
Gergely Neu
INRIA, SequeL team

joint work with Michal Valko, to appear at NIPS 2014





























Parameters: set of 𝑁 experts
In each round 𝑡 = 1,2, … , 𝑇
• Environment chooses losses ℓ𝑡,𝑖 ∈ [0,1] for 

all experts
• Environment chooses the set of available 

experts 𝑆𝑡 ∈ {1,2, … ,𝑁}
• Learner picks distribution 𝐩𝑡 on available 

experts
• Learner suffers loss 𝐩𝑡

⊤𝐥𝑡



 Usual notion of regret:

𝑅𝑇 =  

𝑡=1

𝑇

𝐩𝑡
⊤𝐥𝑡 − min

𝑖∈ 1,…,𝑁
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ℓ𝑡,𝑖
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This comparator is 
pointless!
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 We should actually compete with policies of 

the form 𝜋: 2 𝑁 → 𝑁 such that 𝜋 𝑆 ∈ 𝑆!

This comparator is 
pointless!



 Regret against policy class Π:

𝑅𝑇 =  

𝑡=1
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 A more realistic assumption:

Observe ℓ𝑡,𝑖 only for 𝑖 ∈
𝑆𝑡 ⊆ 𝑁



Initialization:  let 𝐿𝑡,𝑖 = 0 for all 𝑖 ∈ 𝑁
For all rounds 𝑡 = 1,2, … , 𝑇:
• Observe 𝑆𝑡 ⊆ 𝑁
• Draw perturbations 𝑍𝑡,𝑖 ∼ Exp 𝜂 for all 𝑖 ∈ 𝑆𝑡
• Play expert 

𝐼𝑡 = argmin
𝑖∈𝑆𝑡

𝐿𝑡−1,𝑖 − 𝑍𝑡,𝑖

• Observe feedback and set for all 𝑖 ∈ 𝑁
𝐿𝑡,𝑖 = 𝐿𝑡−1,𝑖 + ℓ𝑡,𝑖



Initialization:  let  𝐿𝑡,𝑖 = 0 for all 𝑖 ∈ 𝑁
For all rounds 𝑡 = 1,2, … , 𝑇:
• Observe 𝑆𝑡 ⊆ 𝑁
• Draw perturbations 𝑍𝑡,𝑖 ∼ Exp 𝜂 for all 𝑖 ∈ 𝑆𝑡
• Play expert 

𝐼𝑡 = argmin
𝑖∈𝑆𝑡

 𝐿𝑡−1,𝑖 − 𝑍𝑡,𝑖

• Observe feedback and set for all 𝑖 ∈ 𝑁
 𝐿𝑡,𝑖 =  𝐿𝑡−1,𝑖 +  ℓ𝑡,𝑖



 Assume IID availability:
𝑆𝑡 ∼ 𝑄 ∀𝑡 = 1,2, … , 𝑇

 Then we can set 𝑞𝑖 = 𝐏 𝑖 ∈ 𝑆𝑡 for all 𝑖 ∈ 𝑁
 Losses can be estimated as
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, if 𝑖 is observed

0, otherwise
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But the 𝑞𝑖’s are 
unknown!! 



Idea:
• Use 𝐾 samples to estimate 𝑄!
• Compute estimates of 𝑞𝑖!
• Obtain low-bias reward estimates!



Bad news:
• Regret becomes 𝑂 𝑇3/4

• Can fail horribly for large action sets

Idea:
• Use 𝐾 samples to estimate 𝑄!
• Compute estimates of 𝑞𝑖!
• Obtain low-bias reward estimates!
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Estimate losses as

 ℓ𝑡,𝑖 =  
ℓ𝑡,𝑖𝐾𝑡,𝑖 , if 𝑖 is observed

0, otherwise



Theorem 1
Assuming IID expert availability, the expected 

regret of FPL fed with loss estimates  ℓ𝑡,𝑖
satisfies

𝑅𝑇 = 𝑂 𝑇𝑁 log𝑁



 This is worse by a factor of 𝑁 than the bound of 
Kanade et al. (2009)…
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 …but we didn’t cheat!
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Theorem 1: 𝑅𝑇 = 𝑂 𝑇𝑁 log𝑁

Theorem 2
Assuming IID expert availability, no algorithm can 
achieve better regret than

𝑅𝑇 = Ω 𝑇𝑁



 Assume that 

 each expert 𝑖 ∈ 𝑁 is associated with a binary 
vector 𝐯 𝑖 ∈ 0,1 𝑑

 losses are described by a loss vector 𝐥𝑡 ∈ 0,1 𝑑

 loss of expert 𝑖 in round 𝑡 is given as 𝐯 𝑖 ⊤𝐥𝑡 ≤ 𝑚
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Theorem 3
Assuming IID expert availability, the expected 
regret of the combinatorial extension of FPL is

𝑅𝑇 = 𝑂 𝑚 𝑑𝑇 log 𝑑



 So far: assume we observe ℓ𝑡,𝑖 for all 𝑖 ∈ 𝑆𝑡
 Now: assume we only observe the loss ℓ𝑡,𝐼𝑡
 Using a simple extension of FPL, we prove
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Theorem 4
Assuming IID expert availability, the expected 
regret of the bandit extension of FPL satisfies

𝑅𝑇 = 𝑂 𝑇2/3
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Theorem 4
Assuming IID expert availability, the expected 
regret of the bandit extension of FPL satisfies

𝑅𝑇 = 𝑂 𝑇2/3

Best previous result was 𝑂 𝑇4/5









 Prove 𝑅𝑇 = 𝑂 𝑇 for sleeping bandits?

 Problem: knowing the 𝑞𝑖 ’s is not enough

 Extend results to more complicated 
availability assumptions:

 Markovian arms

 Mortal arms




