈ At})i∈[n]. The action
space A depends on the combinatorial problem at hand. For example, actions in A could be a path
from an origin to a destination in a network (György et al., 2007; Talebi et al., 2013) or a subset of
items to recommend to a customer (Wang et al., 1997). Many other examples and applications are
given by Cesa-Bianchi and Lugosi (2012). Notice that in this setting, the whole joint distribution of
the vector of outcomes is relevant, contrary to standard bandit problems where only the n marginals
are sufficient to characterize the difficulty of the instance. If we define X , (X1, . . . , Xn), the
objective is to design a learning algorithm adaptive to the distribution PX. This is more challenging
than in standard bandits, where adaptivity is only with respect to ⊗i∈[n]PXi .

In a first approach, Degenne and Perchet (2016) considered the general family of C-sub-Gaussian
probability distributions, with C � 0 (i.e., C is positive semi-definite). Formally, those distributions
PX of mean µ∗ satisfy

∀λ ∈ Rn, E
[
eλ

T(X−µ∗)
]
≤ eλ

TCλ/2. (1)

Degenne and Perchet (2016) devised an algorithm with a regret bound depending on the components
of another matrix Γ � 0, satisfying Γ �+ C (i.e., λT(Γ−C)λ ≥ 0 for all λ ∈ Rn+) and Γij ≥ 0
for all i, j. The major downside is that this algorithm requires the knowledge of Γ. More precisely,
their upper bound is of order

log T

∆

∑
i∈[n]

Γii
(
(1− γ) log2(m) + γm

)
, (2)

where γ , max
A∈A

max
(i,j)∈A2,i 6=j

Γij/
√

ΓiiΓjj is the the maximal off-diagonal correlation coefficient, ∆

is the minimal positive gap between expected total reward of two actions, andm , max{|A|, A ∈ A}.
Interestingly, their regret upper bound highlights regimes interpolating between worst case corre-
lation between outcomes (corresponding to γ = 1) and mutually independent outcomes (where
γ = 0). In particular, the learning rate is much faster in the latter case. The main drawback how-
ever, is that their approach is not adaptive since the correlation structure of the arms needs to be
given to the agent (through the matrix Γ).
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Our main objective is to alleviate this issue, and to strive to obtain fast rates for combinatorial
semi-bandits, as Degenne and Perchet (2016) in the case where there is a favorable covariance
structure, but without knowing it beforehand. Therefore, algorithms should be able to capture the
covariance structure given by Γ from the data processed and adapt to it. We actually go further by
asking whether the matrix Γ is the relevant parameter to characterize the difficulty of a problem.
We argue that the covariance matrix Σ∗ , E

[
(X− µ∗)(X− µ∗)T

]
is more pertinent, as it allows

to better differentiate complex problems from the easy ones. One can indeed already argue in favor
of a Σ∗ dependence rather than a Γ one, based on the relation Σ∗ �+ Γ (see Appendix A).

Results and limitations of the results of Degenne and Perchet (2016) Below, we list the main
limitations of the approach of Degenne and Perchet (2016):

(i) The matrix Γ needs to be known. This requires specific knowledge about the outcome struc-
ture, which is often not precise, as it is usually only known that outcomes are bounded, or at
most that there exists some constant κ such that κ2 ≥ Cii for all i ∈ [n]. The latter is equiv-
alent1 to Γij = κ2 for all i, j ∈ [n] and corresponds to the worst case correlation between
outcomes (γ = 1) in the regret bound (2).

(ii) The value γ can be 1, even when outcomes are only weakly correlated: For instance, if n is
even, Γ can be a block-diagonal matrix with n/2 blocks of size 2 × 2 containing only ones.
This scenario can actually occur in many examples; we provide two types below:

• Arms are nodes on a given graph, with some small communities on which outcome
tends to be constant (Cesa-Bianchi et al., 2013; Valko et al., 2014; Gentile et al., 2014;
Valko, 2016).
• Arms are market-basket-like items, with some highly correlated pairs of items (e.g.,

people buying from category “books” tend to also buy from category “CDs”, Zhang and
Feigenbaum, 2006; He et al., 2006).

(iii) The value Γii can be high, even for low-variance outcomes, while intuitively, low variance
outcomes should be easy to work with. For example, if X is a binary 1-sparse random variable
— as in some recommender systems, where a single item is desired by the user — then Xi ∼
Bernoulli(µ∗i ) with

∑n
i=1 µ

∗
i = 1, and Γii ≥ Cii ≥ (µ∗i − 1/2)/(log(µ∗i )− log(1− µ∗i ))

(and this is tight, see, e.g., Buldygin and Moskvichova, 2013). For µ∗i of order 1/n, Γii is
thus at least of order 1/(2 log n) for n large, whereas V(Xi) is of order 1/n.

To sum up the arguments above, we claim that (1) knowing a good upper bound on the sub-Gaussian
matrix C �+ Γ is not realistic and (2) even this upper bound is not a good proxy for the complexity
of the instance at hand.

Contributions In this paper, we address the three aforementioned criticisms (i), (ii), and (iii).
As a consequence, we do not assume that a good upper bound Γ on the sub-Gaussian matrix C is
known, but only that the agent knows that each marginal PXi is κ2-sub-Gaussian. We compensate
this relaxation by restricting the distribution family considered through a sub-exponential-type as-
sumption involving the covariance matrix Σ∗. We argue that this restriction is mild and satisfied by
many outcome distributions, including bounded and Gaussian.

1. Indeed, C �+ Γ ⇒ Cii ≤ κ2 for all i ∈ [n] ⇒ Cij ≤
√
CiiCjj ≤ κ2 for all i, j ∈ [n] ⇒

∑
i,j Cij |λi||λi| ≤

κ2
(∑

i|λi|
)2 for all λ ∈ Rn ⇒ C �+ Γ.
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We characterize the difficulty of the problem with Σ∗; specifically, we provide a new lower
bound, with a dependence on Σ∗, more precise than Degenne and Perchet (2016). We also design
a new algorithm with matching asymptotic regret upper bound, improving over the state-of-the-art
results. One of the key techniques is to build an online adapted estimation of the matrix Σ∗.

Our main contribution is in the analysis of this approach, that is not based on the usual Laplace’s
method, which works in the sub-Gaussian framework, but does not handle well our sub-exponential-
type assumption. Thus, our analysis is rather based on a covering-argument (Magureanu et al.,
2014). An important part of our proof is based on the transformation of the axis-unaligned ellip-
soidal confidence region associated to a given action A ∈ A into an axis-aligned region, using the
following relation

(
Σ∗ij

)
ij∈A

�+ diag
(∑

j∈A 0 ∨ Σ∗ij

)
i∈A

. This allows us to conduct the same

type of proof than for the independent outcome case (where confidence regions are always axis-
aligned), but with a Bernstein-type analysis.2

We also consider an application of our approach to the family of sparse bounded outcomes: we
provide a lower bound on the regret, with an algorithm having a matching asymptotic regret upper
bound.

µt−1

•

Figure 1: Confidence regions build by ESCB-C (the pseudo-ellipse), and CUCB-KL (the rectangle),
for ‖·‖1 constrained outcomes. Notice that CUCB-KL has slightly better confidence inter-
vals along the axis, but that ESCB-C is better in the direction e{1,2}.

Prior work on stochastic semi-bandits We review algorithms for stochastic semi-bandits, com-
ing with the analysis that depends on the family of probability distributions to which PX belongs.
To begin, Kveton et al. (2015); Chen et al. (2016) studied the general family of distributions having
sub-Gaussian or bounded marginals. Their algorithms are not adaptive to PX and regret bounds
depend on parameters characterizing the family, that need to be known (such as the sub-Gaussian
constant or a bound on ‖X‖∞). On the other hand, many algorithms are only adaptive to marginals
of PX, either with variance estimates (Perrault et al., 2019b; Merlis and Mannor, 2019), or us-
ing Kullback–Leibler divergence. These approaches are agnostic to possible correlation between
marginals since the confidence region used in their algorithm are always a Cartesian product of con-
fidence intervals (so they are always n-dimensional hypercubes). As a consequence, this translates
into guarantees w.r.t. the worst-case correlations quantity possible. Notice that these algorithms are

2. Remark that contrary to previous work on variance based confidence region, our method can’t be easily generalized
to Kullback–Leibler divergence based confidence region, since this would require control on higher moments of X.
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actually almost direct applications of corresponding classical multi-arm bandits algorithms to the
semi-bandit setting. In particular, confidence regions considered are the same in both settings.

Another line of works restricts the probability distributions family of PX, so that the dependence
existing between arms is controlled. This conveniently induce better confidence regions valid for
distributions in the family, and leads to the development of algorithms based on these regions, having
sharper regret upper bounds. For instance, Combes et al. (2015) and Wang and Chen (2018); Perrault
et al. (2020) assumed that PX = ⊗i∈[n]PXi . Confidence regions resemble to axis-align ellipsoid in
this specific case. They designed UCB (resp. Thompson sampling) based algorithms, leveraging on
such tighter ellipsoidal confidence region. The key difference between the above case is that this
time, marginals do characterize the problem, by assumption on the probability distributions family.

Remark that Degenne and Perchet (2016) provided a regret bound which adapts to the probabil-
ity distribution family at hand through the matrix Γ, although their algorithm is not fully adaptive.
The confidence region used by their algorithm is also ellipsoidal, and depends on the matrix Γ.
This matrix gives the control on the correlations between arms. The confidence ellipsoid is not axis
aligned unless Γ is diagonal. To the best of our knowledge, their work is the main competitor in
terms of regret bound.

