Better algorithms for sleeping experts & bandits

Gergely Neu
INRIA, SequeL team

joint work with Michal Valko, to appear at NIPS 2014
Prediction with expert advice
Prediction with sleeping experts
Parameters: set of N experts

In each round $t = 1, 2, \ldots, T$

- Environment chooses losses $\ell_{t,i} \in [0, 1]$ for all experts
- Environment chooses the set of available experts $S_t \in \{1, 2, \ldots, N\}$
- Learner picks distribution p_t on available experts
- Learner suffers loss $p_t^T l_t$
Usual notion of regret:

\[R_T = \sum_{t=1}^{T} p_t^T l_t - \min_{i \in \{1, \ldots, N\}} \sum_{t=1}^{T} \ell_{t,i} \]
Usual notion of regret:

\[R_T = \sum_{t=1}^{T} p_t^T l_t - \min_{i \in \{1, \ldots, N\}} \sum_{t=1}^{T} \ell_{t,i} \]

This comparator is pointless!
Usual notion of regret:

\[
R_T = \sum_{t=1}^{T} p_t^T l_t - \min_{i \in \{1, \ldots, N\}} \sum_{t=1}^{T} \ell_{t,i}
\]

We should actually compete with policies of the form \(\pi: 2^{[N]} \rightarrow N \) such that \(\pi(S) \in S \)!
Regret definition

Regret against policy class Π:

$$R_T = \sum_{t=1}^{T} p_t^T l_t - \min_{\pi \in \Pi} \sum_{t=1}^{T} \ell_{t,\pi(S_t)}$$
Previous results

<table>
<thead>
<tr>
<th></th>
<th>IID availability</th>
<th>Adversarial availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>IID losses</td>
<td>(that’s kind of trivial)</td>
<td>Kleinberg et al. (2008): $R_T = \Theta(\sqrt{T N \log N})$</td>
</tr>
<tr>
<td>Adversarial losses</td>
<td>Kanade et al. (2009): $R_T = O(\sqrt{T \log N})$</td>
<td>Kleinberg et al. (2008): $R_T = \Theta(N \sqrt{T \log N})$</td>
</tr>
</tbody>
</table>
Previous results

<table>
<thead>
<tr>
<th></th>
<th>IID availability</th>
<th>Adversarial availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>IID losses</td>
<td>(that’s kind of trivial)</td>
<td>Kleinberg et al. (2008): $R_T = \Theta(\sqrt{TN \log N})$</td>
</tr>
<tr>
<td>Adversarial losses</td>
<td>Kanade et al. (2009): $R_T = O(\sqrt{T \log N})$</td>
<td>Kleinberg et al. (2008): $R_T = \Omega(\sqrt{T \log N})$</td>
</tr>
</tbody>
</table>
Previous results

<table>
<thead>
<tr>
<th></th>
<th>IID availability</th>
<th>Adversarial availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>IID losses</td>
<td>(that’s kind of trivial)</td>
<td>Kleinberg et al. (2008): $R_T = \Theta(\sqrt{T N \log N})$</td>
</tr>
<tr>
<td>Adversarial losses</td>
<td>Kanade et al. (2009): $R_T = \Theta(\sqrt{T N \log N})$</td>
<td>Hard</td>
</tr>
</tbody>
</table>

Cheat
Where’s the cheat?
Where’s the cheat?
Kanade et al. assume that $\ell_{t,i}$ is observed for all $i \in [N]$!
Kanade et al. assume that $\ell_{t,i}$ is observed for all $i \in [N]$!

