Better algorithms for sleeping experts & bandits

Gergely Neu INRIA, SequeL team

joint work with Michal Valko, to appear at NIPS 2014

More formally...

Parameters: set of N experts In each round t = 1, 2, ..., T

- Environment chooses losses $\ell_{t,i} \in [0,1]$ for all experts
- Environment chooses the set of available experts $S_t \in \{1, 2, ..., N\}$
- Learner picks distribution \mathbf{p}_t on available experts
- Learner suffers loss $\mathbf{p}_t^{\mathsf{T}} \mathbf{l}_t$

• Usual notion of regret: $R_T = \sum_{t=1}^{T} \mathbf{p}_t^{\mathsf{T}} \mathbf{l}_t - \min_{i \in \{1, \dots, N\}} \sum_{t=1}^{T} \ell_{t,i}$

• We should actually compete with policies of the form $\pi: 2^{[N]} \to N$ such that $\pi(S) \in S!$

• Regret against policy class Π : $R_T = \sum_{t=1}^{T} \mathbf{p}_t^{\mathsf{T}} \mathbf{l}_t - \min_{\pi \in \Pi} \sum_{t=1}^{T} \ell_{t,\pi(S_t)}$

Previous results

	IID availability	Adversarial availability
IID losses	(that's kind of trivial)	Kleinberg et al. (2008): $R_T = \Theta(\sqrt{TN \log N})$
Adversarial losses	Kanade et al. (2009): $R_T = O(\sqrt{T \log N})$	Kleinberg et al. (2008): $R_T = \Theta \left(N \sqrt{T \log N} \right)$

Previous results

	IID availability	Adversarial availability
IID losses	(that's kind of trivial)	Kleinberg et al. (2008): $R_T = \Theta(\sqrt{TN \log N})$
Adversarial losses	Kanade et al. (2009): $R_T = O(\sqrt{T \log N})$	Kleinberg et al. (2)(8): $P(V/N \log N)$

Previous results

	IID availability	Adversarial availability
IID losses	(that's kind of trivial)	Kleinberg et al. (2008): $R_T = \Theta(\sqrt{TN \log N})$
Adversarial losses	Kanade et al. (2009): $R_T = O(\sqrt{T/4}gN)$	Kleinberg et al. (2)(8): $P(V, \overline{X} \log N)$

Where's the cheat?

Where's the cheat?

The cheat – now formally

 Kanade et al. assume that ℓ_{t,i} is observed for all i ∈ [N]!

The cheat – now formally

- Kanade et al. assume that l_{t,i} is observed for all i ∈ [N]!
- A more realistic assumption:

Observe $\ell_{t,i}$ only for $i \in S_t \subseteq [N]$

Algorithm: Follow the Perturbed Leader

Initialization: let $L_{t,i} = 0$ for all $i \in [N]$ For all rounds t = 1, 2, ..., T:

- Observe $S_t \subseteq [N]$
- Draw perturbations $Z_{t,i} \sim \text{Exp}(\eta)$ for all $i \in S_t$
- Play expert

•

 $I_t = \arg\min_{i \in S_t} (L_{t-1,i} - Z_{t,i})$ Observe feedback and set for all $i \in N$ $L_{t,i} = L_{t-1,i} + \ell_{t,i}$

Algorithm: Follow the Perturbed Leader

Initialization: let $\hat{L}_{t,i} = 0$ for all $i \in [N]$ For all rounds t = 1, 2, ..., T:

- Observe $S_t \subseteq [N]$
- Draw perturbations $Z_{t,i} \sim \text{Exp}(\eta)$ for all $i \in S_t$
- Play expert

$$I_t = \arg\min_{i \in S_t} (\hat{L}_{t-1,i} - Z_{t,i})$$

• Observe feedback and set for all $i \in N$ $\hat{L}_{t,i} = \hat{L}_{t-1,i} + \hat{\ell}_{t,i}$

Loss estimation

- Assume IID availability: S_t ~ Q ∀t = 1,2,...,T
 Then we can set q_i = P[i ∈ S_t] for all i ∈ [N]
 Losses can be estimated as

 (ℓ_{t,i})
 if i is choorwood
 - $\hat{\ell}_{t,i} = \begin{cases} \frac{\ell_{t,i}}{q_i}, & \text{if } i \text{ is observed} \\ 0, & \text{otherwise} \end{cases}$

Loss estimation

Assume IID availability: S_t ~ Q ∀t = 1,2,...,T
Then we can set q_i = P[i ∈ S_t] for all i ∈ [N]
Losses can be estimated as

$$\widehat{\ell}_{t,i} = \begin{cases} \frac{\ell_{t,i}}{q_i}, \\ q_i \\ 0, \end{cases}$$
Unbiased:

$$\mathbf{E}[\widehat{\ell}_{t,i}] = \ell_{t,i}$$

if *i* is observed

otherwise

Loss estimation

Loss estimation – the bad way

Idea:

- Use *K* samples to estimate *Q*!
- Compute estimates of q_i!
- Obtain low-bias reward estimates!