Sparse bandits Independently to combinatorial bandits, there exists a different setting actually
dealing with correlated outcomes in online learning known as sparse bandits (Kwon et al., 2017;
Kwon and Perchet, 2015; Bubeck et al., 2017; Abbasi-Yadkori et al., 2012; Carpentier and Munos,
2012; Gerchinovitz, 2013). The overall idea is to introduce by now a standard sparsity assump-
tion (some parameter vector has only s out of its n components that are non zero) into sequential
decision making. As usual, the objective is to replace the linear/polynomial dependence in the di-
mension n by a linear/polynomial dependence in s. Quite interestingly, the sparsity assumption has
been studied in two different directions. The fist one assumes that the vector µ∗ is s-sparse, typi-
cally in (linear) stochastic bandits (Kwon et al., 2017; Abbasi-Yadkori et al., 2012; Carpentier and
Munos, 2012; Gerchinovitz, 2013). The second one assumes that the realized vector Xt is s-sparse,
usually in adversarial bandits (Kwon and Perchet, 2015; Bubeck et al., 2017).

Sparsity in realized outcomes naturally induces negative correlation; this is not necessarily true
for sparsity in expectation. More generally both concepts are complementary, since µ∗ can be
sparse with non-sparse realization (for instance, if allXi are i.i.d., equal to±1 with probability 1/2)
and reciprocally (if X is a canonical unit vector at random, then its expectation has full support).
Surprisingly, the sparse outcomes setting has not been investigated in stochastic bandits, even if it
lies at the junction of several notions of correlations between outcomes.

2. Some technical background

Let ei be the ith canonical unit vector of Rn. The incidence vector of any subset A ⊂ [n] is
eA ,

∑
i∈A ei. The above definition allows us to represent a subset of [n] as an element of {0, 1}n.

We denote the Minkowski sum of two sets Z,Z ′ ⊂ Rn as Z + Z ′ , {z + z′, z ∈ Z, z′ ∈ Z ′}, and
Z + z′ , Z + {z′}. In stochastic combinatorial semi-bandits, an agent selects an action At ∈ A
at each round t ∈ N∗, and receives a reward eT

At
Xt, where Xt ∈ Rn is an unknown random vector

of outcomes. The successive vectors (Xt)t≥1 are i.i.d., sampled from PX, with an unknown mean
µ∗ , E[X] ∈ Rn. After selecting an action At in round t, the agent observes the outcome of each
individual arm in At. Its goal is to minimize the regret, defined with A∗ ∈ arg maxA∈A eT

Aµ
∗ as
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∀T ≥ 1, RT , E

[
T∑
t=1

(eA∗ − eAt)
TXt

]
.

For any actionA ∈ A, we define its gap as the difference ∆(A) , (eA∗ − eA)Tµ∗. We then rewrite
the regret as RT = E

[∑T
t=1 ∆(At)

]
. We start by stating the assumptions satisfied by PX.

Assumption 1 (κ2-sub-Gaussian marginals) There is a constant κ > 0 (known to the agent) such
that ∀i ∈ [n], ∀λ ∈ R, E

[
eλ(Xi−µ

∗
i )
]
≤ eκ2λ2/2.

Assumption 1 is not difficult to satisfy, and does not require any precision on the correlations be-
tween outcomes. In particular, Assumption 1 includes Gaussian outcomes (with variance lower than
κ2) and bounded outcomes (with ‖X‖∞ ≤ κ). We also assume that X satisfies the following.

Assumption 2 (‖·‖1-sub-exponential distribution) ∀λ ∈ Rn such that ‖λ‖1 ≤ 1/(2κ), we have

E
[
eλ

T(X−µ∗)
]
≤ eλTΣ∗λ, where Σ∗ , E

[
(X− µ∗)(X− µ∗)T

]
is the covariance matrix of X.

Importantly, the agent does not know the covariance matrix Σ∗. Remark that Assumption 2 triv-
ially holds for X ∼ N (µ∗,Σ∗), where ∀λ ∈ Rn, E

[
eλ

T(X−µ∗)
]

= eλ
TΣ∗λ/2. The following

proposition, proved in Appendix B, states that it also holds for bounded outcomes.

Proposition 1 If ‖X‖∞ ≤ κ, then both Assumption 1 and 2 hold.

Notice, up to a re-normalization of the regret, we assume w.l.o.g. that κ = 1.

3. Lower bound

We start by proving in Theorem 1 a new gap-dependent lower bound onRT , valid for any covariance
matrix Σ∗ � 0, for some PX satisfying Assumptions 1 and 2, some action space A, and for
any consistent algorithm (Lai and Robbins, 1985), for which the regret on any problem verifies
RT = o(T a) as T → ∞, for all a > 0. This lower bound demonstrates the link between Σ∗ and
the difficulty of the problem. It also indicates, in anticipation, that we have to examine a subclass of
action sets to hope to improve the upper bound we will provide in Theorem 2.

Theorem 1 For any n,m ∈ N∗ such that n/m ≥ 2 is an integer, any n×nmatrix Σ∗ � 0, any ∆ >
0, and any consistent policy, there exists an instance with n arms — characterized by some action
space A, with m = max{|A|, A ∈ A}, some outcome distribution PX satisfying Assumptions 1
and 2 with all gaps equal to ∆ and covariance matrix Σ∗ — on which the regret satisfies

lim inf
T→∞

∆

log(T )
RT ≥ 2

∑
i∈[n], i/∈A∗

max
A∈A, i∈A

∑
j∈A

Σ∗ij ·

The proof is given in Appendix C and considers A containing n/m disjoint actions A1, . . . , An/m
composed ofm arms, withAk = {(k − 1)m+ 1, . . . , km}, and X ∼ N (−∆/m(I{i /∈ A1})i,Σ∗).
The idea is to make a reduction to some standard bandit problems with n/m arms, and to compute
the number of rounds t needed to distinguish between Ak and A1. Roughly speaking, t is at least
equal to the inverse of the KL between outcome distributions of Ak and its centered version, and
in the case of Gaussian distributions, we get t ≥ 2V(

∑
i∈Ak Xi)/∆

2 = 2eT
Ak

Σ∗eAk/∆
2. It is
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not surprising that the variance appears, since this can be seen as a measure of the uncertainty we
have in our samples: The higher the variance, the harder the estimation, and therefore the higher the
round t must be. Notice that Theorem 1 is a refinement of Theorem 1 from Degenne and Perchet
(2016), in which they consider the same action space A but a specific choice for the matrix Σ∗: it
is a block-diagonal matrix with n/m blocks, where each block (corresponding to an action A) is
equal to σ2((1− γ)diag(eA) + γeAeT

A), i.e., they take the worst case correlation under the controls
given by σ2 and γ, and knowing that the problem given byA is agnostic to the correlations between
the arms of two different blocks.

In the next section, we describe our algorithm ESCB-C (Algorithm 1) and provide an upper
bound on its regret in Theorem 2, where the expression maxA∈A,i∈A

∑
j∈A 0∨Σ∗ij appears. Notice

that this is very close to the expression given in Theorem 1. In fact, both expressions coincide when
Σ∗ has only non-negative entries.

4. Main algorithm and the guarantees

In this section, we present an algorithm for the setting introduced in Section 2. The method is stated
as Algorithm 1. To find the action with the highest mean, the agent estimates the mean µ∗i of every
arm i with their corresponding empirical averages defined as µi,t−1 ,

∑
u∈[t−1]

I{i∈Au}Xi,u
Ni,t−1

, for

t ≥ 1, whereNi,t−1 ,
∑

u∈[t−1] I{i ∈ Au} is the number of time arm i have been drawn for the first
t− 1 rounds. As mentioned above, the agent also estimates the covariance Σ∗ij = E[XiXj ]− µ∗iµ∗j
of each pair (i, j) ∈ [n]2. This will be done with the following estimate

Σij,t−1 ,
∑

u∈[t−1]

I{i, j ∈ Au}
(
Xi,u − µi,t−1

)(
Xj,u − µj,t−1

)
Nij,t−1

=
∑

u∈[t−1]

I{i, j ∈ Au}
(
Xi,uXj,u − µi,t−1Xj,u − µj,t−1Xi,u

)
Nij,t−1

+ µi,t−1µj,t−1,

where Nij,t−1 ,
∑

u∈[t−1] I{i, j ∈ Au} is the number of times where arm i and j have been drawn
together for the first t − 1 rounds. Notice that in order to efficiently update Σij,t−1, in addition to
µi,t−1 and µi,t−1, we only have to maintain the three quantities,

∑
u∈[t−1]

I{i, j ∈ Au}Xi,uXj,u

Nij,t−1

,
∑

u∈[t−1]

I{i, j ∈ Au}Xi,u

Nij,t−1

, and
∑

u∈[t−1]

I{i, j ∈ Au}Xj,u

Nij,t−1
·

Using concentration inequalities, we get confidence intervals for the above estimates. We are then
able to use an upper-confidence-bound strategy (Auer et al., 2002). More precisely, we first build
the upper confidence bound on Σ∗ij using the fact that Xi ·Xj is a sub-exponential random variable,
since both Xi and Xj are sub-Gaussian by virtue of Assumption 1. The result is stated in the
following proposition with a proof in Appendix D.

Proposition 2 With probability 1− 10t−2, we have

∣∣Σ∗ij − Σij,t−1

∣∣ ≤ gij(t) , 16

(
3 log(t)

Nij,t−1
∨

√
3 log(t)

Nij,t−1

)
+

√
48 log2(t)

Nij,t−1Ni,t−1
+

√
36 log2(t)

Nij,t−1Nj,t−1
·
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Algorithm 1 ESCB-C (Efficient Sampling for Combinatorial Bandits with Covariance estimate)
Initialization:
Play A1 = [n], or at least a sequence A1, A2, . . . , (no more than n(n − 1)/2) such that for any
i, j ∈ [n], one of these At’s contains {i, j}. We thus have Nij,t−1 ≥ 1 for all i, j ∈ [n].
For all subsequent rounds t:
Solve the following bilinear program to get At, with Ct(A) defined by (3), and play At,

(At,µt) ∈ arg max
A∈A, µ∈Ct(A)

eT
Aµ.

In particular, defining the upper confidence bound Σij,t , Σij,t−1 + gij(t), it holds that 0 ≤
Σij,t − Σ∗ij ≤ 2gij(t) with probability 1− 10t−2.