A more realistic assumption:

Observe $\ell_{t,i}$ only for $i \in S_t \subseteq [N]$
Algorithm: Follow the Perturbed Leader

Initialization: let $L_{t,i} = 0$ for all $i \in [N]$

For all rounds $t = 1, 2, \ldots, T$:

- Observe $S_t \subseteq [N]$
- Draw perturbations $Z_{t,i} \sim \text{Exp}(\eta)$ for all $i \in S_t$
- Play expert
 \[I_t = \arg \min_{i \in S_t} \left(L_{t-1,i} - Z_{t,i}\right) \]
- Observe feedback and set for all $i \in N$
 \[L_{t,i} = L_{t-1,i} + \ell_{t,i} \]
Algorithm: Follow the Perturbed Leader

Initialization: let $\hat{L}_{t,i} = 0$ for all $i \in [N]$

For all rounds $t = 1, 2, \ldots, T$:

• Observe $S_t \subseteq [N]$

• Draw perturbations $Z_{t,i} \sim \text{Exp}(\eta)$ for all $i \in S_t$

• Play expert

$$I_t = \arg \min_{i \in S_t} (\hat{L}_{t-1,i} - Z_{t,i})$$

• Observe feedback and set for all $i \in N$

$$\hat{L}_{t,i} = \hat{L}_{t-1,i} + \hat{\ell}_{t,i}$$
Loss estimation

- Assume IID availability:
 \[S_t \sim Q \quad \forall t = 1,2,\ldots,T \]
- Then we can set \(q_i = P[i \in S_t] \) for all \(i \in [N] \)
- Losses can be estimated as
 \[
 \hat{\ell}_{t,i} = \begin{cases}
 \frac{\ell_{t,i}}{q_i}, & \text{if } i \text{ is observed} \\
 0, & \text{otherwise}
 \end{cases}
 \]
Assume IID availability:

\[S_t \sim Q \quad \forall t = 1, 2, \ldots, T \]

Then we can set \(q_i = P[i \in S_t] \) for all \(i \in [N] \)

Losses can be estimated as

\[\hat{\ell}_{t,i} = \begin{cases} \frac{\ell_{t,i}}{q_i}, & \text{if } i \text{ is observed} \\ 0, & \text{otherwise} \end{cases} \]

Unbiased:

\[E[\hat{\ell}_{t,i}] = \ell_{t,i} \]
Loss estimation

- Assume IID availability:
 \[S_t \sim Q \quad \forall t = 1, 2, \ldots, T \]
- Then we can set \(q_i = P[i \in S_t] \) for all \(i \in [N] \)
- Losses can be estimated as
 \[\ell_{t,i} = \begin{cases} \frac{\ell_{t,i}}{q_i} & \text{if } i \text{ is observed} \\ 0 & \text{otherwise} \end{cases} \]

Unbiased:
\[E[\hat{\ell}_{t,i}] = \ell_{t,i} \]

But the \(q_i \)'s are unknown!!
Idea:
• Use K samples to estimate Q!
• Compute estimates of q_i!
• Obtain low-bias reward estimates!
Loss estimation – the bad way

Idea:
• Use K samples to estimate Q!
• Compute estimates of q_i!
• Obtain low-bias reward estimates!

Bad news:
• Regret becomes $O(T^{3/4})$
• Can fail horribly for large action sets
Loss estimation – the right way

- Observe that the downtime is a geometric RV!
Loss estimation – the right way

- Observe that the downtime is a geometric RV!

\[t \]

Arm \(i \)
Observe that the downtime is a geometric RV!

Arm i

t $t + 1$
Observe that the downtime is a geometric RV!

Arm i

t $t+1$ $t+2$
Observe that the downtime is a geometric RV!

\[t \quad t + 1 \quad t + 2 \quad \ldots \quad t + K \]
Observe that the downtime is a geometric RV!

\[K_{t,i} \]

Arm \(i \)

\[t \quad t + 1 \quad t + 2 \quad t + K \]
Loss estimation – the right way

- Observe that the downtime is a geometric RV!

\[t \quad t + 1 \quad t + 2 \quad t + K \]

Arm \(i \)

\[E_t[K_{t,i}] = \frac{1}{q_i} \]
Observe that the downtime is a geometric RV!

