Efficient stochastic combinatorial bandits

Pierre Perrault

Michal Valko (INRIA Lille) — Vianney Perchet (CMLA, ENS Cachan)

May 21, 2019

Outline

(1) Multi-armed bandit
(2) Combinatorial multi-armed bandit

Multi-armed bandit

Multi-armed bandit

Multi-armed bandit

Round: 0
Cumulative reward: 0

Multi-armed bandit

Round: 1
Player
Cumulative reward : 2.4

Multi-armed bandit

Round: 2

Player

Cumulative reward : 2.8

Multi-armed bandit

Round: 3

Player

Cumulative reward : 5.1

Gain: 3.3

Multi-armed bandit

Round: 4
Player
Cumulative reward : 6.9

Multi-armed bandit

Rules with n arms, T rounds:
For each round $t \in[T]$:

- Play an arm $i_{t} \in[n]$
- Receive a reward $X_{i_{t}, t} \sim$ distribution of arm i_{t}, independently from previous rounds rewards.
Goal : maximize the expected cumulative reward :

$$
\mathbb{E} \sum_{t \in[T]} X_{i_{t}, t}
$$

or equivalently minimize the regret :

$$
R_{T} \triangleq T \mu^{*}-\sum_{t \in[T]} \mathbb{E} X_{i_{t}, t}
$$

with $\mu^{*} \triangleq \max _{i} \mu_{i}, \quad \mu_{i} \triangleq \mathbb{E} X_{i}$.

Upper confidence bound (UCB)

At each round t, play $i_{t}=\operatorname{argmax}_{i} \bar{\mu}_{i, t}+\sqrt{\frac{\log (t)}{T_{i}}}$.
Where $\mu_{i, t} \triangleq \frac{1}{T_{i}} \sum_{u \leq t, i_{u}=i} X_{i, t}$ and $T_{i} \triangleq \sum_{u \leq t, i_{u}=i} 1$.

Theorem (Auer et al 2002)
$R_{T}(U C B)=O\left(\frac{\log (T) n}{\Delta}\right)$ and $R_{T}(A)=\Omega\left(\frac{\log (T) n}{\Delta}\right) \forall A$,
with $\Delta \triangleq \min _{i, \mu^{*}-\mu_{i}>0} \mu^{*}-\mu_{i}$

Setting

$\mathcal{A} \subset \mathcal{P}([n])$.
At each round t, choose a set $A_{t} \in \mathcal{A}$.

- Observation : $\left\{X_{i, t}, i \in A_{t}\right\}$
- Reward: $\sum_{i \in A_{t}} X_{i, t}$

Regret:

$$
R_{T}=T \sum_{i \in A^{*}} \mu_{i}-\sum_{t \in[T]} \mathbb{E} \sum_{i \in A_{t}} X_{i, t} .
$$

Applications

- Online advertising
- Viral marketing - Influence maximization - Fake news propagation
- Recommender system
- Shortest path, rooting in a network

Algorithm CUCB

$A_{t+1}=\operatorname{argmax}_{A \in \mathcal{A}} \sum_{i \in A} \bar{\mu}_{i, t}+\sqrt{\frac{\log (t)}{T_{i}}}$.
Theorem (Kveton et al 2015)
$R_{T}(C \cup C B)=O\left(\frac{\log (T) m n}{\Delta}\right)$ and $R_{T}(A)=\Omega\left(\frac{\log (T) m n}{\Delta}\right) \forall A$.

- Algorithm is efficient (linear programming at each time step).

What happens if we assume that X_{i} are mutually independent?

For X_{i} mutually independent, the lower bound
$R_{T}(A)=\Omega\left(\frac{\log (T) m n}{\Delta}\right) \forall A$ is no more valid, and we have
$R_{T}(A)=\Omega\left(\frac{\log (\widehat{T}) n}{\Delta}\right) \forall A$
Theorem (Combes et al 2015)
ESCB: $\quad A_{t+1}=\operatorname{argmax}_{A \in \mathcal{A}} A^{\top} \bar{\mu}_{t}+\sqrt{\sum_{i \in A} \frac{\log (t)}{T_{i}}}, \quad R_{T}=O\left(\frac{\log (T) n}{\Delta}\right)$.
vs
CUCB: $\quad A_{t+1}=\operatorname{argmax}_{A \in \mathcal{A}} A^{\top} \bar{\mu}_{t}+\sum_{i \in A} \sqrt{\frac{\log (t)}{T_{i}}}, \quad R_{T}=O\left(\frac{\log (T) n m}{\Delta}\right)$.
) However, ESCB is not efficient...
Proposition
ESCB can be "approximated" efficiently when \mathcal{A} is a matroid.

Matroid

\mathcal{A} is a matroid if:

- $\emptyset \in \mathcal{A}$
- \mathcal{A} is closed under subset
- If $|A|<|B|$ with $A, B \in \mathcal{A}$, then there is $x \in B \backslash A$ s.t. $A \cup\{x\} \in \mathcal{A}$.

Approximation algorithm

$G^{*}=\max _{A \in \mathcal{A}} G(A)$
$G\left(A_{\text {approx }}\right) \geq \alpha G^{*}$, with some $\alpha \in[0,1]$

Example

Greedy algorithm is a (1-1/e)-approximation algorithm on matroid when F is submodular, i.e., if $G(A \cap B)+G(A \cup B) \leq G(A)+G(B)$.

Remark

- Greedy is efficient
- $G(A)=L(A)+F(A)=A^{\top} \bar{\mu}_{t}+\sqrt{\sum_{i \in A} \frac{\log (t)}{T_{i}}}$ is submodular.
\odot However, this approximation leads to linear regret upper bound, since ultimately, $F \rightarrow 0$, and the algorithm will not maximize L exactly.

Refined approximation

Theorem
$L\left(A_{\text {greedy }}\right)+2 F\left(A_{\text {greedy }}\right) \geq G^{*}$
This provide the same regret bound, up to a factor 2 .

Extensions:

- Local Search approximation algorithm
- Budgeted setting, i.e., actions are costly.

MERCI!