To build estimates well concentrated around µ∗, we will use the matrix Σt defined above to design
the following high probability confidence region for all A ∈ A

Ct(A) , µt−1+

{
ξ ∈ Rn,

∑
i∈A

Ni,t−1ξ
2
i

|A||ξi|+
∑

j∈A 0 ∨ Σij,t
≤ 8(log t+ log log t) + 4em

}
· (3)

The intuition behind this confidence region is similar to the one for empirical Bernstein confidence
intervals, but the term

∑
j∈A 0 ∨ Σij,t in the denominator replaces the usual empirical variance.

To compare our confidence region with the one of Degenne and Perchet (2016), notice first that
their algorithm uses the matrix Γ to build a confidence ellipsoid. They provide an analysis for this
confidence ellipsoid using the Laplace’s method and the matrix relation C �+ Γ. In contrast,
our confidence region is based on the covariance matrix Σ∗. Our analysis is also different, as we
use a covering-argument analysis. This is because the covariance estimation and Assumption 2
are both hard to handle with Laplace’s method, that is more appropriate for sub-Gaussian random
variables. Indeed, all calculations can be explicit and it is easy to construct a conjugate prior. This
is not the case for sub-exponential random variables. Covering arguments are much more easier
to use together with a diagonal matrix, so axis-aligned confidence region are desirable. We use an
axis-realignment technique based on the matrix relation

(
Σ∗ij

)
ij∈A

�+ diag
(∑

j∈A 0 ∨ Σ∗ij

)
i∈A

.

The upside is to avoid dealing with off-diagonal terms by transforming them into diagonal ones.
From all these previous observations, we can say that the confidence ellipsoid of Degenne and
Perchet (2016) is tighter as it does not require any axis realignment; however, not only the matrix
Γ is generally looser than Σ∗ but also axis realignment does not alter the analysis, so that our new
approach outperforms theirs in terms of asymptotic regret upper bound.

As common in bandits, the major challenge in the analysis is to prove that with high probability,
µ∗ ∈ Ct(A) for any action A ∈ A. The covering argument together with the conversion from
an axis-unaligned confidence region into an axis-aligned confidence region allows us to achieve
this result (see Lemma 3). Therefore, an optimistic estimate µt of the true mean µ∗ can be found
using an upper-confidence-bound approach: if At,µt are defined as in Algorithm 1, then, since
µ∗ ∈ Ct(A∗), we have

eT
Atµt ≥ eT

A∗µ
∗.

The regret bound for ESCB-C is stated in Theorem 2 with proof in Appendix E.
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Theorem 2 Assume that the outcome distribution PX satisfies Assumptions 1 and 2, and define
∆ , minA∈A, ∆(A)>0 ∆(A), ∆max , maxA∈A, ∆(A)>0 ∆(A). If ∆ is small enough, i.e., there
exists a universal constant c such that

∆ ∨
(

∆+∆ log

(
∆max

∆

))3/2

≤ c

(
log(m+ 1)

∑
i∈[n] maxA∈A,i∈A

∑
j∈A 0 ∨ Σ∗ij

n2

)3/2

,

then the regret of Algorithm 1 is upper bounded as

lim sup
T→∞

∆

log T
RT ≤ c′ log2(m+ 1)

∑
i∈[n]

max
A∈A,i∈A

∑
j∈A

0 ∨ Σ∗ij ,

where c′ is a universal constant.

Notice that the bound in Theorem 2 is tight, up to a poly-logarithmic factor in m, with respect to
the lower bound in Theorem 1, in the case where Σ∗ has non-negative entries. Moreover, we focus
on the asymptotic behavior of the regret (w.r.t. T ) when ∆ is small, i.e., when the problem becomes
very difficult. While the quantity c log2(m+ 1)

∑
i∈[n] maxA∈A,i∈A

∑
j∈A 0 ∨ Σ∗ij log(T )/∆ pre-

sented in Theorem 2 highlights the main dependence on both ∆ and T , we prove a more precise
non-asymptotic upper bound in Appendix E, (9), which holds for all ∆ > 0. Indeed, as for UCB-V,
the errors from estimating Σ generate an extra term in the upper bound. However, since these errors
are multiplied with estimation errors on the means, their impact is of second order. In particular, for
∆ small enough, this extra term becomes negligible compared to the main term. Therefore, the term
from covariance estimation errors is not present in Theorem 2, but appears when ∆ is far from 0.
Finally, remark that when the covariance Σ∗ is known, then one can consider the confidence region
where Σij,t is replaced by Σ∗ij . This avoids covariance estimation errors, and gives the upper bound

of Theorem 2 when ∆+∆ log(∆max/∆) is smaller than
∑
i∈[n]

max
A∈A,i∈A

∑
j∈A

0 ∨
Σ∗ij
n ·m

·

Remark 1 Considering the intersection of the region from Algorithm 1 with the one of CUCB-V,
we can replace log2(m+ 1)

∑
j∈A 0∨Σ∗ij by mΣ∗ii ∧

(
log2(m+ 1)

∑
j∈A 0 ∨ Σ∗ij

)
in Theorem 2.

5. Application to sparse outcomes

In this section, we shall consider an additional structural assumption on the vector X, namely that
it is s-sparse in the sense that

‖X‖0 ≤ s,

i.e., the number of nonzero components of X is smaller than s, where s is a fixed known parameter.3

Importantly, the set of components which are nonzero is not fixed nor known, and may change over
time. It should be noted, however, that there is a significant difference between the stochastic and the
adversarial cases: In the later, the set of components which are nonzero change arbitrarily over time,
whereas in the former, this set is sampled i.i.d. Notice, this sparse stochastic setting is different than
the usual stochastic sparse bandit, where µ∗ is assumed to be sparse; see e.g., Kwon et al. (2017)
for the classical MAB setting, and Abbasi-Yadkori et al. (2012); Carpentier and Munos (2012) for
the linear bandit setting. For simplicity, we further assume that ‖X‖∞ ≤ 1. As we already saw

3. For example, the Dirichlet-multinomial distribution with s trials is s-sparse.
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in Proposition 1, this implies Assumption 1 and 2. The difficulty of this setting is that both the
approach of Degenne and Perchet (2016) and standard methods such as CUCB-V would not reach
the lower bound for the regime s ≤ m, as we will see. The reason is that a correlation exists between
the components, because of sparsity, and must be taken into account.

Why sparsity in semi-bandits? Sparsity is nowadays a very standard assumption in learning the-
ory (that potentially does not need any further motivations). There are many examples of online
learning scenarios naturally involving some sparse structure. For instance, in the celebrated click-
through-rate optimization, it is safe to assume that users would only click on a few of the different
ads that can be displayed (those that can catch their eyes for any reason, say). Similarly, in recom-
mender systems, it is safe to assume that a user will browse/buy items from a specific category and
not the other (for instance, a segment of the population in e-shops only buy bottles of wines and
others only video-games or clothes).

Other examples involve settings where outcomes are usually zero except on very rare occasions:
In the online routing, the packets are sent in a network and are lost if a server of that network has
a failure. Because of failsafe procedures, failures are desynchronized and typically only one (or
at most a few) of them can happen simultaneously. In all of these examples, the decision maker
has some combinatorial problem to solve: select an admissible path, select a diverse bundle of
object/ads to display, etc., and only a few of the base items will generate non-zero outcome.

5.1. Lower bound

To start our study of sparse outcomes, we state a new lower bound in Theorem 3, that is valid for the
setting described above. This lower bound is built on the same ideas as Theorem 1, with a notable
variation: when reducing to a MAB problem, we do not obtain the necessary conditions for the
application of Lai and Robbins (1985), because of the linear dependence between the µ∗i ’s. Thus,
we use instead the the lower bound from Graves and Lai (1997). More precisely, we consider the
same action space A, and incorporate the sparsity assumption as an extra constraint for defining a
worst case distribution.

Theorem 3 For any n,m, s ∈ N∗ such that n/m, n/s, 1 ∨ (s/m) are integers, n/m, n/s ≥ 2,
any ∆ ∈ (0, ms

2(n−m) ] and any consistent policy, there is a problem with n arms — characterized by
some action space A with m = max{|A|, A ∈ A} and some vector of outcomes X with all gaps
equal to ∆ satisfying ‖X‖∞ ≤ 1, ‖X‖0 ≤ s — on which the regret satisfies

lim inf
T→∞

∆

log(T )
RT ≥

s(s ∧m)(1− 2m/n)

4
·

The proof is given in Appendix G. To give an idea, contrary to Theorem 1, we have more freedom
in the covariance, and X can be chosen to maximize V(

∑
i∈AXi) for each action A, up to the

constraints ‖X‖∞ ≤ 1, ‖X‖0 = s. The maximal value of
∑

i∈AXi is thus (s∧m). Now consider
for simplicity the softer constraint E‖X‖0 = s. If X is chosen so that

∑
i∈AXi/(s∧m) is Bernoulli

of parameter p, then the optimal p is equal to (s ∨ m)/n. The variance is about p(s ∧ m)2 =
ms(s ∧m)/n. Multiplying this by n/m (the number of actions) and dividing by the gap ∆ gives
the order of the lower bound.

10
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Algorithm 2 ESCB-C modified for the case of ‖·‖1-constrained outcomes
Initialization:
Play A1 = [n], or at least a sequence A1, A2, . . . , (no more than n) such that all arm have been
sampled once. We thus have Ni,t−1 ≥ 1 for every arm i ∈ [n].
For all subsequent rounds t:
Solve the following bilinear program to get At, with Ct define by (4), and play At.

(At,µt) ∈ arg max
A∈A, µ∈Ct

eT
Aµ.

5.2. Our approach for sparse semi-bandits

In this subsection, we adapt our techniques to the sparse semi-bandit setting. Since ‖X‖∞ ≤ 1, the
`0-inequality ‖X‖0 ≤ s immediately implies the `1-inequality ‖X‖1 ≤ s. As we will actually only
use sparsity through the latter inequality, we can relax our assumption on the model into ‖X‖1 ≤ s,
for more generality. Let ν∗i , E[|Xi|], and νi,t−1 the corresponding empirical average estimate:

νi,t−1 ,
∑
u∈[t−1] I{i∈Au}|Xi,u|

Ni,t−1
· Our approach is based on replacing

∑
j∈A 0 ∨ Σ∗ij by ν∗i (s ∧ m)

(see Lemma 1, proved in Appendix H). Using this, it is possible to estimate ν∗i instead of each Σ∗ij .