Loss estimation – the bad way

Idea:

- Use *K* samples to estimate *Q*!
- Compute estimates of q_i!
- Obtain low-bias reward estimates!

Bad news:

- Regret becomes $O(T^{3/4})$
- Can fail horribly for large action sets

Observe that the downtime is a geometric RV!

Observe that the downtime is a geometric RV!

t

Arm *i*

• Observe that the downtime is a geometric RV! t + 1

• Observe that the downtime is a geometric RV! t t+1 t+2

• Observe that the downtime is a geometric RV! t + 1 + 2 + K

• Observe that the downtime is a geometric RV! t + 1 + 2 + K

• Observe that the downtime is a geometric RV! t + 1 + 2 + K

 $\hat{\ell}_{t,i} = \begin{cases} \ell_{t,i} K_{t,i}, & \text{if } i \text{ is observed} \\ 0, & \text{otherwise} \end{cases}$

 $K_{t,i}$

Estimate losses as

 $\mathbf{E}_t \left[K_{t,i} \right] = \frac{1}{\alpha}$

c RV!

K

Observe that the

Arm i

Main result

Theorem 1

Assuming IID expert availability, the expected regret of FPL fed with loss estimates $\{\hat{\ell}_{t,i}\}$ satisfies

$$R_T = O\left(\sqrt{TN\log N}\right)$$

Main result

Theorem 1

Assuming IID expert availability, the expected regret of FPL fed with loss estimates $\{\hat{\ell}_{t,i}\}$ satisfies

$$R_T = O\big(\sqrt{TN\log N}\big)$$

• This is worse by a factor of \sqrt{N} than the bound of Kanade et al. (2009)...

Main result

Theorem 1

Assuming IID expert availability, the expected regret of FPL fed with loss estimates $\{\hat{\ell}_{t,i}\}$ satisfies

$$R_T = O\big(\sqrt{TN\log N}\big)$$

- This is worse by a factor of \sqrt{N} than the bound of Kanade et al. (2009)...
- ...but we didn't cheat!

Lower bound

Theorem 1: $R_T = O(\sqrt{TN \log N})$

Theorem 2 Assuming IID expert availability, no algorithm can achieve better regret than $R_T = \Omega(\sqrt{TN})$

Extensions: large action spaces

- Assume that
 - each expert $i \in [N]$ is associated with a binary vector $\mathbf{v}(i) \in \{0,1\}^d$
 - losses are described by a loss vector $\mathbf{l}_t \in [0,1]^d$
 - loss of expert *i* in round *t* is given as $\mathbf{v}(i)^{\top} \mathbf{l}_t \leq m$

Extensions: large action spaces

Assume that

- each expert $i \in [N]$ is associated with a binary vector $\mathbf{v}(i) \in \{0,1\}^d$
- losses are described by a loss vector $\mathbf{l}_t \in [0,1]^d$
- loss of expert *i* in round *t* is given as $\mathbf{v}(i)^{\mathsf{T}}\mathbf{l}_t \leq m$

Theorem 3

Assuming IID expert availability, the expected regret of the combinatorial extension of FPL is $R_T = O\left(m\sqrt{dT\log d}\right)$

Extensions: bandit feedback

- So far: assume we observe $\ell_{t,i}$ for all $i \in S_t$
- Now: assume we only observe the loss ℓ_{t,I_t}
- Using a simple extension of FPL, we prove

Extensions: bandit feedback

- So far: assume we observe $\ell_{t,i}$ for all $i \in S_t$
- Now: assume we only observe the loss ℓ_{t,I_t}
- Using a simple extension of FPL, we prove

Theorem 4 Assuming IID expert availability, the expected regret of the bandit extension of FPL satisfies $R_T = O(T^{2/3})$

Extensions: bandit feedback

- So far: assume we observe $\ell_{t,i}$ for all $i \in S_t$
- Now: assume we only observe the loss ℓ_{t,I_t}
- Using a simple extension of FPL, we prove

Theorem 4
Assuming IID expert availability, the expected regret of the bandit extension of FPL satisfies
$$R_T = O(T^{2/3})$$

Best previous result was $O(T^{4/5})$

Experiments

Experiments

sleeping semi-bandits, shortest path, 3 x 3 grid, average over 20 runs

Experiments

Future work

- Prove $R_T = O(\sqrt{T})$ for sleeping bandits?
 - Problem: knowing the q_i 's is not enough
- Extend results to more complicated availability assumptions:
 - Markovian arms
 - Mortal arms

Thanks!

