Efficient stochastic combinatorial bandits

Pierre Perrault

Michal Valko (INRIA Lille) — Vianney Perchet (CMLA, ENS Cachan)

May 21, 2019

Combinatorial multi-armed bandit

Rules with n arms, T rounds: For each round $t \in [T]$:

- Play an arm $i_t \in [n]$
- Receive a reward X_{it,t} ~ distribution of arm i_t, independently from previous rounds rewards.
- Goal : maximize the expected cumulative reward :

$$\mathbb{E}\sum_{t\in[T]}X_{i_t,t}$$

or equivalently minimize the **regret** :

$$R_T \triangleq T\mu^* - \sum_{t \in [T]} \mathbb{E}X_{i_t, t}.$$

with $\mu^* \triangleq \max_i \mu_i, \quad \mu_i \triangleq \mathbb{E}X_i.$

Upper confidence bound (UCB)

At each round t, play $i_t = \operatorname{argmax}_i \bar{\mu}_{i,t} + \sqrt{\frac{\log(t)}{T_i}}$.

Where
$$\mu_{i,t} \triangleq \frac{1}{T_i} \sum_{u \leq t, i_u = i} X_{i,t}$$
 and $T_i \triangleq \sum_{u \leq t, i_u = i} 1$.

Theorem (Auer et al 2002)

$$R_T(UCB) = O(\frac{\log(T)n}{\Delta})$$
 and $R_T(A) = \Omega(\frac{\log(T)n}{\Delta}) \ \forall A,$

with
$$\Delta \triangleq \min_{i,\mu^*-\mu_i>0} \mu^* - \mu_i$$

Setting

 $\mathcal{A} \subset \mathcal{P}([n]).$

At each round *t*, choose a set $A_t \in A$.

• Observation :
$$\{X_{i,t}, i \in A_t\}$$

• Reward :
$$\sum_{i \in A_t} X_{i,t}$$

Regret:

$$R_T = T \sum_{i \in A^*} \mu_i - \sum_{t \in [T]} \mathbb{E} \sum_{i \in A_t} X_{i,t}.$$

Applications

- Online advertising
- Viral marketing Influence maximization Fake news propagation
- Recommender system
- Shortest path, rooting in a network

Algorithm CUCB

$$A_{t+1} = \operatorname{argmax}_{A \in \mathcal{A}} \sum_{i \in A} \bar{\mu}_{i,t} + \sqrt{\frac{\log(t)}{T_i}}.$$

Theorem (Kveton et al 2015)

$$R_T(CUCB) = O(\frac{\log(T)mn}{\Delta})$$
 and $R_T(A) = \Omega(\frac{\log(T)mn}{\Delta}) \forall A.$

• Algorithm is efficient (linear programming at each time step). What happens if we assume that *X_i* are mutually independent ?

For X_i mutually independent, the lower bound $R_T(A) = \Omega(\frac{\log(T)mn}{\Delta}) \forall A \text{ is no more valid, and we have}$ $R_T(A) = \Omega(\frac{\log(T)n}{\Delta}) \forall A$

Theorem (Combes et al 2015)

ESCB:
$$A_{t+1} = \operatorname{argmax}_{A \in \mathcal{A}} A^{\top} \bar{\mu}_t + \sqrt{\sum_{i \in A} \frac{\log(t)}{T_i}}, \quad R_T = O(\frac{\log(T)n}{\Delta}).$$

vs

CUCB:
$$A_{t+1} = \operatorname{argmax}_{A \in \mathcal{A}} A^{\top} \bar{\mu}_t + \sum_{i \in A} \sqrt{\frac{\log(t)}{T_i}}, \quad R_T = O(\frac{\log(T)nm}{\Delta}).$$

However, ESCB is not efficient...

Proposition

ESCB can be "approximated" efficiently when A is a matroid.

Matroid

- \mathcal{A} is a matroid if:
 - $\emptyset \in \mathcal{A}$
 - A is closed under subset
 - If |A| < |B| with $A, B \in A$, then there is $x \in B \setminus A$ s.t. $A \cup \{x\} \in A$.

Approximation algorithm

$$\begin{split} G^* &= \max_{A \in \mathcal{A}} G(A) \\ G(A_{approx}) \geq \alpha G^* \text{, with some } \alpha \in [0,1] \end{split}$$

Example

Greedy algorithm is a (1 - 1/e)-approximation algorithm on matroid when F is submodular, i.e., if $G(A \cap B) + G(A \cup B) \leq G(A) + G(B)$.

Remark

• Greedy is efficient
•
$$G(A) = L(A) + F(A) = A^{\top} \bar{\mu}_t + \sqrt{\sum_{i \in A} \frac{\log(t)}{T_i}}$$
 is submodular

However, this approximation leads to linear regret upper bound, since ultimately, $F \to 0$, and the algorithm will not maximize L exactly.

Refined approximation

Theorem $L(A_{areedy}) + 2F(A_{areedy}) \ge G^*$

This provide the same regret bound, up to a factor 2.

Extensions:

- Local Search approximation algorithm
- Budgeted setting, i.e., actions are costly.

MERCI !