Lemma 1
∑

j∈A 0 ∨ Σ∗ij ≤ 2ν∗i (s ∧m).

We can therefore use the same algorithm (Algorithm 1), but with a confidence region Ct independent
of A, since summing over A or [n] on the main sum doesn’t change the algorithm and the second
sum

∑
j∈A 0 ∨ Σij,t is replaced by an estimates of the upper bound given in Lemma 1.

Ct , µt−1+

ξ ∈ Rn,
∑
i∈[n]

Ni,t−1ξ
2
i

m|ξi|+2(s∧m)νi,t
≤ 8(log(t)+log(log(t)))+4em

, (4)

where the upper bound estimate νi,t , νi,t−1+
√

1.5 log(t)
Ni,t−1

of ν∗i is a simple consequence of He-
offding’s inequality, using that |Xi,u| is 1/4-sub-Gaussian. Our algorithm is stated in Algorithm 2.
As a byproduct of Theorem 2, we provide an upper bound for the regret in the sparse semi-bandit
setting in Corollary 1 (see Appendix F, (10), for a more precise bound). Again, notice we are
reaching the lower bound of Theorem 3, using the relation

∑
i ν
∗
i = E‖X‖1 ≤ s.

Corollary 1 Assume that the outcome distribution PX satisfies ‖X‖∞ ≤ 1 and ‖X‖1 ≤ s, and that

(∆(s ∧m))2/3 ∨ (m∆ +m∆ log(∆max/∆)) ≤ c log(m+ 1)
∑
i∈[n]

ν∗i (s ∧m)

n
,

for some universal constant c. Then the regret of Algorithm 2 is upper bounded as

lim sup
T→∞

∆

log(T )
RT ≤ c′ log2(m+ 1)

∑
i∈[n]

ν∗i (s ∧m) ≤ c′ log2(m+ 1)(s ∧m)s,

where c′ is a universal constant.

Remark 2 It should be noticed that semi-bandits algorithms as CUCB-V or CUCB-KL (that are
variant of the classical CUCB (Kveton et al., 2015), where the confidence region is a Cartesian
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product of confidence intervals, with Bernstein and kl-base confidence intervals respectively) also
reach the lower bound of Theorem 3 for the regime s ≥ m, since V(Xi) ≤ 2ν∗i (thanks to Lemma 1).
However, in the regime where s ≤ m, these algorithms are not able to reach it, while ESCB-C is.
In Appendix I, we describe the two algorithms CUCB-V and CUCB-KL, and comment further on the
tightness difference between confidence regions.

6. Implementation details

We now discuss the computational efficiency of our approaches. First, Algorithm 1 (and both those
of Combes et al. (2015) and Degenne and Perchet (2016)) is not efficient for arbitrary combinatorial
space A. However, the evaluation of F : A 7→ maxµ∈Ct(A) eT

Aµ, can be done efficiently as it
is an LP over a convex set. In practice, when A allows it, GREEDY4 (Nemhauser et al., 1978)
can be used to maximize F . In general, it is unknown if this alters the regret rate. On the one
hand, it does not when A is given by a matroid, and Ct is as in Algorithm 2. This is because
F is submodular and the following approximation guaranty holds for the output At of GREEDY

(Perrault et al., 2019a): 2
(
F (At)− eT

At
µt−1

)
+ eT

At
µt−1 ≥ F (A∗), where the l.h.s. is simply F

where Ct is scaled by a factor 2 from its center µt−1. On the other hand, when Ct(A) is as in
Algorithm 1, a concave extension of A 7→ F (A) can be considered, and can thus be maximized
efficiently. Notice, when considering the intersection of the two confidence regions as in Remark 1,
this implementation is still tractable since the minimum of two concave functions is still concave.
Since the obtained solution might not be fractional, we use a randomized rounding to obtain a
feasible set At ∈ A = {0, 1}n. We provide in Appendix J further details and prove that this method
scales the regret by a factor 1 + log

(
m log(T )

∆2

)
, an acceptable price for efficiency.

7. Experiments

100 101 102 103 104

0

500

1000

1500

2000

2500

3000

3500 CUCB-V
CUCB-KL
ESCB-C

Figure 2: Left: Correlation matrix of the dataset, right: Cumulative regret, averaged over 36 inde-
pendent simulations

We consider the following dynamic assortment problem. An agent has n products to sale, with fixed
known prices. At each round, a customer arrives, with some unknown random valuation vector over
products. Then, the agent offers any subset of products, by paying a fixed known cost for each
offered product (e.g. transportation and display cost), and the customer buys an offered product if
and only if its valuation is greater than its price. The agent is interested in maximizing the total
profit (revenue minus cost) from sales over T rounds. We use the n = 120 products from the
Kaggle Market Basket Optimization (2013) dataset containing 7500 grocery store transactions. At
each round, valuations are determined by sampling a random transaction from this dataset. The

4. Starting fromA = ∅, we sequentially add (when possible) the best possible i to the currentA if F (A∪{i}) > F (A).
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choice of such data is motivated by correlations that exist between arms, as illustrated in Figure 2
– left, representing the correlation matrix. We ran 36 independent simulations with T = 104, and
with a common product price and cost respectively equal to 1.5 and 0.1. We compared CUCB-V and
CUCB-KL (see Appendix I) with the Lovász extension implementation of ESCB-C (see Appendix J)
and results are plotted in log-scale (Figure 2 – right); error bars represent the sample standard
deviation over simulations. There is less volatility in the regret of CUCB-V and CUCB-KL; this
is due to the fact that their confidence regions overestimate the risk, and the “bad” event where
the regret deviates is almost negligible. Nevertheless, we clearly observe that ESCB-C outperforms
the two other approaches in terms of the average regret. Finally, let us point out that we did not
empirically compare to the OLS-UCB algorithm of Degenne and Perchet (2016) since it is inefficient
to implement (the combinatorial problem to be solved within each round is NP-Hard in general
(Atamtürk and Gómez, 2017). We noticed that for the choice of sub-Gaussian matrix where all the
correlation coefficients equals 1, OLS-UCB (if it could be implemented) would return a solution very
close to CUCB-V.

8. Discussion

We improved the analysis of combinatorial semi-bandits in multiple ways. First, we brought new
perspectives by considering a fairly large family of sub-exponential probability distributions, that
crucially do not depend on parameters difficult to obtain in real situations. We have built an algo-
rithm for this family, based on the estimation of the covariance matrix. We have therefore already
significantly improved existing approaches by adapting not only to the variance of the arms, but also
to the correlation between them. A tight analysis of our proposed method gives a new state-of-the-
art upper bound on the regret. Our new bound is also more intuitive, and is more relevant to reflect
the complexity of the instance at hand (through correlations between arms). Finally, we applied our
approach to a setting not yet studied before, that assumes sparsity of the outcome vector. We gave a
lower bound, as well as a matching algorithm that leverages the sparsity assumption.

13
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Nicolò Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. A gang of bandits. In
Neural Information Processing Systems, 2013. URL https://papers.nips.cc/paper/
5006-a-gang-of-bandits.pdf.

14

http://proceedings.mlr.press/v22/abbasi-yadkori12.html
http://proceedings.mlr.press/v22/abbasi-yadkori12.html
https://homes.di.unimi.it/{~}cesabian/Pubblicazioni/ml-02.pdf
https://homes.di.unimi.it/{~}cesabian/Pubblicazioni/ml-02.pdf
http://arxiv.org/abs/1711.01037
http://proceedings.mlr.press/v22/carpentier12.html
http://cesa-bianchi.di.unimi.it/Pubblicazioni/comband.pdf
http://cesa-bianchi.di.unimi.it/Pubblicazioni/comband.pdf
https://papers.nips.cc/paper/5006-a-gang-of-bandits.pdf
https://papers.nips.cc/paper/5006-a-gang-of-bandits.pdf


COVARIANCE SEMI-BANDITS

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit and its extension to
probabilistically triggered arms. Journal of Machine Learning Research, 17, 2016.

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, and Others.
Combinatorial bandits revisited. In Advances in Neural Information Processing Systems, pages
2116–2124, 2015.
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Appendix A. The sub-Gaussian matrix is an upper bound on the covariance matrix

The fact that Σ∗ � C is well known and can be proved as follows: Fix x ∈ Rn. For any λ ∈ R,
E
[
eλxT(X−µ∗)

]
≤ eλ

2xTCx/2. The second order Taylor expansion in λ gives

λ2

2
E
[
(xT(X− µ∗))2

]
+ o
(
λ2
)
≤ λ2

2
xTCx + o

(
λ2
)
.

Dividing the inequality by λ2, and letting λ→ 0 yields E
[
(xT(X− µ∗))2

]
≤ xTCx, i.e., Σ∗ � C.

Appendix B. Proof of Proposition 1

Proof Assumption 1 is a direct consequence of Hoeffding’s Lemma. For Assumption 2, we have
‖X− µ∗‖∞ ≤ 2κ. For ‖λ‖1 ≤ 1/(2κ), we have:

logE
[
eλ

T(X−µ∗)
]

= log

1 +
∑
k≥2

E

[
(λT(X− µ∗))k

k!

]
≤
∑
k≥2

E

[
(λT(X− µ∗))k

k!

]
log(x) ≤ x− 1 ∀x > 0,

=
∑
k≥2

E

[
(λT(X− µ∗))k−2(λT(X− µ∗))2

k!

]

≤
∑
k≥2

E

[
(‖λ‖1‖X− µ∗‖∞)k−2(λT(X− µ∗))2

k!

]

≤
∑
k≥2

E
[
(λT(X− µ∗))2

]
k!

= (e− 2)λTΣ∗λ ≤ λTΣ∗λ.