Arm i

Estimate losses as

$$\hat{\ell}_{t,i} = \begin{cases}
\ell_{t,i}K_{t,i}, & \text{if } i \text{ is observed} \\
0, & \text{otherwise}
\end{cases}$$

$$E_t[K_{t,i}] = \frac{1}{q_i}$$
Theorem 1
Assuming IID expert availability, the expected regret of FPL fed with loss estimates \(\{\hat{\ell}_{t,i}\} \) satisfies

\[
R_T = O\left(\sqrt{TN \log N}\right)
\]
Main result

Theorem 1
Assuming IID expert availability, the expected regret of FPL fed with loss estimates \(\{\hat{\ell}_{t,i}\} \) satisfies

\[
R_T = O(\sqrt{TN \log N})
\]

- This is worse by a factor of \(\sqrt{N} \) than the bound of Kanade et al. (2009)…
Main result

Theorem 1
Assuming IID expert availability, the expected regret of FPL fed with loss estimates $\{\hat{l}_{t,i}\}$ satisfies

$$R_T = O\left(\sqrt{TN \log N}\right)$$

- This is worse by a factor of \sqrt{N} than the bound of Kanade et al. (2009)...
- ...but we didn’t cheat!
Theorem 1: $R_T = O(\sqrt{TN \log N})$

Theorem 2
Assuming IID expert availability, no algorithm can achieve better regret than

$$R_T = \Omega(\sqrt{TN})$$
Assume that

- each expert \(i \in [N] \) is associated with a binary vector \(\mathbf{v}(i) \in \{0,1\}^d \)
- losses are described by a loss vector \(\mathbf{l}_t \in [0,1]^d \)
- loss of expert \(i \) in round \(t \) is given as \(\mathbf{v}(i)^\top \mathbf{l}_t \leq m \)
Extensions: large action spaces

Assume that
- each expert $i \in [N]$ is associated with a binary vector $\mathbf{v}(i) \in \{0,1\}^d$
- losses are described by a loss vector $\mathbf{l}_t \in [0,1]^d$
- loss of expert i in round t is given as $\mathbf{v}(i) \mathbf{l}_t \leq m$

Theorem 3
Assuming IID expert availability, the expected regret of the combinatorial extension of FPL is

$$R_T = O(m\sqrt{dT \log d})$$
So far: assume we observe $\ell_{t,i}$ for all $i \in S_t$

Now: assume we only observe the loss ℓ_{t,I_t}

Using a simple extension of FPL, we prove
So far: assume we observe $\ell_{t,i}$ for all $i \in S_t$

Now: assume we only observe the loss ℓ_{t,I_t}

Using a simple extension of FPL, we prove

Theorem 4
Assuming IID expert availability, the expected regret of the bandit extension of FPL satisfies

$$R_T = O(T^{2/3})$$
So far: assume we observe \(\ell_{t,i} \) for all \(i \in S_t \)

Now: assume we only observe the loss \(\ell_{t,I_t} \)

Using a simple extension of FPL, we prove

Theorem 4
Assuming IID expert availability, the expected regret of the bandit extension of FPL satisfies

\[R_T = O(T^{2/3}) \]

Best previous result was \(O(T^{4/5}) \)
Experiments

sleeping bandits, 5 arms, varying availability, average over 20 runs

- BSFPL
- SleepingCat
- RandomGuess

Cumulative regret at time $T = 10000$ as a function of availability.
Experiments

sleeping semi-bandits, shortest path, 3 x 3 grid, average over 20 runs

- CombinatorialBSFPL
- CombinatorialSleepingCat
- CombinatorialRandomGuess

regret per step vs time t
Experiments

Sleeping semi-bandits, shortest path, 10 x 10 grid, average over 20 runs

- CombinatorialBSFPL
- CombinatorialSleepingCat
- CombinatorialRandomGuess

Regret per step

Time t
Future work

- Prove $R_T = O\left(\sqrt{T}\right)$ for sleeping bandits?
 - Problem: knowing the q_i’s is not enough
- Extend results to more complicated availability assumptions:
 - Markovian arms
 - Mortal arms
Thanks!