Appendix C. Proof of Theorem 1

Proof Consider A containing n/m disjoint actions A1, . . . , An/m composed of m arms, with
Ak = {(k − 1)m+ 1, . . . , km}, and X ∼ N (−∆/m(I{i /∈ A1})i,Σ∗). This problem reduces
to a standard bandit problem with n/m arms. We use a result from Burnetas and Katehakis (1996),
a generalization of Lai and Robbins (1985), that states that

lim inf
T→∞

RT
log(T )

≥
n/m∑
k=2

∆

infY, E[Y ]=0 KL
(
P∑

i∈Ak
Xi‖PY

) ·
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As we can write

inf
Y, E[Y ]=0

KL
(
P∑

i∈Ak
Xi‖PY

)
≤ KL

(
N
(
−∆, eT

Ak
Σ∗eAk

)
‖N
(
0, eT

Ak
Σ∗eAk

))
=

∆2/2

eT
Ak

Σ∗eAk
,

it holds that

lim inf
T→∞

RT
log(T )

≥ 2

n/m∑
k=2

eT
Ak

Σ∗eAk
∆

= 2
∑

i∈[n], i/∈A1

max
A∈A, i∈A

∑
j∈A

Σ∗ij
∆
,

where we used the fact that {A ∈ A, i ∈ A} is a singleton.

Appendix D. Proof of Proposition 2

Proof We define Σ̃ij,t−1 ,
∑

u∈[t−1]

I{i,j∈Au}(Xi,u−µ∗i )(Xj,u−µ∗j)
Nij,t−1

and for k ∈ {i, j}, µ̃k,t−1 ,
1

Nij,t−1

∑
u∈[t−1] I{i, j ∈ Au}Xk,u. Notice that the following relation holds

Σij,t−1 = Σ̃ij,t−1 +
(
µ∗i − µi,t−1

)(
µ̃j,t−1 − µj,t−1

)
+
(
µ∗j − µj,t−1

)
(µ̃i,t−1 − µ∗i ).

We now state Lemma 2 giving sub-exponential parameters for a product of sub-Gaussian random
variables. A proof comes from Honorio and Jaakkola (2014).

Lemma 2 Y ,Z are 1-sub-Gaussian random variables⇒ ∀|λ| ≤ 1/8, E
[
eλ(Y Z−E[Y Z])

]
≤ e64λ2 .

We apply Lemma 2 with a Chernoff argument and an union bound (to avoid the randomness of
counters) in order to get the following Bernstein inequality

P

[∣∣∣Σ∗ij − Σ̃ij,t−1

∣∣∣ ≥ 16

(
3 log(t)

Nij,t−1
∨

√
3 log(t)

Nij,t−1

)]
≤ 2t−2.

In the same way, Hoeffding’s inequality gives directly that with probability 1 − 8t−2, we have
simultaneously 

∣∣µ∗i − µi,t−1

∣∣ ≤
√

6 log(t)
Ni,t−1∣∣µ̃j,t−1 − µj,t−1

∣∣ ≤√ 8 log(t)
Nij,t−1∣∣∣µ∗j − µj,t−1

∣∣∣ ≤
√

6 log(t)
Nj,t−1

|µ̃i,t−1 − µ∗i | ≤
√

6 log(t)
Nij,t−1

,

which is enough to conclude the proof. Notice that for the second inequality above, we take the
union bound for two counters. When they are not random, Nij,t−1

(
µ̃j,t−1 − µj,t−1

)
, that is equal to∑

u∈[t−1]

I{i, j ∈ Au}Xj,u(1−Nij,t−1/Nj,t−1)−
∑

u∈[t−1]

I{j ∈ Au, i /∈ Au}Xj,uNij,t−1/Nj,t−1,

is a sum of Nj,t−1 independent random variables, Nij,t−1 of which are (1−Nij,t−1/Nj,t−1)2-sub-
Gaussian and the remaining ones areN2

ij,t−1/N
2
j,t−1-sub-Gaussian. So it isNij,t−1(1−Nij,t−1/Nj,t−1)-

sub-Gaussian, and in particular Nij,t−1 -sub-Gaussian.
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Appendix E. Proof of Theorem 2

Proof In the proof, we denote a�b , (aibi)i the Hadamard product of two vectors a,b ∈ Rn. Let
t ≥ 1, and δ(t) , 2(log(t)+ log(log(t)))+em. Through initialization, we can assumeNij,t−1 ≥ 1
for all i, j ∈ [n] (as this only adds n(n − 1)∆max/2 to the regret bound). We will decompose
contributions to regret by considering the following events:

Ct ,
{
µ∗ ∨ µt−1 ∈ Ct(A∗)

}
,

Dt ,
{
eT
At

(
µt−1 − µ∗

)
≤ ∆(At)/2

}
,

St ,
{
∀i, j ∈ [n], 0 ≤ Σij,t − Σ∗ij ≤ 2gij(t)

}
.

We also define

g̃ij(t) , 16

(
3 log(t)

N2
ij,t−1

∨
√

3 log(t)

N3
ij,t−1

)
+

√
48 log2(t)

N4
ij,t−1

+

√
36 log2(t)

N4
ij,t−1

,

∀i ∈ [n], ∆i,min , min
A∈A, i∈A, ∆(A)>0

∆(A),

∆i,max , max
A∈A, i∈A, ∆(A)>0

∆(A),

and
∀i, j ∈ [n], ∆ij,min , min

A∈A, i,j∈A, ∆(A)>0
∆(A),

∆ij,max , max
A∈A, i,j∈A, ∆(A)>0

∆(A).

Step 1: If Ct,Dt and St hold We have

∆(At) = (eA∗ − eAt)
Tµ∗

≤ eT
A∗µ

∗ ∨ µt−1 − eT
Atµt + eT

At(µt − µ
∗)

≤ eT
At(µt − µ

∗) Ct

≤ ∆(At)/2 + eT
At

(
µt − µt−1

)
Dt

i.e.,

∆(At) ≤ 2eT
At

(
µt − µt−1

)
≤ 2

√√√√√∑
i∈At

4
(∑

j∈At 0 ∨ Σij,t +m
(
µi,t − µi,t−1

))
δ(t)

Ni,t−1
Cauchy-Schwarz and µt ∈ Ct(At)

≤ 4

√√√√δ(t)
∑
i∈At

(∑
j∈At 0 ∨ Σij,t

Ni,t−1
+
m
(
µi,t − µi,t−1

)
minj∈At Nj,t−1

)
.
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Solving the corresponding quadratic inequation in the variable x = eT
At

(
µt − µt−1

)
, we get

∆(At) ≤ 2eT
At

(
µt − µt−1

)
≤ 4

√√√√ δ(t)2m2

mini∈At N
2
i,t−1

+
∑
i∈At

δ(t)
∑

j∈At 0 ∨ Σij,t

Ni,t−1
+

mδ(t)

minj∈At Nj,t−1


≤ 4

√√√√δ(t)
∑
i∈At

∑
j∈At 0 ∨ Σij,t

Ni,t−1
+

8mδ(t)

minj∈At Nj,t−1

≤ 4

√√√√√δ(t)
∑
i∈At

∑
j∈At 0 ∨

(
Σ∗ij + 2gij(t)

)
Ni,t−1

+
8mδ(t)

minj∈At Nj,t−1
St

≤ 4

√√√√δ(t)
∑
i∈At

∑
j∈At 0 ∨ Σ∗ij
Ni,t−1

+ 4

√√√√δ(t)
∑
i∈At

∑
j∈At 2gij(t)

Ni,t−1
+

8mδ(t)

minj∈At Nj,t−1

≤ 4

√√√√δ(T )
∑
i∈At

maxA∈A,i∈A
∑

j∈A 0 ∨ Σ∗ij
Ni,t−1︸ ︷︷ ︸

(5)

+ 4

√
δ(T )

∑
i,j∈At

g̃ij(T )

︸ ︷︷ ︸
(6)

+
8mδ(T )

minj∈At Nj,t−1︸ ︷︷ ︸
(7)

·

Where the last inequality uses that Ni,t−1 ∧Nj,t−1 ≥ Nij,t−1∀i, j ∈ [n]. From this point, we treat
each term separately, using the relation

I{∆(At) ≤ (5) + (6) + (7)} ≤ I{∆(At)/3 ≤ (5)}+ I{∆(At)/3 ≤ (6)}+ I{∆(At)/3 ≤ (7)}.

We provide Theorem 4 in Appendix K, that is helpful to bound the regret on each of this 3 events.
Indeed, for the first term, applying it with βi,T = 122δ(T ) maxA∈A,i∈A

∑
j∈A 0 ∨ Σ∗ij , αi = 1/2,

and (I, It) = ([n], At) gives the bound
T∑
t=1

I{∆(At)/3 ≤ (5)}∆(At) ≤ 4608 log2
2(4
√
m)
∑
i∈[n]

δ(T ) maxA∈A,i∈A
∑

j∈A 0 ∨ Σ∗ij
∆i,min

·

The second term can be itself decomposed into two terms, bounding the max by the sum and using
log(T ) ≤ δ(T ).

(6) ≤ 4δ(T )

√ ∑
i,j∈At

(
54 +

√
48
)
N−2
ij,t−1 + 4δ(T )0.75

√
16
√

3
∑
i,j∈At

N−1.5
ij,t−1.

Thus, again, it is sufficient to treat each term separately. We also apply Theorem 4, but with
(I, It) = ([n]2, A2

t ), taking respectively αi = 1, βi,T = 24
√

54 +
√

48δ(T ) and αi = 0.75, βi,T =
192 · 62/3δ(T ) for each term. This gives

T∑
t=1

I{∆(At)/3 ≤ (6)}∆(At) ≤ 1152
√

6 log2(4m)
∑
i,j∈[n]

δ(T )

(
1 + log

(
∆ij,max

∆ij,min

))
+ 12288 · 62/3

(
41/3 − 1

)−1
log2(4m)

∑
i,j∈[n]

δ(T )∆
−1/3
ij,min.
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The last term can be analyzed in the same way by first upper bounding it as

(7) ≤ 8mδ(T )

√∑
i∈At

1

N2
i,t−1

·

Then, taking αi = 1, βi,T = 24mδ(T ) in Theorem 4 gives

T∑
t=1

I{∆(At)/3 ≤ (7)}∆(At) ≤ 1152 log2(4
√
m)
∑
i∈[n]

mδ(T )

(
1 + log

(
∆i,max

∆i,min

))
.

This concludes step 1; notice that all subsequent steps will aim to bound the regret by a term in-
dependent of T , over a certain event. Thus, we can see that the bounds above are the actual con-
tributions to the rate of the regret. To show Theorem 2, we must therefore choose the regime for
∆ ≤ ∆i,min so that the first term prevails over the others. In other words, we want to have

n2
(

∆−1/3 ∨ (1 + log(∆max/∆))
)
≤ c log(m+ 1)

∑
i∈[n]

maxA∈A,i∈A
∑

j∈A 0 ∨ Σ∗ij
∆

,

where c is a constant. This gives exactly our condition in Theorem 2.

Step 2: If St,¬Ct hold Let σ2
i ,

∑
j∈A∗ 0 ∨ Σ∗ij for all arms i ∈ [n]. We fixe some δ ≥ e ·m,

and define the following events:

At ,

{∑
i∈A∗

I
{
µ∗i ≥ µi,t−1

}
Ni,t−1

(
µ∗i − µi,t−1

)2
4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) ≥ δ}

∀d ∈ (N∗)A
∗
, Bd,t ,

⋂
i∈A∗

{
edi−1 ≤ Ni,t−1 < edi

}
.

Notice that St,¬Ct implies At for δ = δ(t). Since each number of pulls Ni,t−1 for i ∈ A∗ is
bounded by t, the number of possible d ∈ (N∗)A

∗
such that P[Bd,t] > 0 is bounded by log(t)m.

Thanks to the following Lemma 3, and an union bound on those possible d ∈ (N∗)A
∗
, we get

P[At] ≤ em+1

(
(δ − 1) log(t)

m

)m
e−δ,

so the regret under this event is bounded by a universal constant, since the upper bound above is the
term of a convergent series for δ = δ(t). Indeed, it rewrites as

t−2em+1−em

2− log−1(t)

m︸ ︷︷ ︸
≤2/m

+ 2
log(log(t))

log(t)
+ e log−1(t)︸ ︷︷ ︸

≤2ee/2−1


m

,

that is bounded by

t−2e ·
(
e1−e · 2ee/2−1

)m
︸ ︷︷ ︸

≤1

(
e1−e/2

m
+ 1

)m
︸ ︷︷ ︸

≤ee1−e/2

.
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Lemma 3 (Covering-argument) Let d ∈ (N∗)A
∗
. Then, P[At ∩Bd,t] ≤

(
(δ−1)e
m

)m
e1−δ.

Proof We rely on a covering argument. The idea is to get rid of randomness by replacing the
empirical mean µi,t−1 by some non-random value xi. Let ζ ∈ RA∗+ . For i ∈ A∗, we define xi(N)

for N ∈ R+ as the unique solution x ∈ (−∞, µ∗i ] of the equation N (µ∗i−x)
2

4(σ2
i+|A∗|(µ∗i−x))

= ζi. Notice

that for all i ∈ A∗, xi is non-decreasing since x 7→ (µ∗i−x)
2

4(σ2
i+|A∗|(µ∗i−x))

is decreasing on (−∞, µ∗i ].
The event

⋂
i∈A∗

{
Ni,t−1

(
µ∗i − µi,t−1

)+2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) > ζi

}
implies ⋂

i∈A∗

{
µi,t−1 ≤ xi(Ni,t−1)

}
.

Under the event Bd,t, this implies ⋂
i∈A∗

{
µi,t−1 ≤ xi(edi)

}
. (8)

With εi , µ∗i − xi(edi) and λi , εi
2(σ2

i+|A∗|εi)
, i ∈ A∗, this further implies:

e−1
∑
i∈A∗

ζi =
∑
i∈A∗

edi−1 ε2
i

4
(
σ2
i + |A∗|εi

) xi(e
di) > −∞,

≤
∑
i∈A∗

Ni,t−1
ε2
i

4
(
σ2
i + |A∗|εi

) Bd,t

=
∑
i∈A∗

Ni,t−1
ε2
i

2
(
σ2
i + |A∗|εi

) −∑
i∈A∗

Ni,t−1
ε2
i

4
(
σ2
i + |A∗|εi

)
≤
∑
i∈A∗

Ni,t−1
ε2
i

2
(
σ2
i + |A∗|εi

) −∑
i∈A∗

Ni,t−1σ
2
i

ε2
i

4
(
σ2
i + |A∗|εi

)2 σ2
i

σ2
i + |A∗|εi

≤ 1,

=
∑
i∈A∗

Ni,t−1λiεi −
∑
i∈A∗

Ni,t−1σ
2
i λ

2
i

≤
∑
i∈A∗

Ni,t−1λi
(
µ∗i − µi,t−1

)
−
∑
i∈A∗

Ni,t−1σ
2
i λ

2
i using (8),

=
∑

u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− (λ� eAu∩A∗)
TD(λ� eAu∩A∗)

)
,
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where D is the diagonal matrix with Dii = σ2
i for all i ∈ [n]. For all u ∈ [t − 1], since λ ≥ 0, we

can write the following axis-realignment inequality

(λ� eAu∩A∗)
TΣ∗(λ� eAu∩A∗) =

∑
i∈Au∩A∗

∑
j∈Au∩A∗

Σ∗ijλiλj

≤
∑

i∈Au∩A∗

∑
j∈Au∩A∗

0 ∨ Σ∗ij
2

(
λ2
i + λ2

j

)

=
∑

i∈Au∩A∗

 ∑
j∈Au∩A∗

0 ∨ Σ∗ij

λ2
i

≤ (λ� eAu∩A∗)
TD(λ� eAu∩A∗).

Thus, we have

e−1
∑
i∈A∗

ζi ≤
∑

u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− (λ� eAu∩A∗)
TΣ∗(λ� eAu∩A∗)

)
≤

∑
u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− logE
[
e(λ�eAu∩A∗)

T
(X−µ∗)

])
,

where the last inequality uses Assumption 2 and ‖λ� eAu∩A∗‖1 ≤ 1/2. Now, notice that

E

exp

 ∑
u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− logE
[
e(λ�eAu∩A∗)

T
(X−µ∗)

])
equals

E

 ∏
u∈[t−1]

e(λ�eAu∩A∗)
T

(µ∗−Xu)

E
[
e(λ�eAu∩A∗)

T
(X−µ∗)

]
 =

∏
u∈[t−1]

E

 e(λ�eAu∩A∗)
T

(µ∗−Xu)

E
[
e(λ�eAu∩A∗)

T
(X−µ∗)

]


= 1,

so from Markov inequality, we get the following bound:

P

 ∑
u∈[t−1]

(
(λ� eAu∩A∗)

T(µ∗ −Xu)− logE
[
e(λ�eAu∩A∗)

T
(X−µ∗)

])
≥ e−1

∑
i∈A∗

ζi

 ≤ e−∑
i∈A∗ ζie

−1
,

thus, we showed that

P

[
Bd,t ∩

⋂
i∈A∗

{
Ni,t−1

(
µ∗i − µi,t−1

)+2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) > ζi

}]
≤ e−

∑
i∈A∗ ζie

−1
,

i.e.

P

[ ⋂
i∈A∗

{
I{Bd,t}Ni,t−1

(
µ∗i − µi,t−1

)+2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) > ζi

}]
≤ e−

∑
i∈A∗ ζie

−1
,
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By Lemma 8 of Magureanu et al. (2014), since δ ≥ em, we have

P[Bd,t ∩ At] = P

[
Bd,t ∩

{∑
i∈A∗

Ni,t−1

(
µ∗i − µi,t−1

)+2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) ≥ δ}]

= P

[∑
i∈A∗

I{Bd,t}Ni,t−1

(
µ∗i − µi,t−1

)+2

4
(
σ2
i + |A∗|

(
µ∗i − µi,t−1

)) ≥ δ]

≤
(

(δ − 1)e

m

)m
e1−δ.

Step 3: If ¬Dt hold The regret under this event can be bounded by 8nm2∆max/∆
2 using exactly

the same method as Lemma 2 of Degenne and Perchet (2016).

Step 4: If ¬St hold From Proposition 2, the regret under this event is bounded by a universal
constant.

Putting it all together Finally, we have shown that there exists two universal constant c, c′ sat-
isfying the following (we display the scaled back (by κ) version of the regret bound to get the
dependence into κ)

RT ≤ ∆max

(
n(n− 1)

2
+

8nm2

∆2
+ c

)
+ c′ log(m+ 1)δ(T )

[
log(m+ 1)

∑
i∈[n]

maxA∈A,i∈A
∑

j∈A 0 ∨ Σ∗ij
∆i,min

+
∑
i,j∈[n]

κ

(
1 + log

(
∆ij,max

∆ij,min

))

+
∑
i∈[n]

mκ

(
1 + log

(
∆i,max

∆i,min

))

+
∑
i,j∈[n]

κ4/3

∆
1/3
ij,min

]
. (9)

Appendix F. The bound of Corollary 1

The corollary is obtained in the same way as Theorem 2. We can underline the difference that we
don’t have to construct n2 covariance estimates, but only n (only the ν∗i ’s). On the other hand,
as the estimation uses sub-Gaussian variables, we don’t use sub-exponential concentration, which
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removes one term from the previous result. The obtained bound is

RT ≤ ∆max

(
n+

8nm2

∆2
+ c

)
+ c′ log(m+ 1)δ(T )

[
log(m+ 1)

∑
i∈[n]

ν∗i (s ∧m)

∆i,min

+
∑
i∈[n]

m

(
1 + log

(
∆i,max

∆i,min

))

+
∑
i∈[n]

(s ∧m)2/3

∆
1/3
i,min

]
, (10)

where c and c′ are two constants. Notice that to make the first term dominates the others, we must
have

n(s ∧m)2/3/∆1/3 ∨ (nm(1 + log(∆max/∆))) ≤ c log(m+ 1)
∑
i∈[n]

ν∗i (s ∧m)

∆
,

for some constant c, which gives our condition in Corollary 1.

Appendix G. Proof of Theorem 3

Proof Consider A containing n/m disjoint actions A1, . . . , An/m composed of m arms. X is
constructed as follows: (1 ∨ s/m) different actions are randomly chosen among A, with equal
probability, except the one for action A1, that have an offset of δ. From

(1 ∨ s/m) = E

[∑
A∈A

I{A is chosen}

]
= (n/m− 1)(P[A1 is chosen]− δ) + P[A1 is chosen],

we have P[A1 is chosen] = (1 ∨ s/m)m/n + δ(1−m/n). We pose Xi = 1 for i spanning the
(s ∧ m) first arm of each chosen action (the other components are set to 0). Remark that X is
s−sparse with this construction.

This problem reduces to a standard bandit problem with n/m Bernoulli arms. However, we
have an additional piece of information, namely that the sum of the means is s. Thus, we can’t
apply the lower bound from Lai and Robbins (1985), since the distribution family has not a product
form (changing the mean of one arm, we have to make sure that the sum of the means doesn’t
change, so we have to change at least another mean). Instead, we use the lower bound result from
Graves and Lai (1997), where we can increase the mean of one arm i while decreasing the mean of
the others. Scaling the regret by (s ∧m)−1, we want to upper bound

KL
(
P 1

(s∧m)

∑
i∈Ak

Xi
‖P 1

(s∧m)

∑
i∈A1

Xi

)
= kl

((m
n
∨ s
n

)
− δm

n
,
(m
n
∨ s
n

)
+ δ
(

1− m

n

))
,

which corresponds to an arm i that becomes a best arm for the new distribution. We also want to
upper bound

kl

((m
n
∨ s
n

)
− δm

n
− δ

n
m − 2

,
(m
n
∨ s
n

)
− δm

n

)
,
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which corresponds to the decrease of the mean of each sub-optimal arm k different from i (so that
the sum of the mean remain constant). We are going to use the inequality kl(x, y) ≤ (x−y)2

y(1−y) for all
x, y ∈ (0, 1). Since ms

2(n−m) ≥ ∆ = (s ∧m)δ, we have δmn ≤ δ(1−
m
n ) ≤

(
m
n ∨

s
n

)
/2 ≤ 1/4, and

thus ((m
n
∨ s
n

)
− δm

n

)(
1−

(m
n
∨ s
n

)
+ δ

m

n

)
≥
(m
n
∨ s
n

)
/4,((m

n
∨ s
n

)
+ δ
(

1− m

n

))(
1−

(m
n
∨ s
n

)
− δ
(

1− m

n

))
≥
(m
n
∨ s
n

)
/4.

Thus, we get the upper bounds

kl
((m

n
∨ s
n

)
− δm

n
,
(m
n
∨ s
n

)
+ δ
(

1− m

n

))
≤ 4δ2(

m
n ∨

s
n

) (11)

kl

((m
n
∨ s
n

)
− δm

n
− δ

n
m − 2

,
(m
n
∨ s
n

)
− δm

n

)
≤ 4δ2(

n
m − 2

)2(m
n ∨

s
n

) · (12)

From Graves and Lai (1997), we have the lower bound

lim inf
T→∞

RT
log(T )

≥ (s ∧m) inf
c

n/m∑
k=2

δck,

where the above infimum is over all c2, . . . , cn/m in R+ such that for all i ∈ {2, . . . , n/m},

cikl
((m
n
∨ s
n

)
−δm

n
,
(m
n
∨ s
n

)
+δ
(

1−m
n

))
+

n/m∑
k=2,k 6=i

ckkl

((m
n
∨ s
n

)
−δm

n
− δ

n
m−2

,
(m
n
∨ s
n

)
−δm

n

)
≥ 1.

Using the bounds (11) and (12), we can relax the above constraint as

∀i ∈ {2, . . . , n/m}, ci
4δ2(

m
n ∨

s
n

) +

n/m∑
k=2,k 6=i

ck
4δ2(

n
m − 2

)2(m
n ∨

s
n

) ≥ 1.

By symmetry of the constraint with respect to ci, and by linearity of the objective, there is a maxi-
mizer c that satisfies c1 = · · · = cn/m = c, with

4cδ2

(
1(

m
n ∨

s
n

) +
1(

n
m − 2

)(
m
n ∨

s
n

)) = 1.

Thus, since ∆ = (s ∧m)δ, we get

lim inf
T→∞

RT
log(T )

≥ s(s ∧m)(1− 2m/n)

4∆
·

Notice that we recover the full information case (with a lower bound that equals 0) when n/m = 2,
as expected.
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Appendix H. Proof of Lemma 1

Proof We use the fact that
∑

j∈A|Xj | ≤ (s ∧m). This gives∑
j∈A

0 ∨ Σ∗ij =
∑
j∈A

0 ∨ E
[
XiXj − µ∗iµ∗j

]
≤
∑
j∈A

(
E[|XiXj |] +

∣∣µ∗iµ∗j ∣∣)

= E

|Xi|
∑
j∈A
|Xj |

+ |µ∗i |
∑
j∈A

∣∣µ∗j ∣∣
≤ 2E[|Xi|](s ∧m).

Appendix I. Confidence regions comparison

We give here the two algorithms CUCB-V and CUCB-KL, which, as we have seen, also matches the
lower bound given to the Theorem 3, in the specific regime where s ≥ m. Both the two algorithms
rely on the same optimization At = arg maxA∈A eT

Aµt, where the vector µt is defined for CUCB-V

as

∀i ∈ [n], µi,t , 1 ∧

µi,t−1 +

√
2ζσ2

i,t−1 log(t)

Ni,t−1
+

3ζ log(t)

Ni,t−1

,
where

σ2
i,t−1 ,

∑
t′∈[t−1] I{i = it′}

(
Xi,t′ − µi,t−1

)2
Ni,t−1

,

and for CUCB-KL as

∀i ∈ [n], µi,t is the unique solution x to Ni,t−1kl
(
µi,t−1, x

)
= ζ log(t) such that x ∈ [µi,t−1, 1].

We take ζ = 1.2 (although all ζ > 1 are valid). The algorithms above can also be seen as a bilinear
maximization where µt is maximized over a confidence region that is a Cartesian product one 1-
demendional confidence intervals. We illustrate in Figure 3 the difference between the confidence
region considered in ESCB-C (when the correlation is low) and CUCB-KL. The red points represent
µt for each region. It can be seen that the Cartesian product confidence region greatly overestimates
the risk in directions that are not close to the axes, giving rise to over-exploration. It is important
to note however that this price to pay can be interesting in practice, because the corresponding
algorithms are then very efficient (LP over A, supposed possible5). As we noted in Remark 1,
considering the intersection between the two confidence regions gives rise to an even tighter region,
and therefore a better regret bound.

5. Otherwise an approximation regret would be a more appropriate performance measure to consider.
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e1

e2 e{1,2}

µt−1

•

•

•

Figure 3: Confidence regions build by ESCB-C (the pseudo-ellipse), and CUCB-KL (the rectangle),
for ‖·‖1 constrained outcomes. Notice that CUCB-KL has slightly better confidence inter-
vals along the axis, but that ESCB-C is better in the direction e{1,2}.

Appendix J. Implementation using the Lovász extension

From the step 1 of the proof of Theorem 2, we have that

eT
Atµt ≤ eT

Atµt−1 + 2

√√√√δ(t)
∑
i∈At

∑
j∈At 0 ∨ Σij,t

Ni,t−1
+ 4mδ(T )

√∑
i∈At

1

N2
i,t−1

·

Since the final bound of Theorem 2 relies on the above upper bound, in Algorithm 1, instead of
maximizing A 7→ maxµ∈Ct(A) eT

Aµ, we can maximize

A 7→ eT
Aµt−1 + 2

√√√√δ(t)
∑
i∈A

∑
j∈A 0 ∨ Σij,t

Ni,t−1
+ 4mδ(T )

√∑
i∈A

1

N2
i,t−1

·

Our goal here is to provide a continuous extension of the above set function that is concave on [0, 1]n,
and thus efficient to maximize. The linear term trivially extends to the linear function x 7→ xTµt−1.
The last two term can be extended relying on the Lovász extension (Lovász, 1983). We recall that
the Lovász extension of a set function f is defined as fL(x) , E[f({i ∈ [n], xi ≥ U})], where the
expectation is over U ∼ U [0, 1]. The Lovász extension is concave if and only if f is a supermodular
function (Lovász, 1983), i.e.,

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) ∀A,B ⊂ [n].

It is easy to check that a function G : A 7→
∑

i∈A
∑

j∈A aij is supermodular for aij ≥ 0, so its
Lovász extension is concave. Composing by the square root, we thus have a concave extension of
the second and last term.

After the maximization of the extension, a continuous maximizer xt is returned, and the agent
plays At = {i ∈ [n], xi,t ≥ U} where U ∼ U [0, 1]. The analysis holds the same, except in Propo-
sition 3, where counters are updated only for the chosen set. Let σt be a permutation such that
xσt(1),t ≥ . . . ,≥ xσt(n),t. Then, the set Sj = {σt(1), . . . , σt(j)} is chosen with probability
pj,t = xσt(j) − xσt(j+1) (with the convention xσt(n+1) = 0). The continuous extension evaluated at
xt is of the form ∑

j

pj,te
T
Sjµt−1 +

√∑
j

pj,tG1(Sj) +

√∑
j

pj,tG2(Sj),
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where G1 and G2 are the supermodular functions corresponding to the second and last term respec-
tively. Since the probabilities pj,t are inside the square root, applying the Probabilistically triggered

arms setting of Wang and Chen (2017a) gives an extra factor of 1 + log
(
m log(T )

∆2

)
.

Appendix K. General stochastic combinatorial semi-bandits results

Theorem 4 (Regret bound for `2-norm error) Let I be a set of index. For all i ∈ I , let (αi, βi,T ) ∈
[1/2, 1) × R+. Let It be a subset of I such that for all i ∈ It, Ni,t = Ni,t−1 + 1. We pose
∆t , ∆(At). For t ≥ 1, consider the event

At ,

∆t ≤

∥∥∥∥∥∑
i∈It

βαii,Tei

Nαi
i,t−1

∥∥∥∥∥
2

.
Then,

T∑
t=1

I{At}∆t ≤ 4 log2(4
√
m)
∑
i∈I

βi,T ηi,

where

ηi ,


8 log2(4

√
m)∆−1

i,min if αi = 1/2((
2
− 1
αi − 2−2

)
(1− αi)∆

1−αi
αi

i,min

)−1

if 1/2 < αi < 1

4
(

1 + log
(

∆i,max

∆i,min

))
if αi = 1.

Proof Let t ≥ 1. We define Λt ,
∥∥∥∑i∈It β

αi
i,TN

−αi
i,t−1ei

∥∥∥
2
. We start by a simple lower bound on Λt,

holding for any j ∈ It,

Λt ≥

∥∥∥∥∥β
αj
j,Tej

N
αj
j,t

∥∥∥∥∥
2

=
β
αj
j,T

N
αj
j,t

. (13)

We then use the same reverse amortisation technique than in Wang and Chen (2017b).

Λt = −Λt +

∥∥∥∥∥∑
i∈It

2βαii,Tei

Nαi
i,t−1

∥∥∥∥∥
2

= −
∥∥∥∥ ΛteIt
‖eIt‖2

∥∥∥∥
2

+

∥∥∥∥∥∑
i∈It

2βαii,Tei

Nαi
i,t−1

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i∈It

(
2βαii,T
Nαi
i,t−1

− Λt
‖eIt‖2

)+

ei

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈It

(
2βαii,T
Nαi
i,t−1

− Λt
‖eIt‖2

)+

I

{
Λt ≥

βαii,T
Nαi
i,t−1

}
ei

∥∥∥∥∥
2

Using (13)

≤

∥∥∥∥∥∑
i∈It

I

{
2Λt ≥

2βαii,T
Nαi
i,t−1

≥ Λt
‖eIt‖2

}
2βαii,Tei

Nαi
i,t−1

∥∥∥∥∥
2

.
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We now decompose the interval [2, 1/‖eIt‖2] using a peeling:

[2, 1/‖eIt‖2] ⊂
dlog2(‖eIt‖2)e⋃

k=0

[21−k, 2−k].

This induces a partition of the set of indices:

I

{
i ∈ It, 2Λt ≥

2βαii,T
Nαi
i,t−1

≥ Λt
‖eIt‖2

}
⊂
dlog2(‖eIt‖2)e⋃

k=0

Jk,t,

where for all interger 1 ≤ k ≤ dlog2(‖eIt‖2)e,

Jk,t ,

{
i ∈ It, 21−kΛt ≥

2βαii,T
Nαi
i,t−1

≥ 2−kΛt

}
.

We can thus upper bound Λ2
t using this decomposition

Λ2
t ≤

∥∥∥∥∥∑
i∈It

I

{
2Λt ≥

2βαii,T
Nαi
i,t−1

≥ Λt
‖eIt‖2

}
2βαii,Tei

Nαi
i,t−1

∥∥∥∥∥
2

2

≤
dlog2(‖eIt‖2)e∑

k=0

∥∥∥∥∥∥
∑
i∈Jk,t

2βαii,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

2

≤
dlog2(‖eIt‖2)e∑

k=0

22−2kΛ2
t

∥∥eJk,t∥∥2

2
.

This last inequality implies that there must exist one integer kt such that |Jkt,t| =
∥∥∥eJkt,t∥∥∥2

2
≥

22kt−2(1 + dlog2(‖eIt‖2)e)−1. We now upper bound
∑T

t=1 I{At}∆t, using |It| ≤ m, i.e.,

dlog2(‖eIt‖2)e ≤ dlog2(m)/2e.

T∑
t=1

I{At}∆t ≤
T∑
t=1

dlog2(m)/2e∑
k=0

I{kt = k, At}∆t

≤
T∑
t=1

dlog2(m)/2e∑
k=0

I{kt = k, At}
∑
i∈I

I{i ∈ Jk,t}∆t2
2−2k(dlog2(m)/2e+ 1)

≤
T∑
t=1

dlog2(m)/2e∑
k=0

∑
i∈I

I

{
i ∈ It, Nαi

i,t−1 ≤
2k+1βαii,T

∆t

}
∆t2

2−2k(dlog2(m)/2e+ 1)

= (dlog2(m)/2e+ 1)

dlog2(m)/2e∑
k=0

22−2k
∑
i∈I

T∑
t=1

I

{
i ∈ It, Nαi

i,t−1 ≤
2k+1βαii,T

∆t

}
∆t︸ ︷︷ ︸

(14)i,k

.
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Applying Proposition 3 gives

(14)i,k ≤ I{αi < 1}
βi,T 2

k+1
αi

1− αi
∆

1−1/αi
i,min + I{αi = 1}2k+1βi,T

(
1 + log

(
∆i,max

∆i,min

))
.

So we get, using dlog2(m)/2e+ 1 ≤ log2(4
√
m),

T∑
t=1

I{At}∆t ≤ 4 log2(4
√
m)
∑
i∈I

βi,T ηi,

with ηi =


8 log2(4

√
m)∆−1

i,min if αi = 1/2((
2
− 1
αi − 2−2

)
(1− αi)∆

1−αi
αi

i,min

)−1

if 1/2 < αi < 1

4
(

1 + log
(

∆i,max

∆i,min

))
if αi = 1.

Proposition 3 Let i ∈ I and fi : R+ → R+ be a non increasing function, integrable on [∆i,min,∆i,max].
Then

T∑
t=1

I{i ∈ It, Ni,t−1 ≤ fi(∆t)}∆t ≤ fi(∆i,min)∆i,min +

∫ ∆i,max

∆i,min

fi(x)dx.

In particular,

• If fi(x) = βi,Tx
−1/αi , αi ∈ (0, 1) and βi,T ≥ 0, then

T∑
t=1

I{i ∈ It, Ni,t−1 ≤ fi(∆t)}∆t ≤ ∆
1−1/αi
i,min

βi,T
1− αi

−∆
1−1/αi
i,max

αiβi,T
1− αi

≤ ∆
1−1/αi
i,min

βi,T
1− αi

.

• If fi(x) = βi,Tx
−1, βi,T ≥ 0, then

T∑
t=1

I{i ∈ It, Ni,t−1 ≤ fi(∆t)}∆t ≤ βi,T
(

1 + log

(
∆i,max

∆i,min

))
.

Proof Consider ∆i,max = ∆i,1 ≥ ∆i,2 ≥ · · · ≥ ∆i,Ki = ∆i,min being all possible values for ∆t

when i ∈ It. We define a dummy gap ∆i,0 = ∞ and let fi(∆i,0) = 0. In (15), we first break the
range (0, fi(∆t)] of the counter Ni,t−1 into sub intervals:

(0, fi(∆t)] = (fi(∆i,0), fi(∆i,1)] ∪ · · · ∪ (fi(∆i,kt−1), fi(∆i,kt)],
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where kt is the index such that ∆i,kt = ∆t. This index kt exists by assumption that the subdivision
contains all possible values for ∆t when i ∈ It. Notice that in (15), we do not explicitly use kt,
but instead sum over all k ∈ [Ki] and filter against the event {∆i,k ≥ ∆t}, which is equivalent to
summing over k ∈ [kt].

T∑
t=1

I{i ∈ It, Ni,t−1 ≤ fi(∆t)}∆t

=
T∑
t=1

Ki∑
k=1

I{i ∈ It, fi(∆i,k−1) < Ni,t−1 ≤ fi(∆i,k),∆i,k ≥ ∆t}∆t. (15)

Over each event that Ni,t−1 belongs to the interval (fi(∆i,k−1), fi(∆i,k)], we upper bound the
suffered gap ∆t by ∆i,k.

(15) ≤
T∑
t=1

Ki∑
k=1

I{i ∈ It, fi(∆i,k−1) < Ni,t−1 ≤ fi(∆i,k),∆i,k ≥ ∆t}∆i,k. (16)

Then, we further upper bound the summation by adding events that Ni,t−1 belongs to the remaining
intervals (fi(∆i,k−1), fi(∆i,k)] for kt < k ≤ Ki, associating them to a suffered gap ∆i,k. This is
equivalent to removing the filtering against the event {∆i,k ≥ ∆t}.

(16) ≤
T∑
t=1

Ki∑
k=1

I{i ∈ It, fi(∆i,k−1) < Ni,t−1 ≤ fi(∆i,k)}∆i,k. (17)

Now, we invert the summation over t and the one over k.

(17) =

Ki∑
k=1

T∑
t=1

I{i ∈ It, fi(∆i,k−1) < Ni,t−1 ≤ fi(∆i,k)}∆i,k. (18)

For each k ∈ [Ki], the number of times t ∈ [T ] that the counterNi,t−1 belongs to (fi(∆i,k−1), fi(∆i,k)]
can be upper bounded by the number of integers in this interval. This is due to the event {i ∈ It},
imposing that Ni,t−1 is incremented, so Ni,t−1 cannot be worth the same integer for two different
times t satisfying i ∈ It. We use the fact that for all x, y ∈ R, x ≤ y, the number of integers in the
interval (x, y] is exactly byc − bxc.

(18) ≤
Ki∑
k=1

(bfi(∆i,k)c − bfi(∆i,k−1)c)∆i,k. (19)

We then simply expand the summation, and some terms are cancelled (remember that fi(∆i,0) = 0).

(19) = bfi(∆i,Ki)c∆i,Ki +

Ki−1∑
k=1

bfi(∆i,k)c(∆i,k −∆i,k+1) (20)
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We use bxc ≤ x for all x ∈ R. Finally, we recognize a right Riemann sum, and use the fact
that fi is non increasing to upper bound each fi(∆i,k)(∆i,k −∆i,k+1) by

∫ ∆i,k

∆i,k+1
fi(x)dx, for all

k ∈ [Ki − 1].

(20) ≤ fi(∆i,Ki)∆i,Ki +

Ki−1∑
k=1

fi(∆i,k)(∆i,k −∆i,k+1) (21)

≤ fi(∆i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

fi(x)dx. (22)
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